
LavA:

An Embedded Operating System

for the Manycore Age

Michael Engel, Matthias Meier and Olaf Spinczyk

Embedded System Software, Technische Universität Dortmund

Overview

Manycore systems are a growing and inevitable trend in embed-
ded systems. An open question is how to use the abundant computing
resources to improve typical properties of embedded systems,
like real-time constraints, energy consumption and speed of
computation.

The LavA approach proposes new operating system struc-
tures that permit for easier construction and analysis of
application-specific embedded systems.

Project Goals

New OS Structures for Embedded Manycore Devices

Reducing Operating System Overhead
- Implementing parts of the OS in hardware
- Static assignment of processes to cores

System Software and Hardware Co-configuration
- Application-driven configuration of the OS and the hardware

Improvement of Real-time Properties

Reduction of Energy Consumption
- Dynamic and separate frequency adjustment for each core

Hardware Platform

The hardware platform for LavA is a configurable and scalable
manycore system with lots of parameters to adapt the system to
application needs.

Characteristics of the hardware platform
- Different cores can be used depending on application requirements
- Local memory for each core
- Integration of specialized IPs (e.g., FFT Unit)
- Flexible communication structures for IPC
- Selection of several peripherals (e.g., CAN or UART Controller)

Manycore OS Structure

Typical operating systems for small embedded devices use a fixed
set of tasks. Such structures can be easily mapped to our hardware
platform. When sufficient chip space is available, we can offer one
CPU core for each task.

This has major effects on the required operating sys-
tem functionality:
- CPU scheduling is unnecessary
- No memory protection is required
- Methods for communication and synchronization of tasks required
- Drivers for peripheral devices are required

This reduces the overhead, since the operation system does
not have to care about context switches.

WCET [3] calculation tools can be used to estimate a lower
bound for a core’s frequency to save energy. Furthermore, we
can stop a waiting core completely until the arrival of e.g., an
interrupt, when having a single task per core.

To match the real-time constraints is a lot easier when
only a single task is executed on each CPU.

Design Flow

Literature

[1] Stan Jarzabek, Paul Bassett, Hongyu Zhang, and Weishan Zhang, Xvcl: Xml-based variant confi-

guration language, 25th International Conference on Software Engineering, 2003, pp. 810 – 811.

[2] Øyvind Harboe, ZPU Structure: http://opensource.zylin.com/zpu.htm, 2008.

[3] R. Wilhelm et al., The worst-case execution-time problem—overview of methods and survey of

tools, ACM Embed. Comput. Syst. 7 (2008), no. 3, 1–53.


