
Is The Linux Kernel a Software Product Line?∗

Julio Sincero1, Horst Schirmeier2, Wolfgang Schröder-Preikschat1, and Olaf Spinczyk2

1Friedrich-Alexander University of Erlangen-Nuremberg, Germany
{sincero,wosch}@cs.fau.de

2University of Dortmund, Germany
{Horst.Schirmeier,Olaf.Spinczyk}@udo.edu

Abstract

The software product line (SPL) community defines SPLs
not only by technical aspects like configurability and code
reuse among product line variants, but also by the engineer-
ing process that accompanies the development. This paper
discusses the question whether this engineering process is
a mandatory property of SPLs; it concretely examines the
Linux Kernel, which is not being developed according to the
SPL engineering guidelines, but nevertheless shares signifi-
cant commonalities with SPLs that are developed conform-
ing to the definition.

1. Introduction

A software product line (SPL) corresponds to a set of
software components that can be assembled together in or-
der to deliver different products in a specific domain. There
are several guidelines for the development of SPLs from
scratch [6, 8]. Normally, the initial phase is characterized
as the domain analysis where the domain engineering takes
place. The commonalities and variabilities of the target
domain are captured and catalogued for subsequent reuse.
Based on these results, a flexible architecture that comprises
the variability previously identified is specified. Finally, the
domain implementation represents the actual coding of the
components that can be configured and combined in order
to generate a required product.

The development of components that are used to gen-
erate different products represents effective software reuse.
The software engineering community has tackled this prob-

∗This work was partly supported by the German Research Council
(DFG) under grant no. SP 968/2-1.

lem for decades: the SPL guidelines are proving to be
successful regarding the level of reuse they can achieve.
However, software reuse is not the only (technical) goal of
SPL development; among others, improvement of time-to-
market, product quality, and mass customization is expected
[8].

Interestingly, another software development movement
is showing good results in many areas as the SPL approach
does [13, 1]. There are several well established open source
projects that offer highly configurable software systems that
achieve the same technical goals that the SPL guidelines
aim at.

A good example is the Linux Kernel project [4]. It is
comprised of a huge set of components that can be config-
ured in order to generate specific kernel images (products)
for a myriad of scenarios (the combination of several plat-
forms, subsystems, device drivers, etc.). Therefore, at first
sight, it seems to achieve important objectives of the SPL
development like automatic product generation, code reuse,
and mass customization.

The goal of this work is to study the Linux Kernel and
identify if this open source project achieves the goals that
the SPL community also pursues. We concentrate on the
technical aspects of the SPL development like variability
and asset management, product configuration and genera-
tion, and the development process. When necessary, we
compare the strategies used in the Linux Kernel and the
ones provided by the SPL community.

2. Motivation

Our interest in the Linux Kernel started with the neces-
sity of a project in our research group, which investigates
the configuration of non-functional properties in the con-

1

text of operating system product lines [11]. To perform our
tests, we needed an SPL with a very large code base. As
we did not have the time to implement one from scratch,
we decided to find an existing operating system product
line with source code available, implemented using the SPL
practices. Unfortunately, there was no alternative available.
Therefore, we had to find an open source operating system
with a high degree of configurability to play the role of an
SPL in our research project. This decision raised questions
like “what is the difference between highly configurable
software and SPLs?”, and, as the Linux Kernel suited our
needs, “is the Linux Kernel an SPL?”.

3. The Linux Kernel from the SPL perspective

The Linux Kernel is an open source implementation of
a Unix-like operating system kernel. Currently, it sup-
ports several hardware platforms and a huge diversity of
devices. It aims towards providing the complete user and
software interface specified in POSIX1 and SUS2, and full
customization in all its components, providing a very small
and compact kernel[4].

The next subsections analyze the Linux Kernel with re-
spect to the practices normally employed for SPL develop-
ment.

3.1. Variability Management

In an SPL, products are comprised of a common part
that is shared by the whole portfolio and a variable part that
differentiates individual products. Variability can be seen as
an assumption about how members of a family of products
may differ from each other [12]. Also, it can be seen as the
ability to change or customize a system [14].

Variability management is a discipline that is used during
SPL development in order to organize and document the
variability during the different stages of the life cycle. In
order to understand the variability of the Linux Kernel3, it
is necessary to identify its variation points:

Hardware Architecture An operating system kernel is the
closest software abstraction to the underlying hard-
ware, the configuration of the target architecture and
platform is a primordial task. The Linux Kernel of-
fers support for more than 60 different hardware plat-
forms (e.g. ia32, DEC, sun-4, etc.), which are orga-
nized according to the correspondent architecture (cur-
rently around 25, e.g. Sparc, Alpha, i386, etc.).

Subsystems The Kernel subsystems are organized as fol-
lows: kernel (architecture-independent kernel code,

1Portable Operating System Interface
2Single UNIX Specification
3We used the 2.6.21 release for our analysis.

e.g. IRQ-handling, process scheduler, etc.), fs (file sys-
tems implementation), init (kernel initialization rou-
tines), mm (memory management), sound (sound sub-
system), block (abstraction layer for disk access), ipc
(inter-process communication code), net (network pro-
tocols), and lib (library functions, e.g., CRC and SHA-
1 algorithms).

Device Drivers Device drivers enable the operating system
to interact with a specific hardware device. This is
the biggest subsystem in the Linux Kernel, in terms
of lines of code; this is due to the vast number of de-
vices it supports. For example, USB devices, network
interface cards, PCMCIA cards, and a lot more.

Config Options They are responsible for configuring/-
parametrizing specific features. They are spread over
the whole project and can be used for selecting the
required subsystems, enabling specific features of a
hardware platform or device driver, and also to con-
figure compile and debug options.

This extensive set of options represents the configurability
present in the kernel. In order to generate a useful ker-
nel image, decisions regarding the target platform, the re-
quired subsystems, and the necessary device drivers must
be taken. Moreover, this selected functionality can be more
finely configured by means of Config Options. The gran-
ularity of these choices is very inhomogeneous; for exam-
ple, the choice of not including network capabilities means
thousands of lines of code being left aside, whereas the se-
lection of a debug option may result in the inclusion of few
lines of code. The feature binding can occur either at run-
time or compile time; in the former case the particular fea-
tures must be compiled as separately loadable modules.

Regarding the management of this complex variability,
the Linux Kernel uses a top-down approach. When new
functionality is added to the kernel, the new configuration
options are also added. The SPL community normally uses
a bottom-up approach: during software design, the variation
points are identified and used during the subsequent devel-
opment phases.

3.2. Product Configuration

Product configuration is the process of selecting the fea-
tures the desired final product is supposed to contain. The
result is a list of features and parameters that is used as in-
put for the actual generation of the product. There are au-
tomatic [10] and manual approaches for the product config-
uration in the context of SPLs. The Linux Kernel can be
completely configured by manually editing textual configu-
ration files. However, it offers several (equivalent) config-
uration tools, which only differ in their graphical interface;

(a) pure::variants configuration GUI (b) Linux Kernel configuration GUI

Figure 1. Different configuration tools

there exist line-oriented, menu-based, and also Qt and GTK
configuration front-ends.

The appearance and semantics of these configuration
front-ends is very similar to modern feature model based
configuration tools. On the left side, Figure 1 shows an ex-
ample of a feature model4 taken from the pure::variants [2]
SPL development tool. On the right side of Figure 1, the
Qt front-end for the configuration of the Linux Kernel is
shown. The similarity of these tools is noticeable: both
organize the available features in a tree-oriented style, the
product configuration is performed by the individual selec-
tion of each required feature, and finally, both of them gen-
erate a file with the complete specification that is used for
product generation.

3.3. Product Generation

The configuration and product generation implementa-
tion in the Linux Kernel is based on a set of small scripts
called kbuild.

Firstly, kbuild implements the meta model for the config-
uration tree, which allows defining a hierarchy of configu-
ration options; additional constraints specify the boundaries
for valid configurations (see Figure 2 for an example). In
terms of expressiveness, the used meta model is comparable
to Czarnecki’s definition of feature models [5]: Hierarchi-
cal composition, feature inter-dependencies, and additional
constraints.

Secondly, kbuild is responsible for generating a Linux
Kernel variant from a given configuration. The aforemen-
tioned configuration user interface creates a file (“.config”)
holding a list of options the user selected; based on this con-
figuration information kbuild generates a C header file with

4from a trivial research operating system product line

macro definitions in order to control inclusion or exclusion
of code in the final product. Makefile build scripts finally
control the compilation and linking of the resulting kernel
image.

3.4. Development Process

The reference process for SPL engineering [3, 8, 9] com-
prises iterative steps of refining analysis and design phases
that allow industrial SPL manufacturers to keep the devel-
opment controllable and efficient. The outcomes of these
activities are explicit definitions of commonalities and vari-
ation points of the SPL on the requirements, software archi-
tecture, and implementation artefact levels.

In contrast, the Linux Kernel development process does
not employ a uniform domain engineering process. Com-
monalities and variation points often emerge implicitly from
implementation necessities and are not subject to a before-
hand planning process. Even more profane Kernel evolution
issues like new features or software architectural changes do
not undergo a controlled planning process.

This latent lack of planning gets compensated by very
large manpower: several thousands of volunteers (alongside
with a few dozens of full-time paid engineers in contribut-
ing companies) stand by to implement new features, to peer
review code changes, to do kernel-wide interface refactor-
ings, or to support the release process by beta testing the
kernel on their machines [7, 13].

Opposed to industrial SPL manufacturers, the Linux
Kernel developers can afford this luxury – there do not exist
any real release deadlines (although Linus Torvalds estab-
lished a release cycle for the 2.6 kernel series, a release is
still “done when it’s done” [13]) or paying customers that
need to be satisfied.

config PARAVIRT
bool "Paravirtualization support (EXPERIMENTAL)"
depends on EXPERIMENTAL
depends on !(X86_VISWS || X86_VOYAGER)
help
Paravirtualization is a way of running multiple
instances of Linux on the same machine, under a
hypervisor. This option changes the kernel so it
can modify itself when it is run under a
hypervisor, improving performance significantly.
However, when run without a hypervisor the kernel
is theoretically slower. If in doubt, say N.

config VMI
bool "VMI Paravirt-ops support"
depends on PARAVIRT
help
VMI provides a paravirtualized interface to the
VMware ESX server (it could be used by other
hypervisors in theory too, but is not at the
moment), by linking the kernel to a GPL-ed ROM
module provided by the hypervisor.

Figure 2. Definition of configuration options
with dependencies in the Linux Kernel

4. Discussion

In order to achieve an effective development of SPLs, the
scientific community has provided guidelines like product
line scoping, domain engineering, feature modeling, core
asset development, etc. The Linux Kernel does not use any
of these approaches (as described by the SPL community)
in its development, and therefore cannot be considered an
SPL.

The SPL guidelines aim at goals like automatic product
generation, flexible architecture, high configurability, code
reuse, no overhead of unrequested features, etc. The great
success of the Linux Kernel is due to its ability to accom-
plish most of these goals, therefore, from this perspective,
one could consider it to be an SPL. Additionally, the tech-
niques used for kernel configuration and generation are very
similar to the ones applied in the context of SPLs for prod-
uct configuration and generation. Furthermore, in our opin-
ion, the Linux Kernel (as well as SPLs in general) differs
from simply highly configurable software as it provides a
platform which encompasses multiple products being de-
veloped simultaneously.

These assumptions could raise the question whether all
currently advertised SPL practices are necessary for build-
ing a competitive SPL. We think, they are absolutely neces-
sary, as we believe the success of the Linux Kernel is very
much related to its development process. The Linux Kernel
has a very peculiar development process, which cannot be
applied (at least in the proportions of the Linux Kernel) by
a regular software company. Therefore, the SPL guidelines
are of great importance to ease the development of SPLs
in environments where limited resources (e.g. manpower),
strict schedules and deadlines, and business interests must
also be taken into consideration.

5. Conclusion

This position paper demonstrates how the Linux Kernel
achieves some of the goals that the SPL guidelines also aim
at. We have shown that a powerful development process
without any rigorous software engineering procedures may
achieve similar results as the ones expected from the prac-
tices offered by the scientific community.

However, we also concluded that the formalities for the
SPL development are of crucial importance in more con-
strained development scenarios, so that effective and prac-
tical development practices can reduce the development ef-
forts.

References

[1] J. Bermejo and N. Dai. Open source strengths for defining
software product line practices. In 1st International Work-
shop on Open Source Software and Product Lines (SPLC
2006), 2006.

[2] D. Beuche. Variant management with pure::variants. Tech-
nical report, pure-systems GmbH, 2003. http://www.pure-
systems.com/.

[3] G. Böckle, P. Knauber, K. Pohl, and K. Schmid.
Software-Produktlinien: Methoden, Einführung und Praxis.
dpunkt.verlag GmbH, Heidelberg, 2004.

[4] D. P. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly, 2001.

[5] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming. Methods, Tools and Applications. Addison-Wesley,
May 2000.

[6] J. Greenfield and K. Short. Software Factories. Wiley, 2004.
[7] A. Morton. The linux kernel development process.

http://aycinena.com/index2/index3/archive/andrew%20mo
rton%20&%20the%20linux%20kernel.html, 2005.

[8] L. Northrop and P. Clements. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2001.

[9] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Tech-
niques. Springer-Verlag, 2005.

[10] H. Schirmeier and O. Spinczyk. Tailoring infrastructure
software product lines by static application analysis. In
Proceedings of the 11th Software Product Line Conference
(SPLC ’07), 2007. (to appear).

[11] J. Sincero, O. Spinczyk, and W. Schröder-Preikschat. On
the Configuration of Non-Functional Properties in Software
Product Lines. In Proceedings of the 11th Software Product
Line Conference, Doctoral Symposium (SPLC ’07), 2007.

[12] M. Svahnberg and J. Bosch. Issues concerning variability in
software product lines. In IW-SAPF, pages 146–157, 2000.

[13] J. van Gurp. OSS Product Family Engineering. In 1st Inter-
national Workshop on Open Source Software and Product
Lines (SPLC 2006), 2006.

[14] D. M. Weiss and C. T. R. Lai. Software Product-Line En-
gineering: A Family-Based Software Development Process.
Addison-Wesley, 1999.

