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Abstract—In the wake of the soft-error problem, fault injection
(FI) is a standard methodology to measure fault resilience
of programs and to compare algorithm variants. As detailed,
e.g. gate-level machine models are often unavailable or too
slow to simulate, FI is usually carried out in fast simulators
based on abstracted system models, using e.g. ISA-level register
injection. However, the literature deems such injection techniques
too inaccurate and yielding wrong conclusions about analyzed
programs.

In this paper, we empirically challenge this assumption by
applying gate-, flip-flop- and ISA-level FI techniques on an Arm®
Cortex®-MO0 processor. Analyzing FI results from 18 benchmark
programs, we initially confirm related work by reporting SDC-
rate discrepancies of up to an order of magnitude between a gate-
level baseline and injection techniques on higher machine-model
levels, suggesting gate-level injection should be used e.g. to select a
specific sorting algorithm. We discuss why these discrepancies are,
however, fo be expected, and show that the extrapolated absolute
failure-count metric combined with relative inter-benchmark
measurements yield a significantly better cross-layer alignment of
algorithm-resilience rankings. Our results indicate that ISA-level
injection techniques suffice for evaluating and selecting program
and algorithm variants on low-end processors.

I. INTRODUCTION

Computer systems have been known for decades to occasion-
ally malfunction due to transient hardware errors (soft errors)
[1], and have since been hardened on different hardware and
software levels to reduce the likelihood of system failures.
Besides explicit hardening, using e.g. software-implemented
hardware fault tolerance (SIHFT), also the choice of algorithm
variant can influence a program’s susceptibility to soft errors,
its runtime — and in consequence the probability it ends up
with a faulty output (a silent data corruption, SDC) [2]. To
choose e.g. a specific sorting algorithm for use in a soft-error
prone environment, a whole zoo of existing sorting algorithms
needs to be measured, compared and ranked. Similarly, from a
set of SIHFT implementations, one variant is usually the most
effective for a particular use-case scenario.

Fault injection (FI) has grown into the standard methodology
to measure fault resilience of programs and effectiveness of
SIHFT. Hardware-based FI — based on experiments with radia-
tion sources [3], with pin-level injections, or electromagnetic
interference [4] — is expensive and suffers from low control-
lability and repeatability. Consequently, simulation-based FI

has become an important tool for analyzing application-level
effects of faults, for quantifying the effectiveness of SIHFT
mechanisms, and for selecting the most resilient algorithm
variant for a specific application.

Note that FI is also being used to fest SIHFT implementations
for detecting all faults they are specified to cover, or to gain
insights on the complete failure-mode spectrum a program
exhibits under faults — both FI uses being out of scope of
this paper. In these use cases, the goal of FI is to maximally
challenge the SIHFT mechanism, or to elicit also rare failure
modes by using a particularly realistic FI technique. Metrics
are less momentous in these cases — e.g. it is not essential
whether a SIHFT mechanism results in an SDC rate of 10%
or 15% if it is supposed to provide 0%.

In this paper, we focus on soft errors on the gate level —
a fault model known to closely match real-world soft errors
[51, [6], [7]. FI techniques injecting in machine models on this
abstraction level generally rely on slow gate-level simulations,
sometimes with hardware acceleration or emulation. Besides
their low speed, gate-level models of commercial CPUs are
very hard to come by, which often precludes experiments
with low-level machine models. In contrast, high-level CPU
models are generally available; FI techniques aiming at higher
abstraction levels — e.g., injecting in the ISA-level register file
— are much less precise but can be very fast [8], and also ease
understanding erroneous application behavior [9].

In order to select an appropriate FI technique, developers
must choose the lesser of two evils: extremely slow injection
speeds — if a detailed machine model can be obtained at all,
— or high-level model inaccuracies potentially rendering the
results useless. Unfortunately, recent cross-layer FI studies
report that high-level techniques are too inaccurate to be
useful [8], or document significant discrepancies at least for
specific failure modes [10]. From their analysis of Fl-result
comparison between flip-flop level and higher abstractions, Cho
et al. conclude that high-level FI “can result in high degrees
of inaccuracies by more than an order of magnitude” [8],
quoting an error of up to factor 45 with no trend towards over-
or underapproximation. However, Cho et al. also conclude
that “accuracy is not necessarily a requirement” and that “an
inaccurate error injection technique can be very useful as long



as it is effective in driving the correct design decisions for
building robust systems.” [8]

In this paper, we explore this opportunity for fast FI
experiments with high-level FI techniques, and analyze whether
they lead to correct design decisions. We compare gate-level FI
results on a low-end microprocessor — an Arm® Cortex®-M0
modeled on the gate/net-list level — to results on the flip-flop
and register level. We quantitatively confirm Cho et al. [8]
by reporting SDC-rate discrepancies of up to an order of
magnitude between the gate-level ground truth and high-level
FI techniques, suggesting that the latter is too inaccurate for
ranking program variants. Subsequently, we discuss why these
discrepancies are, however, to be expected, and show that the
extrapolated absolute failure-count metric [11] combined with
relative inter-benchmark measurements yield a significantly
better cross-layer alignment of algorithm-resilience rankings. In
effect, our results indicate that ISA-level injection techniques
suffice for evaluating and selecting program and algorithm
variants on low-end processors.

In particular, the contributions of this paper are:

o We perform FI experiments on gate-, flip-flop and register-
file levels of an Arm® Cortex®-MO0 microprocessor, and
quantitatively — in order to be able to relate to the work
of Cho et al. [8] — confirm high levels of SDC-rate
inaccuracies between low- and high-level FI techniques
(Section IV).

o We discuss these cross-layer fault-coverage discrepancies
and provide an explanation why they are to be expected
already on the metric level. We demonstrate that — despite
up to an order of magnitude difference between results
from different abstraction levels — for a subset of the 18
benchmarks we used, the right design decisions would
have been made as the relative inter-benchmark rankings
stay roughly similar across FI techniques (Section IV).

o We show that when using the extrapolated absolute failure
count (EAFC) metric [11] instead of the fault-coverage
factor, virtually all design decisions based on high-level
FI results are correct when compared to the gate-level
ground truth (Section V).

The following section discusses related work regarding cross-
layer Fl-result comparisons. Section III describes our FI setup
including system, fault and failure models, and the benchmarks
we apply them to. Section VI concludes the paper.

II. RELATED WORK

In the literature, few works can be found that quantitatively
address Fl-result interpretation across different FI techniques
or system- and fault-model abstractions.

Rebaudengo, Sonza Reorda and Violante [12] report up to
400 percent failure-rate inaccuracies for the SPARC LEON
processor when injecting on the register level, compared to a
ground truth with injections in the processor pipeline and
internal caches. Arlat et al. [13] compare hardware-based
FI — using heavy-ion radiation, pin-level stuck-at faults, and
electromagnetic interference — and offline injection into the
target program’s code and data segments. From their study
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Fig. 1. Architecture of FPGA-based FI system: Multiple Cortex-MO cores run
FI experiments in parallel, while a global FI controller component oversees
the campaign, resets FI CPUs and memories, configures local FI controllers
with concrete fault coordinates, and collects result data.

on the fault-tolerant MARS real-time system, the authors
report similar experiment outcomes for the different injection
techniques but stay rather vague regarding differences in failure
rates. Similarly, Sanda et al. [14] compare radiation-experiment
results to flip-flop level injections and report a close match
between both FI techniques.

Cho et al. [8] target an FPGA-implemented SPARC LEON
and the IVM processor, and inject on the flip-flop, register-file
and program-variable level using different fault distributions.
They report that their high-level injection techniques create
outcome-rate inaccuracies up to more than an order of magni-
tude with no single trend towards under- or overapproximation.
The authors subsequently analyze the causes for the observed
inaccuracies. Wei et al. [10] conduct a similar study but
compare LLVM [15] FI with machine-code level injections.
They report highly accurate SDC-rates but different crash rates
when comparing both injection techniques.

All related work we are aware of quantifies FI-count relative
outcome rates — o, similarly, fault-coverage rates, — and reports
different levels of inaccuracies. In this paper, we follow the
same practice, report similar levels of inaccuracies (Section IV),
and come up with an explanation and remedy.

III. FAULT-INJECTION SETUP

In this section we describe the FI setup including the system
models we injected into, the workloads we ran while injecting,
and the applied fault and failure models.

A. Target System

We created an FPGA-based FI system with multiple instances
of an Arm Cortex-M0O Verilog model on a Xilinx Virtex-7
FPGA. We chose the 32-bit Cortex-MO with a 3-stage pipeline
because it fits multiple times on the FPGA (for parallelization
purposes) even with our saboteur modifications that allow



TABLE I
FAULT-EFFECT LOOKUP TABLE USED FOR GATE-LEVEL FI INTO ONE OUT OF
10 “VIRTUAL” GATES AN EDGE-TRIGGERED D FLIP-FLOP CONSISTS OF.

Gate l Effect H Gate l Effect
1 timing error 6 Q' undefined
2 timing error 7 Q' =-D
3 Q' =1 8 Q' =D
4 Q' =0 9 Q' undefined
5 Q' undefined 10 Q' undefined

the injection of transient gate-level faults. The Cortex-MO is
used in several commercially available microcontrollers, and
is known for its cost- and energy efficiency.

Figure 1 gives an architectural overview of our FI system. On
the left, a global FI controller with an administration interface
via RS232 to a host PC executes FI campaigns by generating
fault coordinates (time instance/fault location pairs), resetting
and initializing the FI CPUs and memories, configuring local

FI controllers with fault coordinates, and collecting result data.

The global FI controller’s RAM contains a control program,
an initial memory image for the FI CPUs, and the golden run
result to compare against when each FI experiment finishes.

The right half of Figure 1 shows multiple FI components
containing a local FI controller, which is configured by the
global controller and injects the actual faults, a local RAM,
and a modified Arm Cortex-MO as a FI CPU. The obfuscated
Verilog code of the Cortex-MO is already very close to a
gate-level model, which allowed us with some scripting effort
to add saboteurs that invert the output of each gate when
triggered. In order to stay within FPGA-resource budgets
and reasonable operation frequencies, but still be able to run
several experiments in parallel, we partition the space of all
possible fault locations: Not every FI CPU is instrumented
with a saboteur for all possible fault locations, but only a
subset of them — while still ensuring that each fault location
is instrumented in at least one FI CPU. With this partitioning,
we fit 16 saboteur-instrumented Arm Cortex-M0 CPUs on the
Xilinx Virtex-7, which can be used to capacity when injecting
in uniformly selected, random fault locations.

As CPU-internal flip-flops are not modeled on the gate level
but mapped to real flip-flops in FPGA slices, we dealt with them
specifically to mimic gate-level faults in flip-flops. We model
them as edge-triggered D flip-flops consisting of 8 NAND- and
2 NOT gates, and use a pre-computed fault-effect lookup table
(see Table I) when injecting into one of those “virtual” gates.
Depending on the affected gate, Q' (the flip-flop’s internal
state) can be unaffected, be forced to 0, 1, be inverted, or
undefined (which we implement by forcing a random value).
We ignore timing errors in this gate-level flip-flop model.

B. Workloads
In total, we use a set of 18 benchmarks with low memory
footprint in order to fit into the FPGA’s on-chip memory:

e From the MiBench Embedded Benchmark Suite — consult
the original MiBench paper [16] for benchmark details

TABLE II
BENCHMARKS WITH RUNTIMES IN CPU CYCLES.

Benchmark  Runtime in CPU cyles
A-bubblesort-base 579,048
A-bubblesort-prot 24,588,989
A-quicksort-base 789,990
A-quicksort-prot 15,751,833
mibench-auto-basicmath 118,033,276
mibench-auto-bitcount 52,623,529
mibench-auto-susan 38,605,276
mibench-security-blowfish 1,727,563
mibench-security-rijndael 2,218,896
mibench-security-sha 332,638
bubblesort 3,718,167
gnomesort 1,724,176
heapsort 144,061
insertionsort 933,441
mergesort 241,393
quicksort 108,060
selectionsort 2,759,685
shellsort 148,528

— we ported the automotive (benchmarks: basicmath,
bitcount, susan) and security (blowfish, rijndael, sha)
suites to our FI platform. The primary modification we
carried out was the removal of filesystem access for
reading input data, and replacing it by directly linking
the data into the benchmark binaries. In several cases we
also had to reduce the input-data size to stay within our
memory limits.!

e As an example for choosing the most resilient variant
out of a set of multiple algorithm variants, we used
different sorting algorithm implementations as workloads:
bubblesort, gnomesort, heapsort, insertionsort, mergesort,
quicksort, selectionsort, shellsort.

o Also, we used two sorting benchmarks in a baseline variant
and a SIHFT variant protected with A-encoding [17]: A-
bubblesort-base/-prot and A-quicksort-base/-prot.

Table II lists all 18 benchmarks with their runtime as measured
on the Arm Cortex-MO.

C. Fault Model and Fault-Injection Techniques

We assume single-event upsets in the CPU as our fault
model, implemented by gate-output inversions for the lowest-
level FI technique, and transient single- and burst bit-flips for
the higher-level FI techniques. Concretely, we use the following
FI techniques:

o Gate-level: During a benchmark run, we uniformly choose
a random point in time and a random gate (from a total
of 20,956 gates). When reaching the specified cycle,
the FI system inverts the gate’s output for one cycle
before returning to normal operation. We assume gate-
level results to be the most realistic and choose them as
our ground truth.

IBenchmarks available at: https:/github.com/danceos/edcc2019-mibench
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Fig. 2. Overlapping fault spaces for different FI techniques and fault models:
Gate-level FI injects into the set of all available CPU gates — i.e. all possible
injection (time/space) coordinates, — while the other techniques inject in
decreasing subsets thereof.

« Flip-flop level: Similarly to the gate level, we uniformly
choose a random point in time and a random flip-flop
(from a total of 840 flip-flops in the design). At the
specified time, we invert the flip-flop’s state.

o Register-file level: Only injects in flip-flops that are part
of an ISA-visible register. We implement different fault
models on this level:

— Register: Random injection time chosen uniformly,
single-bit flip (in one out of 508 register bits).

— Register Byte: Similar to Register, but flip 8 bits at
once (in one out of 60 byte positions), also known
as burst bit-flip. We chose this fault model, because
the results of Cho et al. [8] indicate that multi-bit
faults on higher abstraction levels are a good model
for faults on the lower levels; lacking realistic multi-
bit patterns to inject, we approximate the model by
simply injecting in 8 adjacent register bits.

— Register-on-Write: Injection time chosen randomly
from all times when the register is being written into,
also known as Inject-on-Write. We chose this fault
model as it is generally known to well model CPU-
internal faults by injection on the ISA-register level
[18] and should, hence, correlate well with lower-
level FI techniques.

Figure 2 schematically summarizes the different FI tech-
niques and fault models we apply on the FPGA-based FI
platform: Higher-level fault coordinates (fault location/injection
time) are a subset of those from lower-level models, with the
gate-level model encompassing all possible FI coordinates of
higher-level models.

D. Failure Model

In the initial analysis steps in the next section we distinguish
the following experiment-result types:

o No Impact: The workload does not exhibit any observable
deviation from a fault-less golden run.

« Timeout: The workload was aborted when not terminating
normally within 2x the runtime of the golden run.

o Lockup: The Arm Cortex-MO reported a lockup condition.
« Silent Data Corruption (SDC): The workload terminated
normally, but its output deviated from the golden run.
¢ Detected: The workload itself detected an error; the two
benchmarks protected with the A-encoding scheme are
explicitly capable of error detection.
In the later part of the analysis, we focus on SDC, as we
assume all other result types to be either benign or detectable
by hardware mechanisms (e.g. by a watchdog chip).

IV. RESULTS: CLASSIC INTERPRETATION

In this section, we present raw FI results and discuss their
interpretation with the classic fault-coverage factor metric used
in related work. Subsequently we investigate whether — in
spite of high cross-layer fault-coverage discrepancies in our
result data — still the right design decisions would have been
made using only results from a high-level FI technique. The
section concludes with an analysis of the suitability of the
fault-coverage factor for cross-layer comparison.

A. Result-Distribution Comparison

Figure 3 presents the raw FI results, broken down by
workload, FI technique, and experiment outcome. For each
fault model and workload combination, we ran 20,000 FI
experiments to achieve a 99 percent confidence interval
smaller than +1.6 percent, using the conservative occurrence
probability p = 0.5 assumption Leveugle et al. [19] propose.

Already at first glance the results show that for no single
workload any of the high-level result distributions resembles
the distribution of the gate-level ground truth. A closer look at
the numbers reveals that result-type percentages are in some
cases off by up to an order of magnitude, confirming similar
reports by Cho et al. [8] when comparing a flip-flop level
ground truth to FI results on higher abstraction levels:

e No Impact is off by down to 0.335x for insertionsort
when comparing the Register-file FI technique (fault
model: Register-on-Write) results with the gate-level
ground truth.

o Timeout is off by up to 3.16x (mibench-auto-bitcount,
Register Byte) and down to 0.127x (selectionsort,
Register-on-Write).

o Lockup is off by up to 19.38 % (insertionsort, Reg. Byte).

o SDC deviates by up to 13.7x (A-quicksort-prot, Register-
on-Write) and down to 0.544x (A-bubblesort-prot,
Register-on-Write).

o Detected is off by up to 4.38x (A-bubblesort-prot,
Register-on-Write).

When focusing on the first three FI techniques (gate-, flip-
flop-, register-level), a clear trend can be made out: The result
percentages for all result types besides No Impact tend to
increase from lower- to higher-level FI techniques (e.g. SDC
increases for all workloads besides A-quicksort-prot), while No
Impact decreases. We discuss this phenomenon in Section I'V-C.
Cho et al. [8] analyze in detail where cross-layer deviations
come from, and why some effects from low-level FI cannot be
reproduced with higher-level FI techniques. However, in the
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Fig. 3. Raw FI results: Across different FI techniques, for some benchmarks
the proportion of specific result types is off by up to an order of magnitude
compared to the gate-level baseline.
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Fig. 4. Fault-coverage factors across FI techniques: Absolute values and
extracted workload ranking.

remainder of this paper we instead want to explore how these
seemingly useless results can be interpreted to drive design
decisions like the selection of a particular algorithm.

B. Fault-Coverage based Workload Ranking

In their paper, Cho et al. realize that “accuracy is not
necessarily a requirement” [8] when the FI results still lead to
the right design decisions — i.e., choosing one algorithm over
another, or rate one SIHFT-protected program variant better
than a differently configured one that is less fault-resilient.
Such design decisions are often made on the basis of the SDC

rate SDC count or the closely related fault-coverage

> total injection count’
factor [20] metric ¢ = 1 — % where higher

values indicate more robust systems.

Figure 4a plots the fault-coverage factor — calculated from the
raw results in Figure 3 — for each workload across different FI
techniques. Although, e.g., the Register-on-Write fault coverage
deviates by a large factor from the gate-level ground truth, the
relative ranking within each FI technique’s results could lead
to the same correct design decisions. Figure 4b distills this
relative ranking from the fault-coverage numbers in Figure 4a:
Intersecting lines indicate some rank shuffling and potentially
incorrect design decisions. Note, however, that some of the



TABLE Il
RANK CORRELATION METRICS 7, K AND K, COMPARING WORKLOAD
RANKINGS ATTAINED BY GATE-LEVEL AND HIGHER-LEVEL FI TECHNIQUES.
7, K AND K ARE CALCULATED OVER all WORKLOADS, AND INDIVIDUALLY
FOR THREE WORKLOAD SUBSETS (A, mibench, sorting), BASED ON
FAULT-COVERAGE FACTOR VS. EXTRAPOLATED ABSOLUTE FAILURE COUNT
(EAFC) MEASUREMENTS.

Rank correlation metrics based on Fault-Coverage Factor:

Gate vs. l Flip-flop Register Reg. Byte  Reg. on Wr.
= T 0.791 0.765 0.765 0.699
S TK (K) 16 (0.105) 18 (0.118) 18 (0.118) 23 (0.150)
A T 1.0 1.0 1.0 0.667

K (K) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.167)
< T 0.867 1.0 0.733 0.733
f T K&K 1 (0.067) 0 (0.0 2 (0.133) 2 (0.133)
N T 0.429 0.214 0.429 0.786
S K (K) 8 (0.286) 11 (0.393) 8 (0.286) 3 (0.107)

Rank correlation metrics based on EAFC:

Gate vs. l Flip-flop Register Reg. Byte  Reg. on Wr.
= T 0.948 0.961 0.948 0.712
S TK (K) 4 (0.026) 3 (0.020) 4 (0.026) 22 (0.144)
4 T 1.0 1.0 1.0 -1.0

K (K) 0 (0.0) 0 (0.0) 0 (0.0) 6 (1.0)
S T 1.0 1.0 1.0 0.867
f T K& 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.067)
N T 0.929 0.929 1.0 0.714
S TK (K) 1 (0.036) 1 (0.036) 0 (0.0) 4 (0.143)

absolute fault-coverage values — e.g., the sorting benchmarks
in the gate-level injection results — are so similar that ranking
them is difficult.

A closer inspection of the workload rankings reveals that
some design decisions based on high-level fault models would
be correct, but by far not all. For example, both the gate-level
and register-level (register) injection techniques choose bubble-
sort over all other sorting benchmarks, with quicksort being
in second place in both cases as well. However, selectionsort
moves from the correct third-best sorting-algorithm position to
the last, being replaced by gnomesort that should be placed
second to last according to the gate-level ground truth.

Similarly, the A-encoding protected benchmarks (A-
bubblesort-prot, A-quicksort-prot) are in a better rank than their
baseline (-base) pendants in all five FI techniques. However,
Register-on-Write chooses A-bubblesort-prot over A-quicksort-
prot, contradicting all other techniques including our gate-level
baseline — although Register-on-Write is supposed to model
CPU-internal faults best from the three register-level techniques.

In order to quantify the ranking “quality” of each FI
technique in relation to the ranking from the gate-level ground
truth, we calculate Kendall’s 7 [21]. This correlation metric
is based on the number of rank inversions: For a set of n
workloads, it counts the number K — Kendall’s tau distance —
of pairs (out of NV := (g) pairs) whose rank is discordant, i.e.
they are in a different relative order than in the ground truth;
the remaining L := N — K pairs are called concordant. The
normalized tau distance K calculates as % (i.e., the fraction

of all pairs that is discordant), and finally Kendall’s 7 := L&,

Possible 7 values lie between —1 (inverted ranking) andN+1
(identical ranking), with O indicating no correlation.

The upper half of Table III shows the application of T
and the related absolute and normalized fau distances K
and K on the ranking derived from the fault-coverage factor
measurements (Figure 4b). The 7 values over all workloads
show what the statistics literature calls “strong” correlation
[22] between the ground truth and higher-level FI techniques,
but in the case of register-level FI 18 (Register) up to 23
(Register-on-Write) out of 153 workload pairs are discordant
— meaning wrong design decisions would have been made in
these cases. Applying the metrics to the rankings within the
three workload subsets — the A-encoding benchmarks, MiBench,
and the sorting algorithms — shows that especially the sorting
algorithms show little agreement between register-level FI and
the ground truth (7 = 0.214, 11 discordant pairs out of 28).

C. Discussion

Although cross-layer comparisons seem to improve with
these relative and rank-based interpretations, our absolute fault-
coverage factor measurements (Figure 4a) still significantly
deviate from the gate-level baseline — similar to the results of
Cho et al. [8]. However, we argue that this difference is not
surprising: From lower- to higher-level FI techniques, more and
more possible fault locations are removed from the fault space
(see Figure 2). Higher-level fault models tend to concentrate
injection into the “more important” structures of the machine:

o Flip-flop level FI targets only longer-lasting state bits
instead of — additionally — large amounts of logic gates,
where a temporary output inversion is more likely to be
masked. Hence, flip-flop level faults should be expected
to propagate with higher probability.

o Register-level FI again subsets the flip-flop level fault
space and injects only into those state bits that are
already visible on the ISA level, and, hence, have an
even shorter path to propagate to the program’s output
than the remaining flip-flops.

In effect, the trend towards lower fault-coverage factor mea-
surements in higher-level FI in Figure 4a is primarily caused
by the fault-location selectivity of these techniques. In other
words, “inaccuracies by more than an order of magnitude” [8]
should not come as a surprise but are to be expected.

However, in earlier work [11] we noted that the fault-
coverage factor metric is generally unsuitable for comparing
and ranking programs running on the same system with the
same fault model. We attribute this to the fact that this metric
does not take different fault-space sizes — e.g., due to different
program runtimes — into account. As a remedy, we proposed
the extrapolated absolute failure count (EAFC) metric, which
in essence multiplies the SDC rate (or 1 — ¢, see Figure 4b) by
the size w of the fault-space the FI samples are taken from:

SDC count
" total injection count
Note that the related vulnerability metric [23] multiplies
the SDC rate by the program’s runtime, essentially taking

Fextrapolated =w



into account one of the two w dimensions. The EAFC is
proportional to the failure probability P(Failure) — with a
potentially unknown, hardware- and environment dependent
proportionality factor g [11] — and, hence, a good choice for
program comparison within the same system and fault model.
However, the EAFC metric seems not to be suitable for
direct program comparison across different system and fault
models, as is the case in this paper: We must assume different
proportionality factors g for FI on different abstraction levels.
For example, on the gate level we inject into 20,956 gates,
while on the flip-flop level we target 840 flip-flops, so we
should expect a reduction factor of roughly 25 between EAFC
measurements using those FI techniques. This factor will
actually be lower than 25 due to the aforementioned higher
propagation probability in higher-level FI techniques.

V. RESULTS: EAFC INTERPRETATION

Consequently, in this section we re-evaluate the FI results
using the EAFC metric. We explore whether an approximately
linear relationship exists between EAFC measurements using
gate-level FI and higher-level FI techniques for the Arm Cortex-
MO processor and the 18 workloads. Additionally, we evaluate
whether the workload ranking stays intact even better across
different models when using an EAFC-based ranking instead
of the one based on the fault-coverage factor metric.

A. Cross-Layer EAFC Correlation

Figure 5a plots the EAFC for each workload across different
FI techniques. It is calculated from the raw results in Figure 3
and the fault-space sizes w for each workload, which in turn
can be calculated by multiplying their runtime (in CPU cycles)
with the number of fault locations that is different for each FI
technique, as suggested in Figure 2. As the resulting EAFC can
grow quite large for longer-running workloads — for example,
mibench-basicmath runs for about 1.18x10% cycles — the Y-
axis in Figure 5a has a logarithmic scale. This also means that,
unlike the absolute fault-coverage values, the EAFC values are
spread out over several orders of magnitude, and much better
rankable. The step from gate-level to flip-flop-level EAFC in
Figure 5a indeed shows an average reduction factor of 13.7x
(min. 7.6x, max. 21.2x), as anticipated in Section IV-C.

B. EAFC-based Workload Ranking

Figure 5b shows the relative ranking within each FI
technique, based on the EAFC measurements in Figure Sa.
Qualitatively the ranking seems to stay much more stable across
the different techniques than in the fault-coverage based ranking
(see Figure 4b). All three workload subsets — A-encoding,
MiBench, and sorting — keep their relative order within each
subset across all FI techniques except Register-on-Write; only
the neighboring shellsort and heapsort swap places, but their
absolute EAFC values are almost identical in the gate-level
model (see Figure 5a), so no clear “winner” could be declared
even in the ground-truth data.

The lower half of Table III quantitatively confirms that the
rankings correlate “very strongly” across all FI techniques
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Fig. 5. EAFC measurements across FI techniques: Absolute values and
extracted benchmark ranking.

— again, except Register-on-Write, — indicating that design
decisions based on EAFC measurements are correct in most
cases also with high-level FI. Register-on-Write is the notable
exception: it both qualitatively (Figure 5b) and quantitatively
(Table III) seems to introduce a high level of inaccuracy, with
the extreme case of the A-encoding workloads that receive
a completely inverted ranking (t = —1). This is especially
surprising as Register-on-Write is the register-level technique
that is supposed to model CPU-internal faults best.

Another notable difference to the fault-coverage factor based
plots is that A-quicksort-prot is still chosen over its unprotected
baseline A-quicksort-base — but A-bubblesort-prot seems to
perform worse than its unprotected baseline A-bubblesort-
base across all FI techniques (besides Register-on-Write) when
evaluated with the EAFC. The reason could either be a real
fault-resilience deterioration due to the increased attack surface
introduced by the encoding — the authors of the original paper
only used the fault-coverage factor metric [17], which does
show an improvement also in our measurements — or simply
have been introduced by our port from 64-bit AMD64 to 32-bit



Arm Cortex-M0. The issue calls for further investigation, which
we postpone to future work.

C. Threats to Validity

The experimental results in this study are limited to specific
conditions and scope. First of all, a gate-level CPU model
is a coarse simplification of actual CPU structures with, e.g.,
transistor- and device-level enhancements, which are designed
to better withstand radiation. However, consideration of these
factors is probably only possible with radiation experiments on
real hardware — with the disadvantages mentioned in Section I.
Secondly, the Arm Cortex-MO is a low-end microprocessor
without caches, memory protection, or any other complex
functionality unnecessary in its application domain; the results
from this paper are limited to this low-end CPU class, which
nevertheless has a significant market share. Thirdly, the used
benchmarks could be seen as too short/simple, too low in
number and too narrow in scope, which we intend to remedy
in future work.

VI. CONCLUSIONS

To summarize, FI is often carried out in fast simulators based
on abstracted system models and FI techniques injecting, e.g.,
only in ISA registers. However, the literature claims that such
FI techniques are too inaccurate, in effect falsifying design
decisions concerning analyzed programs. In this paper, we
empirically challenged this claim by applying different FI
techniques on gate-, flip-flop- and ISA levels of an Arm Cortex-
MO processor to a set of 18 benchmark programs.

Analyzing FI results, we quantitatively confirmed related
work [8] by reporting SDC-rate discrepancies of up to an
order of magnitude between a gate-level baseline and higher-
level FI techniques. We discussed why these discrepancies
are, however, to be expected, and show that the extrapolated
absolute failure-count metric combined with relative inter-
benchmark measurements yield a significantly better cross-layer
alignment of algorithm-resilience rankings. Our results indicate
that high-level FI is useful in comparing the effectiveness
of different algorithms or SIHFT mechanisms on low-end
processors, and that the inject-on-write FI technique — generally
known to model CPU-internal faults well — may not be the
best ISA-level technique for this purpose.
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