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Abstract

The proposal of this work is to emulate a non coherent, shared memory based hardware message 
passing interface of a theoretical, future chip multiprocessor (CMP) by making use of virtualization 
techniques on todays SMP machines. The individual processing nodes of the system are represented 
by virtual domains which each run on one core of a multi core CPU with a coherent shared memory 
system.

In addition we describe the implementation of a virtual network interface card using this emulated 
hardware message passing interface. Together with some control scripts, this environment 
implements the virtual research platform. It allows to compare various configurations of message 
passing hardware. The exemplary implementation of a special routing protocol extends the design 
space of this platform.

The research platform allows to port the virtual network interface card and other software 
implemented and tested on this platform onto a real many core chip. It can provide simulation 
results for different configurations of message passing hardware much faster than traditional 
approaches.
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Chapter 1
Introduction

The aim of this thesis is to enable architecture research for many core CPUs that use message 
passing rather than a coherent shared memory communication scheme.

1.1 Motivation for Message Passing Hardware Research

The semiconductor business is basically driven by the so called Moore's Law. In 1965 Gordon E. 
Moore, a co founder of Intel Corp. forecasted that the number of transistors that can be placed 
inexpensively on a chip will double about every two years [Moo65]. This exponential growth has 
led to today's server CPUs being assembled of two billion transistors (e.g. Itanium 2 quad core CPU 
in Q1 2008).

For future chips with even more transistors, engineers face the problem of how to turn the enormous 
transistor count into real world performance. One big problem they face is known as Pollack's rule 
[Pol99]. It states that for the same technology, single threaded integer performance scales only by 
the square root of transistor count.

Shekar Borkar uses this rule in his article [Bor07] as an argument why the chip industry has to 
move from single and multi core CPUs towards many core CPUs. When a chip designer has one 
billion transistors to spend on a CPU, then it can bring more performance to invest the transistors 
into 100 CPUs with 10 million transistors each than into 10 CPUs of 100 million transistors each. 

Today one main argument for multi and many core is to increase the performance per watt ratio. 
With twice the number of transistors on a chip every two years, the designer has to use them wisely. 
The company that is able to make best use of them will lead the industry. According to Shekar 
Borkar, multi core CPUs provide more performance per watt than single core CPUs using the same 
number of transistors for more functional units and bigger caches in a big single core. Many cores 
can be seen as a step further where hundreds of small cores work together on one chip.

With increasing number of cores, inter core communication needs grow polynomially. Buses and 
point-to-point connections do not scale well over the number of nodes. Todays multiprocessors 
implement symmetric multiprocessing (SMP) designs with coherent shared memories and bus 
snooping caches. According to [Sten90] p.18, the limiting factor of such designs for higher number 
of cores is the traffic that is produced by the cache coherency protocol. For connecting more than 
100 cores, Stenström claims the that use of multi stage networks is required. Already in 2007 an 80 
core prototype chip was built which implements a network on chip [VHR+07]. This shows that 
NoCs may find their way into consumer products in the near future.

Such networks use non coherent distributed memory. Coherency is implemented in software using 
message passing. The main difference between coherent memories and message passing is that in 
the first approach, every change in a shared memory is distributed to all other nodes. With message 
passing, the software developer is in charge of maintaining required coherency. This means he or 
she has to determine which updates are necessary. This reduces the overall traffic in many core 
CPUs. A reduced traffic allows for better scalability. Therefore research on message passing is 
highly attractive in order to make use of the potential performance of future many core CPUs.
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1.2 Convenient Approach to Research Message Passing

The two traditional ways to do research on computer hardware without building it are simulation 
and emulation technologies. Normally hardware emulation provides higher emulation speed than 
simulation at reduced precision and less flexibility. For many core architectures with more than 100 
cores, simulation is too slow and hardware emulation is too expensive to run a real operating system 
interactively. E.g in 2008 [Iko08]  announced the commercial IKOS VLE emulator which is able to 
emulate designs at $ 0.37 per ASIC gate, resulting in approximately $ 540 million for a two billion 
transistor chip. At the time of writing, IKOS VLE is a state of the art emulator.
Another problem with hardware emulation is that it always requires a synthesizable RTL model of 
the device. Thus incuring big efforts before the first emulation can take place.

A new alternative to the traditional ways of research can be the use of existing SMP hardware in 
combination with virtualized operating systems. Operating systems for many core CPUs with non 
uniform memory architectures (NUMA) can be divided into two categories:

• Single NUMA aware operating system

A single OS knows about the memory architecture of the current many core CPU. The OS 
schedules processes on the different cores and migrates context data of each process between the 
cores. Building such an OS is a complex task because plain operating systems like e.g. Linux 
highly depend on coherent memory architectures. Large parts of these operating systems would 
have to be rewritten.

• Multiple Instances of the same operating system

In this case a vanilla operating system is replicated for every core. Each replicate OS (further 
referred to as a node) runs completely in memory that is local to its core. Communication 
between the nodes is enabled by a special message passing interface which acts like a normal 
network interface.

This approach is easy to implement because an existing OS can be used. The implementation of a 
virtual network interface allows to run standard network applications like MPI benchmark 
software for performance evaluation.

To run multiple instances of the same operating system on one many core CPU is similar to what 
virtualization does. Virtualization allows to run several instances of the same operating system on a 
SMP machine. Each instance is called a domain and may run on its own CPU core. Todays SMP 
machines provide up to 16 CPU cores on one SMP machine. To run 16 instances of the same 
operating system on such a machine would allow to emulate the behavior of a 16 core many core 
CPU. 
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Figure 1: Many Core CPU with distributed memory

Figure 1 shows the use of a network interface to communicate among the cores of a many core CPU 
with distributed memory. Each core runs one single operating system instance. Such class of 
architecture an be emulated using a virtualization approach.

Figure 2: One virtualized OS per core

Figure 2 shows a virtualized setup corresponding to Figure 1. Each domain runs one virtualized 
operating system on one core. The domains communicate with each other via A virtual network 
interface that uses the shared memory.

The virtualization approach is followed within this thesis.
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1.3 Structure of this Thesis

Chapter 2 of this thesis gives some background information in the field of todays many core 
research and hardware message passing. It also provides a brief summary of virtualization 
technology and a special routing protocol.

Chapter 3 describes how our approach is used to simulate message passing. A high level 
description of the software components visualizes the main concepts of the proposed research 
platform.

Chapter 4 goes into details of the software implementation. This Chapter covers the whole 
implementation range from installing and configuring the Linux OS to internals of the three kernel 
modules which build the core of virtualized message passing.

Chapter 5 shows a performance evaluation on a set of benchmarks. It shows the parameters of 
message passing that can be configured on this research platform. 

Chapter 6 summarizes the main results of this thesis and gives an outlook of some thinkable 
enhancements.
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Chapter 2
Background and related Work       

This Chapter describes related research as well as the technologies used in this thesis.

2.1 Differentiation Between Multi- and Many Core

The main difference between multi and many core CPUs is the way how to turn a certain number of 
transistors into performance. Many core CPUs can provide a much higher theoretical performance 
than multi core CPUs when built from the same transistor budget.

In a multi core design, each core is designed for maximum single thread performance. The 
performance of cores does scale sub linear over their transistor count.

Shekar Borkar states in [Bor07] that a many core design implements smaller cores with a better 
performance per watt ratio than in multi core designs. Reducing the number of transistors per core 
allows to build more cores within the same transistor budget. Many core CPUs are often seen as a 
simple technological extension of todays multi core CPUs. According to Shekar, a many core CPU 
is not 25 instances of a 4 core multi core CPU. Instead many core means a different usage of 
transistors which are available from todays chip fabrication processes. Based on Moore's law 
[Moo65], the exponential growth of transistor count has lead to up to two billion transistors on a 
single die in 2008. In the past, the increased transistor count has been used to implement bigger 
single core CPUs by adding more functional units and larger caches. Calculation done by Fred 
Pollack [Pol99] shows that the performance of integer units scale only by square root of their 
transistor count. One reason is that adding more functional units to a CPU makes it harder to keep 
them busy because the instruction level parallelism is almost exploited by current CPUs. Hence, 
increased transistor count cannot be turned into performance easily.

Many cores promise to provide more performance per transistor. By shrinking the individual cores 
to an optimal size, much more of these small cores can be built with the same budget of transistors. 
The theoretical maximum performance then is simply the number of cores multiplied by the 
performance of each single core. In practice, this goal is hard to reach for software algorithms 
which imply lots of dependencies between calculations. If calculations are spread over multiple 
cores, then such dependencies require one core to communicate its results to other cores. As the 
number of cores grows, the overall communication needs increase super linear.

If fixed function units are seen as primitive cores, then 3D graphics accelerators can be seen as 
many core CPUs. The first commercially successful accelerators from the company 3DFx emerged 
in 1997 [Val01]. Since then, the processing nodes in these chips increased their complexity in each 
generation. Lots of approaches were made over the time to use these graphic processing units for 
more general purposes (the company NVIDIA calls this GPGPU) [gpg09]. In 2007 NVIDIA 
released a software development kit called Complete Unified Device Architecture (CUDA) to 
provide the first unified general purpose programming model for 3D graphics accelerators.

2.2 Concept of Message Passing

Message passing is a common concept of communication where a set of processes communicate 
with each other by sending messages. The processes may run on the same or different CPUs on one 
machine or on a cluster of machines. Each process typically differenciates between local and remote 
memory. While local memory can be accessed fast and directly, accesses to remote memory are 
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implemented by sending messages to other processes.

The latency of the message passing interface is crucial for overall system performance as messages 
are often used like function calls [RSV87].

When it comes to many core chips, message passing is an alternative to a globally shared coherent 
memory system. The problem of systems with coherent shared memory is that they scale badly over 
the number of cores, as already described in Chapter 1.1 . 

On many core architectures, message passing can be implemented e.g. via a small shared memory 
block which is dedicated to communication only. This is the approach which is favored in this 
thesis. The underlying implementation of this shared memory is not part of this thesis. Several 
hardware implementations may be compatible to the target class of message passing architecture as 
described in Chapter 3.1 .

On the software side, the message passing interface (MPI) is defined as a standard [MPI95]. Some 
important goals are:

• Provide an application programming interface (API) to software developers

• Parallelize computation and communications by using zero-copy strategies and offloading 
communication from the CPU

• Take into consideration the requirements to run in heterogeneous environments

• Flexible to be implemented on many different hardware platforms

• Declare semantics independent of a certain computer language

Several different implementations of MPI exist like MPICH, LAM-MPI, Open MPI and 
MVAPICH. The benchmarks for this thesis have been run with MPICH version 2.

2.3 Networks on Chip (NoC)

Computer networks have been known for a long time. The basis for the Ethernet standard has been 
set by Xerox Palo Alto Research Center (PARC) in 1973-75. In 1980 the three companies  Digital, 
Intel and Xerox defined a standard for 10Mbps Ethernet [Dig80]. In this standard, the NIC only 
implemented the lower two layers (physical and data link) of the seven layer ISO network protocol 
model [Com98] p.205. Over the time network interface cards (NICs) have evolved into very 
complex devices implementing even a complete TCP/IP stack [Che07].

2.4 Virtualization

The history of virtualization is well described in [CB06]. Virtualization began with IBM 
System/360 in 1972 as an extrapolation of time-sharing systems: These systems have been invented 
to share one expensive computer among many users. This sharing raised the need to isolate system 
resources between individual users. The new idea was that processes belong to users. User and 
supervisor modes were added to most commercially relevant processors. So called "privileged" 
instructions are only usable by programs running in supervisor mode. Only the operating system 
software runs in supervisor mode. All other software runs in user mode. This scheme protects the 
operating system against unauthorized access from user programs.

For this sharing approach, no virtualization was needed until different applications required to run 
different operations systems on the same physical machine. Only virtualization is able to run 
different operating systems on the same hardware.

Virtualization means to insert a layer of abstraction between an operating system and its underlying 
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hardware. This extra layer is often called hypervisor of virtual machine monitor (VMM). 
Virtualized operating systems are called guests or domains. Each guest has the illusion of having 
real access to the underlying hardware-platform. The hardware shown to guests can be different to 
real hardware. Each guest may contain a separate operating system. 

The hypervisor has the following responsibilities:

• Run multiple operating system images and their applications

• Share the underlying hardware resources among all guest OSs

• Let each guest OS believe that it has direct access to real hardware

Though this extra layer introduces some performance overhead, it has several advantages:

• More than one operating system can be run on the same hardware.

This feature is mainly used in server farms to consolidate several machines into one to save space 
in the computing center and to reduce operating costs.

• A virtualized operating system sees only virtual hardware.

When a new hardware is developed, driver software has to be written for several operating 
systems. Developing a driver for many operating systems can be very expensive for a company. 
With virtualization, a driver is only required for the operating system which manages the 
virtualization. All virtualized operating systems only have to support a virtual hardware of 
common type for which drivers already exist.

• The current state of a running operating system can be saved

Virtualization allows to save and restore the complete state of a running operating system and its 
applications. Complete prepackaged containers of life applications can be used to replace 
traditional software distribution techniques which are known to be error prone. When a certain 
hardware is able to run the required virtualization, then it is automatically able to run such a 
prepackaged software, regardless of its underlying hardware.

2.4.1 Virtualization on x86 hardware

Virtualization on x86 hardware is relatively new when compared to the IBM System/360. The main 
reason for this is that the x86 architecture was not designed with virtualization in mind [AA06]. 

On x86 hardware, four privilege levels exist which are named ring 0 to ring 3. Ring 0 has the most 
privileges and is able to execute especially those instructions that are required to manage an 
operating system. Most OSs today make use of only two of these rings (e.g. ring 0 and 3 for Linux). 
Application software runs in ring 3. Whenever an exception or an interrupt occurs, the CPU 
switches to ring 0 and enters the interrupt handling function. The basic idea of virtualization on x86 
is to shift ring 0 of a virtualized OS to ring 1. A new software called hypervisor now runs in ring 0 
and manages exceptions and interrupts which are generated by all virtualized operating systems.

Though x86 provides several privilege rings, its instructions do not reflect this concept consistently. 
E.g. some instructions are allowed to be issued in different rings but they behave differently. Such a 
behavior is problematic for virtualization. When an operating system, which is intended to run in 
ring 0, gets instanced by the hypervisor in ring 1, these problematic instructions do not cause 
exceptions but behave unexpectedly. The hypervisor then has to replace these instructions with code 
that emulates the original behavior during runtime. This technique is called binary translation. The 
dynamic modification of assembler code during runtime can have a major performance impact on 
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the virtualized operating system. This impact was the reason for the development of other types of 
virtualization techniques.

2.4.2 Main Types of Virtualization

The existing types of virtualization differ in the way how they handle the execution of privileged 
instructions or accesses to restricted memory addresses. The critical areas are mainly memory 
management and IO space access. No guest OS is allowed to access hardware directly or to manage 
physical memory on its own. These accesses need to be rerouted to the hypervisor.

Four main types of virtualization do exist:

• Trap-n-Emulate

This is the traditional concept of virtualization with the highest impact on guest performance.
Whenever a guest OS executes a privileged instruction, the processor raises an exception and 
jumps to the corresponding exception handler. The exception handler then has to find out what 
caused the exception and how to emulate its intended behavior. Because every write access to the 
page table directory causes an exception, the performance impact of this type of virtualization to 
the memory management is very high.

• Binary Translation (BT)

Binary translation tries to avoid Trap-n-Emulate situations as much as possible by dynamic 
compilation.
With binary translation, every piece of code is first analyzed by software before it comes to 
execution. All instructions which can cause an exception or which are known to be problematic 
are replaced by calls to functions which emulate the original behavior. The additional translation 
delays the execution of each new code but it can avoid big performance impacts from privileged 
instructions inside loops. To reduce the overhead of binary translation, current implementations 
hold a cache of already translated code.

• Hardware Assisted Virtualization (HAV)

Special hardware assistance for virtualization on x86 has been developed by the companies AMD 
(AMD-V) and Intel (Intel VT-x) and is built into most current CPUs. For Intel VT-x, this 
technique is described in [Int07c] volume 3B: System Programming Guide Part 2 Chapter 26. It 
makes use of a virtual translation look aside buffer (TLB) to allow guest OSs full write access to 
virtual memory configuration structures. Exceptions are only raised under some rare conditions. 
The processor itself takes care of changed entries in the virtual memory management structures 
by setting certain flags. This hardware assisted approach can reduce the number of required 
exceptions significantly. Though HAV can reduce the number of raised exceptions, the authors of 
[AA06] claim that it can be slower than BT under certain conditions, This is because with BT 
frequently used code is translated only once and then put in a memory cache. The cached 
translations generate less exceptions than with HAV technology.

• Paravirtualization

This type of virtualization can avoid Trap-n-Emulate situations without hardware support or 
binary translation.
Instead of handling exceptions from privileged instructions, paravirtualization avoids these 
instructions by modifying the operating system that is to be virtualized. Paravirtualization 
therefore is also called a cooperative virtualization. Whenever a guest OS wants to access the 
memory management structures, it issues a special hypercall function. This hypercall function is 
provided with all informations required to identify which action should be taken. The function 
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itself raises an exception to enter the hypervisor and to carry out the intended operation. One 
advantage of this approach is that several operations can be bundled together into one hypercall, 
thus reducing the number of raised exceptions. Another effect of this cooperative approach is that 
the hypervisor can directly issue the correct handling function. No time is spend to find out which 
operation was intended by the virtualized guest OS.
The biggest disadvantage of paravirtualization is that it requires special, modified operating 
systems. Paravirtualization is supported by several virtualization products. One of these is XEN 
virtualization which is used as the basic technology in this thesis [XEN?].

2.5 Valiant Load Balance Routing (VLB)

In 1981, L.G. Valiant and G.J. Brebner described a universal scheme for parallel communication 
[VB81]. The essence of their work is to describe a distributed routing strategy. This strategy allows 
to efficiently balance the traffic in a network via multiple parallel connections. This approach 
avoids overloading of individual network links and is able to automatically circumvent broken 
links. As it is a distributed strategy, no extra control instances are required to balance the load 
between the nodes of the network.

VLB routing is used as a possible extension of the design space of this research platform. The 
following sections summarize those aspects of their paper that are relevant for this thesis.

2.5.1 Two Models of Parallel Computation

The authors first describe the concept of an idealistic model for parallel computation. This idealistic 
model mainly consists of N general purpose processors. The processors have access to a shared 
memory system with almost arbitrary parallel access. The only restriction for memory accesses is 
that the implemented algorithms guarantee to avoid simultaneous write accesses to the same 
memory location. The embargo of concurrent read accesses from the same location is formulated as 
an optional restriction. The model is called an idealistic model, because the authors could not see 
the possibility to implement it with foreseeable technologies. And even 27 years later, no 
implementations of coherent SMP machines with more than 100 cores are practical because of the 
inherent problems which have been described in Chapter 1.1 .

A more relaxed model is then described as a realistic parallel computer. This computer consists of N 
processors which are connected among each other by directed edges. These edges are further called 
links. At most d links enter and at most d links leave each of the processors. The authors postulate 
that d grows much slower than N like a logarithmic function because of physical limitations. The 
precise reasons for these physical limitation are not mentioned in the paper. But it is thinkable that 
these limitations arise from the problem of routing network cables in a cabinet, conductive paths on 
a printed circuit board or metal wires on a silicon die within a limited space. Each processor in this 
model owns a local memory.

With these two models in mind, each many core CPU can be seen as a realistic model of a parallel 
computer. When using networks on chip, many core designs can be able to provide a virtual 1 to N 
connectivity for every processing core by routing packets through the network [VHR+07]. This 
allows them to provide a better overall connectivity than the realistic model. 

2.5.2 Valiant's Proposal of a Parallel Computer

The parallel computer that is proposed by Valiant and Brebner starts with an initial scenario. At start 
time, each node has some amount of packets of information. The task of the parallel computer is 
then to transport all packets from all nodes to their intended targets. At every time, each link may 

A virtual platform for high speed message-passing-hardware research v1.0 19/88



transport up to one packet. All packets should reach their target node as soon as possible. In this 
model, different bandwidths between two nodes can be expressed by connecting them together with 
more than one direct links for each direction.

2.5.3 Introducing a Randomized Routing Algorithm

The main part of this scheme describes a „randomized routing algorithm“, which implements a 
highly distributed routing algorithm. In order to distribute the routing decisions among all nodes it 
is required that each packet carries some extra book keeping data with it like its destination address 
and routing data. According to Valiant and Brebner, the main advantage of their algorithm is that it 
distributes the problem of computing permutations. These permutations are required to be 
calculated for every packet on each node. 

The routing algorithm itself is divided into two sequential phases:

a) Each packet is sent to a randomly chosen node of the network.

b) Packets are sent to their intended destination.

It is obvious that if phase 1 is run completely and then followed by phase 2, all packets will be 
delivered to their destination correctly. As Valiant and Brebner designed a routing strategy for 
physical networks, their algorithm can also handle multi hop forwarding. If in phase 2, the target of 
a packet cannot be reached via a direct link, then this packet will be forwarded into the correct 
direction.

The routing algorithm was designed to route packets in a n-cube where all nodes are logically 
arranged in a n dimensional hypercube which is also known as n-cube. Each node is given a unique 
n dimensional binary vector. A one in bit j indicates that a point belongs to dimension j. This 
correlates to placing the nodes on the edges of the n-dimensional hypercube. Every two neighboring 
nodes have hamming distance 1.

Routing in a n-cube is easier than in other network topologies, because the coordinates of 
neighboring nodes differ in only one bit. The protocol then directly can determine the next hop to 
which a packet has to be forwarded by choosing one of its neighbor nodes with lowest hamming 
distance to the target node.

2.6 Interrupt Response Time

For message passing interfaces, the performance impact of interrupt handling is a major concern. In 
normal operation mode, a message passing interface generates one interrupt request per incoming 
message packet. High bandwidth interfaces allow to receive more than one packet per interrupt 
request. The drawback of such an optimization is that it increases the transmit latency of individual 
packets because the first received packet is only delivered after a certain amount of packets has 
arrived or a timer has expired. Therefore the average time required to service an interrupt request 
remains critical for message passing interfaces.
Unfortunately, it is hard to find exact timing specifications for interrupt handling in current x86 
CPUs. According to [Int98], the time between occurrence of an interrupt request and execution of 
the first instruction of the interrupt service routine is called interrupt response time. It consists of the 
interrupt latency and the time the OS needs to initialize the interrupt routine by saving CPU states. 
The interrupt latency on 386SX is lower than 63 clock cycles.
In Linux on IA32 initialization of the interrupt routine this is done in 
linux/arch/x86/kernel/entry_32.S. According to [Dan00] the average interrupt response time for fast 
interrupt handlers on optimized real time Linux OSs is lower than 1ms. But this time can increase a 
lot during heavy interrupt request loads. While servicing an interrupt request, no other interrupts 
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with the same interrupt number are accepted by x86 CPUs. In such scenarios of high network 
traffic, bandwidth optimizations can decrease average transmission latency even of single packets 
by receiving more than one packet per interrupt.

A virtual platform for high speed message-passing-hardware research v1.0 21/88



Chapter 3
Virtualization of Message Passing Hardware

After providing background information of the underlying technology, this Chapter describes our 
approach to use virtualization to simulate a certain class of many core CPUs.

3.1 Target Class of Message Passing Architecture

Our proposed research platform considers many core architectures with a message passing 
architecture that provides these two key features:

• A small region of shared memory used as message buffers

• A lightweight signaling mechanism used to send events between nodes

Whenever a certain message passing architecture can provide these features, its behavior can be 
correlated to this research platform. Such architectures are further referred to as message passing 
architecture (MPA).

3.1.1 Small Region of Shared Memory

Cache coherent memories of SMP CPUs share the whole memory range among all cores. Every 
core is able to share any page frame with other cores.

A MPA does only require a small amount of its total memory to be shared among all cores. This 
MPA even does not have to provide full coherency for this shared memory. Instead the shared 
memory can be divided into coherent fragments. Each fragment must only support coherency 
between two dedicated cores. 

The message passing hardware can further be optimized by assuming that accesses to a fragment 
are mostly unidirectional. For N cores, each core requires N-1 coherent memory fragments further 
referred to as receive buffers. Accesses to a receive buffer should be local and fast for its dedicated 
core like a local cache. 

Each receive buffer is associated with a sender node. Only this sender node is allowed to write to 
this buffer. The buffer in which a node receives data is further referred to as a receive buffer (or 
RxBuffer). From the perspective of a sender node, the receive buffer of a target node is further 
referred to as a target buffer (or TxBuffer). Using this convention, depending on the perspective 
each buffer can be a RxBuffer or a TxBuffer.

Figure 3 shows the different coherent memory fragments which are required for a three node setup. 
Each node reads from two RxBuffers and writes to two TxBuffers. In terms of coherency, the only 
assumption made for these buffers is that each of them is writable from one certain node and that 
the data can be read by another certain node.

A virtual platform for high speed message-passing-hardware research v1.0 22/88



Figure 3: Unidirectional Message Buffers

3.1.2 Lightweight Signaling Mechanism

In a message passing architecture, each node must be able to signal other nodes when it wants to 
initiate a communication with the remote node. Basically two different signaling types can be 
differentiated:

• Event polling

With event polling, each node periodically checks for incoming messages. When node 1 wants to 
send a message to node 2, it sets a signal flag in the receive buffer of node 2. The next time when 
node 2 checks this flag, it reads the corresponding receive buffer and processes it.

This type of signaling has these two main disadvantages:

1)  Every node has to check all signal flags of all receive buffers. This affects compute 
performance even when no communication takes place

2)  When a signal flag is set, then the latency until the receive buffer gets processed can be much 
higher than with interrupt requests. 
In best case, node 2 reads the flag right after it has been set. In worst case, node 2 has read the 
flag right before it has been set by node 1. The time between best and worst case depends on the 
rate at which signal flags are checked. Higher rates mean lower latencies and higher impact on 
computing performance.

The main advantage of event polling is that it does not require context switches to take place in 
the CPU.

• Interrupt Requests

To request an interrupt is the natural way of signaling a CPU. Interrupts can be generated from 
hardware and software sources. A hardware source could be a slow device like a printer which 
signals to stop sending data because its receive buffer is full. Software can request a software 
interrupt or raise an exception.
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The main advantages of Interrupts over event polling are these:

1)  Nodes which do not communicate can use their full compute performance.

2)  The response latency between sending a signal and the begin of its processing is smaller than 
for low rate event polling.

The main disadvantage of interrupt requests is their implicit context switch as described in 
Chapter 2.6 .

In practice, both techniques can be mixed together to combine their advantages. When an interrupt 
is requested, its service routine can actively poll for further events for a while. Often more than one 
message is received in a short period. Then this technique can reduce the amount of interrupts.

3.1.3 1 to N vs. Local Communication

Message passing architectures can be divided according to their connectivity into 1 to N and local 
communication architectures. 

1 to N communication means that every node is able to directly send messages to all other nodes. 
Though this type of communication makes routing decisions easy, it may have the drawback of 
limited scalability.

A MPA with local communication allows every node to directly send messages to neighboring 
nodes only. To reach distant nodes, packets have to be forwarded by intermediate nodes.

This research platform is able to simulate both architectures.

Figure 4: 1 to N versus Local Communication

Figure 4 shows the different paths of packets send from the upper left node to all other nodes on 
architectures supporting 1 to N communication or local communication.

3.1.4 Using Shared Memory for Message Passing

As lightweight signals do not carry message data, shared memory is used to buffer data being in 
transit. When the amount of available shared memory for each node is limited, then the designer has 
to choose among two main alternative usage models for a MPA consisting of N nodes:
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• Define less than N-1 shared buffers for each node

This means that each node owns less buffers than its possible connections to the N-1 other nodes. 
An arbitration protocol has to be implemented to allocate a buffer before a communication 
between two nodes can take place. This protocol requires a three way handshake to set up a 
communication channel:

1)  Sender sends a request to Receiver

2)  Receiver grants usage of a buffer to Sender

3)  Sender copies message into buffer

After the message has been processed by the receiver, the buffer is available to be allocated 
again. This protocol incurs that the sender has to wait until the receiver grants a certain buffer to 
be used. For on-die message passing, the response latency of the receiver can be much higher 
than the time the sender node needs to send its data. This latency increases when the receiver 
node receives messages at a high rate.
Another problem of this protocol is to guarantee a fair allocation of buffers to all sender nodes 
under high network loads.
Several different optimizations have been developed for such protocols but for the rest of this 
thesis, we will concentrate on another type of message passing implementation.

• Define N-1 dedicated buffers for each node

For this protocol, each node owns exactly as many receive buffers as there exist other nodes 
which may send a message. Whenever a sender wants to send a message it only has to check if its 
corresponding buffer at the receiver node is available. If the receive buffer is available, then the 
sender can immediately copy the data into the buffer and send a signal to the receiver.
The big advantage is, that the sender does not have to wait for the receiver to answer. Messages 
are send asynchronously to the receiver. The receiver too sends its status update for the receive 
buffer asynchronously. Both nodes do not have to wait for each other for single messages.

And even under high workloads, every node has the same chance to send a message to the 
receiver as all N-2 other nodes.
One disadvantage of this protocol is, that it cannot dynamically adapt the communication 
bandwidth to the current traffic. As described later, a special routing protocol can provide this 
dynamical behavior without the need of three way handshakes.

When the receiver node cannot process its receive buffers as fast as the sender nodes generate 
new messages, then the senders have to queue their outstanding messages for later delivery. This 
queuing is basically the same as for shared buffers. One exception can be that instead of one 
central wait queue, N-1 wait queues can be used. Each queue is dedicated to one target node. 
Whenever the queues get processed, up to one message can be send to the N-1 possible target 
nodes.

Figures 5 to 7 show how this protocol would transport five messages from node 1 to nodes 2 and 
3.  During step 1, two packets have been delivered immediately to their targets. Three packets 
remained in the two output FIFO queues.

After nodes 2 and 3 have processed and freed their receive buffers and during step 2, two 
additional messages can be delivered. Thus only one outstanding message remains in the FIFO 
queues of node 1.
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Figure 5: Multiple Output FIFO Queues per Node - Step 1

Figure 6: Multiple Output FIFO Queues per Node - Step 2

In this example, each node provides one dedicated receive buffer per other domain. Other 
implementations with more than one dedicated buffer per other domain are thinkable. The efforts 
in transistor count, that are required to share a certain amount of memory among hundreds of 
cores is enormous. Therefore it can be assumed that the amount of shared memory in a many core 
CPU is very small when compared to the total address range of the CPU. By splitting the 
available memory into more receive buffers could incur fragmentation of message packets and 
increase communication overhead. Because of this we will provide only one dedicated receive 
buffer per each sender-receiver pair.

As the FIFO queues can be placed in local memory of each node, their size is not critical for 
memory considerations.
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Figure 7: A Multiple Output FIFO Queues per Node - Step 3

3.2 Analogy Between Many Cores and Virtualized Operating Systems

This thesis assumes that the target many core architecture is able to run a duplicate operating system 
on every core. Such an operating system can be lightweight as long as it supports to run standard 
message passing applications such as an implementation of MPI version 1 or 2.

The basis for the analogy between a MPA and a virtualized operating system are these three 
requirements for the MPA:

• Small region of shared memory

• Lightweight signaling mechanism

• Each core can run its own operating system

If these requirements are met, then a set of virtualized operating systems on a multi core SMP 
machine can be seen as a generalized MPA. As benchmarks show, to be be comparable, it is vital 
that each virtualized operating system gets its own core. If more than one domain share the same 
core, then deadlocks can occur easily. This is because the virtualization technique applied here does 
not switch a domain which has entered interrupt mode. 

3.3 A Virtual Network Interface for Inter Domain Communication

3.3.1 An Additional Network Interface

This approach provides message passing by loading an additional virtual network interface in every 
node. This network interface allows communication for most TCP/IP based software. The main 
difference to a real Ethernet device is the lack of broadcast capability.

The advantage of a fully functional network interface over a proprietary shared memory 
communication is that it supports the full range of existing benchmark software and applications. 
Though a low level buffer send interface does exist too. 
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3.3.2 Inter Domain Communication

The usual way to communicate among virtual domains is to implement a zero copy mechanism. 
This means that the sender domain declares a memory buffer as being shared with a receiver 
domain. The receiver then hands the start address of this buffer to its receiving application. Up to 
the application only references in the memory management are changed and no copy operations 
took place.

In order to simulate the behavior of real message passing hardware, this approach does actively 
copy bytes of data to and from data buffers. The aim of this thesis is not to build a better virtual 
network interface than that which is provided by the virtualization itself. Instead the copy approach 
allows to configure buffer sizes in a more flexible way.

3.3.3 Status of Implementation

The current implementation of this research platform allows to run any number of virtual domains 
and let them communicate over the provided shared memory network interface. Communication 
over the native virtual network interface is also possible as a comparison. A set of PERL scripts 
provide to start an set of domains and to run a MPICH v2 benchmark suite to compare the 
performance of different configurations.

3.3.4 Outlining the design space

The implemented software model of the targeted shared memory architecture is rather generic. E.g. 
routing costs between each two nodes are assumed to be constant and equal between each tow 
nodes.

In order to simulate the behavior of a certain message passing architecture, the source code has to 
be modified by inserting delays according to the specific delay penalties of the intended hardware 
architecture.

The network interface allows to change the MTU to simulate message buffers of different sizes. 
Every packet that is larger than the currently set MTU will be dropped and a rate limited message is 
printed to the logfile.

Benchmarking the implementation with different number of domains shows the scalability of a 
certain software model.

To test such different software models requires changes to the source code. Researchers are 
welcome to work on the code as the basic idea of this work is to enable research via virtualization 
rather than to do all possible research in advance.

3.4 Extending The Design Space With an Alternative Routing Protocol

In order to provide more configuration options for the network interface and to be able to simulate 
even architectures with local communication, a routing protocol has been implemented as an 
extension in the network interface. When activated, each packet carries an extra header with routing 
information. For a fixed size of message buffers, this decreases the payload size. The routing 
protocol offers a range of different configuration options allowing to extend the design space onto 
completely different message passing architectures.
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For a deeper discussion on the pros and cons of Valiant Load Balance routing, we start with two 
definitions:

Definition: An “evade node” is a node or domain which accepts indirect data packets to forward 
them towards their intended target domain.

Definition: “Foreign packets” are received packets which are not targeted at the current node.

Packets which cannot be send directly may be send indirectly via evade nodes. The hop count for 
each packet is the number of evade nodes that the packet has visited until it reached its target node. 
The maximum allowed hop count is a configuration parameter.

3.4.1 Advantages of VLB Routing

• More than one packet transmitted per context switch

One can think of architectures which can either compute or communicate. For such an 
architecture, to wait for the target to process its receive buffer could mean a major performance 
impact. Without VLB, transmitting P packets to the same target node would require P context 
switches on the sender node. This is because whenever more than one packet has to be sent to the 
same target, then only the first packet may be sent directly. Each other packet has to be send later, 
requiring an additional context switch.
By use of VLB among N nodes, the sender can send up to N-1 packets to evade nodes at once 
before returning from the transmit function.

• More than one packet received per interrupt

The implementation described in our approach uses N-1 fixed receive buffers for each of the N 
nodes. In best case, a sender can send one packet directly and N-2 packets indirectly to the target 
node. This means that the receiver can receive up to N-1 interrupt requests at once. Because of 
the nature of level triggered interrupts, while servicing an interrupt request no other request is 
recognized. So the receiver will miss most of these requests when receiving more than one packet 
at once. The software anticipates this by checking all local receive buffers for incoming data on 
every interrupt request. This strategy allows to receive up to N-1 packets within one interrupt 
request.

• Can make use of whole network bandwidth for single transmission

NoCs typically provide many parallel communication buses because they have to provide several 
data transmissions on the whole chip at once. If all communication would have to pass a single 
concentration point, then the scalability would be poor. By using VLB, each node can send 
packets via every other node to the target. In best case all of these packets are transmitted in 
parallel by the NoC.

• Does not increase latency of single packets

Even with activated VLB, whenever the remote receive buffer of the target domain is free, the 
packet gets transmitted directly.

• Only local routing decisions

Several other bandwidth optimizations do exist for message passing interfaces. One optimization 
is to establish links between the source and target nodes before transmitting data. This technique 
always requires at least a two way handshake. One message has to be send to the target to request 
the link. The target domain has to enter its interrupt service routine and to send a message back to 
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the sender to grant the link. Instead of directly deciding on the current packet as down with VLB, 
such a protocol would add two interrupt response times (one at the target and one at the sender 
node) to transmit the first packet of a series or single packets. Additionally, if all links to a certain 
node are occupied, other transmissions to this node may be blocked completely.

• Can automatically circumvent broken links

Whenever one node cannot send a packet to its target directly, the nodes will automatically send it 
indirectly. If only one link is broken, then overall performance should not be affected because 
packets will arrive after one evade node at their target. If a broken link is detected, then the 
protocol could dynamically increase the  VLB_TimeToLive value of all packets which otherwise 
would have to be sent over a broken link.
In contrast to most other routing protocols, this self healing takes place dynamically and does not 
need a central error detection.

3.4.2 Disadvantages of VLB Routing

• Certain routing configurations can abort communication

When configured to send any number of packets indirectly to the target, then it can happen that 
the sender sends out packets at a much higher rate than the receiver can accept them. In such a 
case, the network gets flooded with outgoing packets, but only very few of these packets get 
acknowledged. This could confuse the TCP/IP stack because it can only handle a limited number 
of unacknowledged packets. The evade nodes get flooded with indirect packets. Many of these 
packets are retransmitted by the sender node. Therefore the current implementation of 
sm_nic_vlb provides several command line arguments to limit the relative amount of indirect 
packets.

• Packet evading impacts performance of all other nodes

In a NoC consisting of N nodes, node A transmits P packets to node B with activated VLB. In 
order to keep mathematics simple, we first make two assumptions:

•  No other nodes are transmitting data at this time.

•  Packets may evade over one hop maximum (VLB_TimeToLive=1)

Later we will generalize the results by superimposing the evade traffic of all nodes.

From the perspective of node A, there is the target node and N-2 evade nodes. The first 
interesting parameter is the ratio of indirect (I) to direct (D) packets  Rmax. The value of Rmax  gives 
the maximum fraction of all packets from A to B which get routed via evade nodes:

Rmax=
I
D
=

N−2
1

The total receive capacity at the target domain Trx is the sum of indirect and direct packets:

T rx=ID= N−21=N−1

If the maximum hop count is set to 1, which means that every evade node must transmit foreign 
packets directly, then the maximum number of indirect packets related to the total number of 
packets Irel,max describes the maximum ratio between indirect and direct packets. Therefore Irel,max is 
a measure for the maximum performance impact on the N-2 evade nodes from packets traveling 
A→ B.

I rel ,max=Rmax/T rx=
N−2
N−1
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Figure 8: Direct and Indirect Capacities

Figure 8 shows the transmit and receive capacities at sender A and receiver B.

The maximum average performance impact of this transmission on a single evade node is Fmax,avg. 
It shows the impact of a transmission A→B on every other node, assuming that the impact is the 
same on all nodes. This assumption is based on a VLB implementation which evades packets to 
random nodes.

F max ,avg=
I rel ,max∗P

N−2
=

P
N−1

The following table shows the performance impact of a transmission A→B on the evade nodes. 
Values are normalized to the number of transmitted packets P.

   N 10 100 1000 Total number of nodes

1)    Irel,max 89.89% 98.99% 99.9% Maximum indirect packets / total packets

2) F max ,avg /P 11.11% 1.01% 0.10% Amount of foreign packets on each evade node

3) N⋅F max , avg/P 111.1% 101% 100% Superimposed amount of foreign packets in case 
that all nodes communicate at once

4) 1
2

N⋅F max ,avg /P
55.55% 50.5% 50% Superimposed amount of foreign packets in case 

that all nodes communicate 50% of the time

Though with increasing N nearly all packets are delivered indirectly, the impact on each evade 
node is diminishing.

In the case that all other nodes transmit data in parallel, it is assumed that the amount of foreign 
packets on each evade node F max ,avg /P  superimpose on all nodes as listed in the last two rows. 

The calculation shows that for N=1000, a VLB routing strategy with VLB_TimeToLive=1 
produces at maximum exactly twice the amount of traffic than without VLB. When all nodes 
communicate 50% of their time, then the other half of their bandwidth is occupied by foreign 
packets as shown in the last row. 

If all nodes are communicating all the time, then the indirect packets add another 100% to the 
traffic of each node. This gives two times the traffic than without VLB routing which is not 
astonishing because with VLB_TimeToLive=1, in worst case, all packets travel over two links 
instead of one.

With increasing size of the NoC, the superimposed evade traffic seems to drop from 111.11% to 
100% at 1000 nodes. This drop is based on the assumption that 1000 nodes can communicate 
with each other at the same constant latency as 10 nodes can do. This assumption is obviously 
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wrong. For actual numbers, this research platform can provide simulation results when 
implemented with real latency penalties.

Increasing the value of  VLB_TimeToLive greater than one would increase the maximum 
bandwidth requirements further without providing real performance improvements. Such settings 
would only be useful, if a target node is not directly reachable from one evade node.

• VLB routing doubles transmit latency

As seen for high bandwidth transmissions between two nodes in large networks, nearly all 
packets are transmitted indirectly. When packets are allowed to travel over maximum one evade 
node, this means that most of the packets travel over two node: Source Node → Evade Node → 
Target Node. So the packet latency is double the amount as for direct packets. This overhead is 
the only fixed overhead of VLB routing.

• Packets travel over more than one hop

The VLB protocol basically allows each evade node to further evade foreign packets when it 
cannot immediately deliver them directly. Multiple evading may be required for certain NoC 
configurations where a node may not connect directly to all other nodes. To simulate such 
configurations, sm_nic allows to limit the allowed maximum hop count.
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Chapter 4
     Implementation based on XEN 3.0   

After we have described our approach to a virtualized message passing system, this Chapter goes 
into details of the current implementation.

It covers the following topics:

• Specialties of XEN virtualization

• Installation and configuration of XEN

• Installation of a MPI benchmark suite

• Implementation of  the three new kernel modules

• The scripts, that provide the user interface

• Known bugs in the current implementation

4.1 XEN as Virtualization Technique

XEN was chosen as virtualization technology, because it is 100% open source while still 
commercially usable. Though not needed for the current version of the platform, this would allow to 
modify the hypervisor to provide extra features if needed. This could for example be a changed 
event signaling mechanism which comes closer to level triggered interrupts as seen on real 
hardware.

When using Linux as the OS, XEN allows to run the same kernel for privileged as well as for 
unprivileged domains. This makes driver development easier because the source codes only needs 
to be compiled against one kernel source-tree for both domain types.
XEN v3.0 supports SMP with up to 32 CPU cores in total.

4.1.1 XEN Paravirtualization

Paravirtualized XEN introduces less compute overhead when compared to trap-n-emulate 
virtualizations (see Chapter 2.4.2 ). A guest OS must issue hyper-calls instead of executing 
privileged instructions. This means that no unprepared, proprietary OS can be run paravirtualized 
under XEN. Today several Linux distributions come with preconfigured XEN installations. 

4.1.2 XEN Domain Concept

According to [Cam05a], each XEN system consists of multiple layers. The lowest layer contains the 
hypervisor only. The hypervisor runs in CPU ring 0 and has most privileges. The hypervisor may 
create several instances of guest operating systems which are called domains. Each domain is a 
virtual machine. The first domain is created automatically at system boot and is named domain 0 
(Dom0). 
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Dom0 has special privileges and has the 
following responsibilities:

• Creating and starting other domains
• managing virtual devices of other domains 
• suspending, resuming and migrating virtual 
    machines
• providing memory to domains

Figure 9 shows the domains and privilege layers 
in a XEN virtualization. The hypervisor runs in 
CPU ring 0 and has the most privileges. Dom0 
runs in the same ring as all other domains, but it 
owns and manages the physical memory for all 
DomUs. Dom0 also provides the device drivers 
for physical hardware in its backend modules.

Figure 9: XEN Domain Concept

In order to manage domains, a special process called xend runs in Dom0. This process provides a 
HTML interface for the various actions.
All other domains are called user domains (DomU). Traditionally each DomU runs unprivileged 
versions of device drivers mainly provide only an interface to their counterpart drivers (called 
backend) which are loaded in Dom0.

4.1.3 Memory Management under XEN

XEN allows domains to share individual page frames from their memory contingent to be accessed 
by other domains. On IA-32, all bytes of one page frame share the same offset between their virtual 
and physical address. According to [Kra07], each process owns a pointer to its private page 
directory. That is mainly an array of pointers to page frames owned by the process. On IA-32, the 
page directory is changed by loading its pointer into the cr3 register. Whenever an address 
translation fails, the pageFault() function of Linux jumps in and loads the corresponding page from 
the swap space into main memory and corrects the page directory accordingly.

Because physical memory is allocated and freed on a page granularity, there is no guarantee that an 
application gets a desired amount of memory in a contiguous physical block. In order to simulate 
contiguous memory, XEN maintains a global table which translates guest-physical addresses to 
machine-physical addresses. Each domain additionally owns a local table to translate machine-
physical addresses back to guest-physical addresses.

In the normal operating mode, XEN does not allow guest domains to write to the page tables. As the 
kernel code of user domains runs in a lower privileged ring than intended, each write access to page 
tables would cause a processor exception. The exception handler then emulates the instruction that 
caused the exception. This is called trap-n-emulate. XEN does support this technique, but it is much 
slower than paravirtualization. This is why this work makes use of paravirtualization only.

In the paravirtualized operating mode, each change to the page tables must be done via a special 
hypervisor call. This hypervisor call first validates the change request before its execution.

Though this special memory interface is incompatible with proprietary operating systems, it has a 
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big advantage over classical virtualization techniques. When an operating system can be modified 
to be compatible with this interface, then page table operations can be handled much faster than 
with classical trap and emulate techniques. This is because the hypervisor does not have to 
implement heuristics to find out the intention of a certain page table modification. Instead this 
interface even allows to bundle several page table modifications into one hypercall. This reduces 
the number of context switches for entering the hypervisor.

Another advantage of a cooperative guest OS is that this allows fast virtualization even on IA-32 
processors without support for hardware virtualization.

4.1.4 Shared Memory with XEN

Sharing a page frame among several guest domains, requires two steps to be taken:

1. Grant the page to other domains

The owner of a page frame issues a gnttab_grant_foreign_access() call for each domain for 
which access should be allowed. It directly modifies the global grant table. Each call returns a 
unique grant reference number. This number must then somehow handed over to the domain to 
which this page is granted. The handover can e.g. take place via a configuration filed on a shared 
file system. The current choice is to use a NFS folder which is shared among Dom0 and all 
DomUs.

2. Map the granted page into the guest address space

Each domain which should gain access to a shared memory page has to issue a hypercall carrying 
the XEN ID of the granting domain and the grant reference number. 

The official documentation [Cam05b] does only provide a brief overview of how to map a 
foreign page frame. A more detailed view of how single pages get mapped can only be derived 
from the kernel sources themself [Tor08]. Figure 10 shows the flow of such a map operation. The 
function HYPERVISOR_grant_table_op() which is defined inside hypercall_32.h directly jumps 
into the hypervisor. This is because only the hypervisor has the rights to create a new guest-
physical to machine-physical mapping via create_grant_va_mapping() inside mm.c.
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Figure 10: Granttable Hypercall

4.1.5 Inter Domain Communication Via Signals

XEN provides a lightweight signaling mechanism (see Chapter 5 of [Cam05b]). Signals only carry 
the id number of their originating domain. In order to be able to send a signal from Dom1 to Dom2, 
an event channel in reverse direction from Dom2 to Dom1 has to be setup before. The setup of an 
event channel is similar to page granting. One domain creates an event slot to be connected by 
another domain. The creation of this event slot generates a port index number. This number has to 
be transferred to the connecting domain like grant reference numbers for page frames. Only this one 
domain is allowed to connect to this event slot. After a foreign Dom2 has connected to a local event 
slot, a signal can be send to Dom2. Therefore to send signals between N domains, it is required for 
each domain to create N-1 event slots.

Setting up an inter domain communication is done in four steps:

• Step 1:

Figure 11: Allocate unbound event slot

Domain 1 issues a hypervisor call to create a new, unbound event-slot. The hypercall returns a 
new port number.
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EventSlot
port = 13
remote_dom = 2

Dom 1 Dom 2

HYPERVISOR_event_channel_op()

Guest domain kernel space

sm_communicator.c:L289
    gnttab_set_map_op(&op, Address, GNTMAP_host_map, GrantRef, DomID);
    HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &op, 1);

linux/include/asm-x86/mach-xen/asm/hypercall_32.h:L332
    return _hypercall3(int, grant_table_op, cmd, uop, count);

Hypervisor

xen3.2.1/xen/arch/x86/x86_32/entry.S:L701
    ENTRY(hypercall_args_table)
xen3.2.1/xen/common/grant_table.c:L1433
    do_grant_table_op()
xen3.2.1/xen/common/grant_table.c:L426
    gnttab_map_grant_ref()
xen3.2.1/xen/common/grant_table.c:L193
    __gnttab_map_grant_ref()
xen3.2.1/xen/include/asm-x86/guest_access.h:L23
    guest_handle_cast()
xen3.2.1/xen/arch/x86/mm.c:L2942
    create_grant_host_mapping()
xen3.2.1/xen/arch/x86/mm.c:796
    adjust_guest_l1e()
xen3.2.1/xen/arch/x86/mm.c:L2855
    create_grant_va_mapping()
xen3.2.1/xen/arch/x86/mm.c:1421
    UPDATE_ENTRY



• Step 2:

Figure 12: Send port number to other domain

The port number must now somehow travel to Dom2. This can e.g. be done via writing them to 
files which are shared on a NFS server for all domains.

• Step 3:

Figure 13: Create inter domain event-channel

Dom2 creates an event channel to Port 13 of Dom1. This automatically creates a new event slot 
and binds the provided function pointer as a callback function.

• Step 4:

Figure 14: Send signal Dom 1 → Dom 2

Dom1 sends a signal via its local port 13 over the associated event channel. In Dom2, the 
registered function gets called inside an interrupt context to handle the signal. The domain ID of 
the caller is passed as argument to function  irqhandler().

4.2 Installing the Virtual Research Platform

This Chapter describes how to install and configure a XEN virtualization with a current openSuSE 
Linux distribution.
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4.2.1 Choosing Linux distribution

Many Linux distributions exist which come bundled with XEN like … ToDo more

4.2.2 Installing openSuSE v11

This research platform has been realized on openSuSE 11.0 with XEN 3.2.1. 

Basically every Linux distribution can be used which provides this XEN version. Older versions of 
XEN are not compatible with sm_communicator. 

When partitioning the hard drive, a partition of at least 50GB should be create for Linux.

During configuration of software packages, these packages are required:

• DHCP and DNS Server
• XEN Virtual Machine Host Server
• C/C++ Development
• RPM Build Environment
• Linux Kernel Development
• Perl Development

After issuing an online update, the machine can be rebooted with a XEN enabled kernel.

4.2.3 Obtaining the XEN Sources

It is preferred to use a distribution which comes with prepackaged XEN. XEN changed their 
distribution strategy since v3.2. The company no longer provides patches for vanilla Linux kernels. 
Instead only a package of one kernel (v2.6.18 at time of writing) and corresponding patches can be 
downloaded. The author was not able to boot a hypervisor that has been compiled from this 
package.
The XEN versions that come with distributions are heavily patched in order to work with the 
individual kernel. Therefore it is recommended to obtain a corresponding .src.rpm package and 
extract the source code from it. A script is provided to automatically download and extract the XEN 
sources in /XEN/install/. It may be required to update the URLs in this script.

4.2.4 Installing the Research Platform

An archive of this platform can be downloaded from http://rechner-architektur.de/mpi-research

After unpacking the with “tar xf”, the script install.sh will unpack all directories into folder /XEN/. 
If for some reason, the files should be installed in another location then a symbolic link has to point 
from /XEN/ to the installation folder prior to starting install.sh.

Figure 15 shows an example how to unpack the research platform v0.1.

mkdir /Data/XEN
ln -s /Data/XEN /XEN
tar xf mpi-research_0.1.tar
cd mpi-research
./install.sh

Figure 15: Unpack And Install The Research Platform
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4.2.5 Installing the Required Software Packages

For openSuSE 11, several install scripts can be found inside /XEN/install/. These are the most 
important scripts:

• install_XEN.sh

This script automatically downloads, compiles and installs all essential software packages. It is 
mandatory to install the applications listed in this script.

• install_NfsShares.sh

This script installs and configures NFS server as required. Two shares are added to the 
configuration file /etc/exports automatically:

• /XEN/share used for data exchange between domains

• /suse should contain openSuSE 11.0 installation repository

• install_PBZIP2.sh

PBZIP2 provides an alternative implementation of bzip2 which makes use of all available CPU 
cores. After installing this compressor, smx_BackUpCreate.pl should run much faster on multi 
core machines.

4.2.6 Configuring a DHCP server

The guest domains require access to a DHCP server to 
obtain an IP address for their XEN network interface. 
The software setup described above should already have 
installed a DHCP server. On openSuSE, the DHCP 
server can be configured with yast or yast2 which uses a 
graphical user interface. The DHCP Server Wizard can 
be found in the network services section.

The DHCP server has to be configured to provide a 
range of IP addresses for all guest domains. This server 
does not require to run automatically at boot time. The 
script smx_Control.pl will automatically start its service 
if required.

Figure 16 shows an example configuration of a DHCP 
server that allots IP addresses in the range of 
172.28.248.221 to 172.28.248.236.

Figure 16: DHCP Server Configuration
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4.3 Setting up Master and Guest Domains

Two OS image files come with the research platform, one for a so called “master” domain and the 
other for the so called “guest” domains. The master domain is used to configure all guest domains. . 
Only the guest domains are later used to run the research platform.

Note: The term master domain used in this chapter has nothing to do with the guest domain that 
loads a master instance of a kernel module as described in Chapter 4.9 .

4.3.1 Creating Duplicates of Guest OS Image files

The software package provides two image files of root filesystems in the folder /XEN/images/:

• root_master.img

This root filesystem contains a service OS which automatically configures all guest image files.

•  root_guest1.img

Each guest OS requires its own root filesystem. The initial software packages provides one image 
file which needs to be duplicated and configured for each guest OS. The script 
spreadGuestImagesFrom1.pl creates any number of duplicates from root_guest1.img.

This example shows the duplication of image files for 15 domains:

cd /XEN/images/
./spreadGuestImagesFrom1.pl 15

4.3.2 Creating The Master Domain

The master domain boots the image file 
/XEN/images/root_master.img. Its purpose is to 
mount and configure all guest image  files.

XEN domains can be created with the graphical 
tool virt-manager. This tool can be launched 
directly from  the console or from the graphical 
YaST2 application.

Image files of all guest domains need to be added 
as writable discs to the master domain. The 
memory size and number of virtual CPUs is not 
critical and can be left at their defaults.

After creating the XEN master domain, it has to 
boot once to configure all domains.

Figure 17 shows an example configuration of the 
master domain for fifteen guest domains.

Figure 17: Master Domain Configuration
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During boot up, the script /XEN/xen_StartUpGuest.pl gets invoked automatically. This script 
mounts every disc device starting at /dev/xvdb as /root_guestN, N a running number. It then 
configures all guest OSs according to the configuration file /XEN/XendDomain.cfg inside the master 
OS.

The configuration file itself provides comments that describe all available configuration options. 
Most of the default settings can be left unchanged. 

Two important settings will have to be changed:

• XenShareServerIP

This option defines the IP address of a NFS server which exports the folder /XEN/share/ and 
/suse/. If the NFS server runs on the local machine in Dom0, then the IP address of eth0 in Dom0 
has to be provided here.

• SshPubKey

Several external SSH public keys can be configured. Each key is copied to 
/root/.ssh/authorized_keys of each guest image file. This allows to connect to each user domain 
from the outside without the need to type in passwords.

It is required to define at least the public SSH key of user root in Dom0 here. 

A pair of private and public SSH keys can be generated with ssh-keygen. This creates two new 
files in ~/.ssh/: id_rsa and id_rsa.pub. The content of id_rsa.pub then has to be pasted after the 
keyword SshPubKey. The keyfile can be copied into a running master domain via SSH. The 
default root password for all domains is root.

SSH public keys for all guest domains are created and distributed automatically.

After saving the configuration file, the script /XEN/xen_StartUpGuest.pl will automatically 
configure all guest image files and create guest configurations in the folder /XEN/. These guest 
configuration files are read during boot of each guest domain later.

After successfully configuring all guest image files, the master domain can be shut down.
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4.3.3 Creating All Guest Domains

Virt-manager with XEN 3.2 uses a 
configuration file scheme which makes it 
difficult to automate the configuration of a 
large number of guest domains. Therefore 
the recommended way to set up e.g. 15 
domains implies to iterate one setup 15 
times.

Each guest domain should own 1 virtual 
CPU and up to 512 MB of RAM. Each 
domain has to mount one guest image 
filesystem with write access and the master 
image as read only. The domain name has to 
follow the scheme xncN, where N is a free 
running number.

Figure 18 shows a sample setup of one guest 
domain.

Figure 18: Guest Domain Configuration 

This table shows an example setup of four guest domains:   

Name: xnc1
Memory: 384-384 MB
Discs:  xvda /XEN/images/root_guest1.img rw
        xvdb /XEN/images/root_master.img ro

Name: xnc2
Memory: 384-384 MB
Discs:  xvda /XEN/images/root_guest2.img rw
        xvdb /XEN/images/root_master.img ro

Name: xnc3
Memory: 384-384 MB
Discs:  xvda /XEN/images/root_guest3.img rw
        xvdb /XEN/images/root_master.img ro

Name: xnc4
Memory: 384-384 MB
Discs:  xvda /XEN/images/root_guest4.img rw
        xvdb /XEN/images/root_master.img ro

4.4 Testing the Research Platform

After creating and configuring all guest domains, the platform can be started for the first time.

All scripts which control the research platform from Dom0 are located inside the folder /XEN/bin/. 
Their filenames start with the prefix smx_. Adding this directory to the search path allows to omit 
the /XEN/bin/ prefix on every call.

The detailed synopsis and description of all arguments of all scripts described here can be found in 
the Appendix A.2 .
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4.4.1 Starting And Stopping All Domains

The central script to start or stop all domains which name is of type xncN (N a number) is 
/XEN/bin/smx_Control.pl. The following command starts all domains:

smx_Control.pl start

Figure 19 shows the startup of fifteen domains in the tool virt-manager.

After all domains have been started one should log in as root via SSH from Dom0 to every domain. 
The domain names and their IP addresses should have been updated in /etc/hosts of Dom0. This 
allows to connect to xnc1, xnc2, .. instead of to their IP addresses like shown below:

ssh xnc1

This should log into xnc1 automatically without asking for a password. During first login a security 
question may have to be answered.

Note: Dom0 must be able to log into all DomUs via SSH without being asked for a password. If the 
SSH server in a domain asks for a password then the MPI library won't be able to send its 
jobs to this domain. Refer to Chapter 4.3.2  in case it is not possible to automatically log into 
every guest domain via SSH.

4.4.2 Launching Shared Memory Network Interfaces

In order to allow guest domains to communicate over the shared memory network interface smn, a 
set of kernel modules needs to be loaded in a so called master and two or more slave domains. The 
master grants memory pages and prints out a list of reference numbers. These numbers have to be 
provided as command line arguments during loading the module in the slave domains. After all 
slaves have loaded the module sm_communicator.ko, the basic functionality for shared memory is 
provided and the network interfaces can be installed.

This example shows the order in which modules get loaded 
in three domains:

1. master: insmod resource_tracker.ko
insmod sm_communicator.ko

2. slave1: insmod resource_tracker.ko
insmod sm_communicator.ko

3. slave2: insmod resource_tracker.ko
insmod sm_communicator.ko

4. slave1: insmod sm_nic.ko

5. slave1: insmod sm_nic.ko

Figure 19: Startup of all Domains
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A script called smx_LoadModules.pl  is provided by this platform to load all required modules in 
the correct order and with all required arguments for any number of domains. The script takes up to 
three arguments. Beside the start or stop keyword, the name of the module to load is required. By 
default, the compile script /XEN/source/_compile.sh builds two versions of the network interface: 
sm_nic.ko and sm_nic_vlb.ko.

The difference between the two modules is that the vlb version implements the VLB routing 
protocol, which is discussed in Chapter 4.10.3  in more detail. With VLB being compiled in, each 
packet carries an extra VLB header. Thus introducing an extra protocol overhead.

Example for loading kernel modules in all domains:

/XEN/bin/smx_LoadModules.pl start sm_nic.ko

4.4.3 Testing Connectivity of Slave Domains

When all modules have been loaded successfully in all domains, then the domains xnc2, xnc3, …, 
xncN now show an additional network interface named smn. These domains should now also be 
reachable as smn2, smn3, … , smnN for any network application like SSH or ping.

The special script smx_TestSSH.pl logs into all domains and tries to open a SSH connection to all 
other domains. To test connectivity among domains xnc2, ..., xnc5, one may issue the following:

smx_TestSSH.pl smn xnc2 xnc3 xnc4 xnc5

The first user domain which has loaded the module sm_communicator.ko as master does not provide 
a smn network interface.

4.4.4 Running Benchmarks

Two scripts allow to run an individual benchmark or a series of parameterized benchmarks:

• /XEN/bin/smx_Benchmark.pl runs a single benchmark

• /XEN/bin/smx_RunBenchmarks.pl  issues a series of benchmark runs

These scripts are described in more detail in Chapter 5 and in the Appendix A.2 .

4.4.5 Troubleshooting 

The table below shows an overview of the steps that are required to take to successfully pass 
Chapter 4.4.3  together with some hints of what may go wrong in each stage:

Steps Hints

Choose 
Distribution

Linux distributions other than openSuSE 11 should also be able to run the 
research platform running. Though this has not been tested. It took a while to 
collect the list of all applications required to install. The install scripts in /XEN/
install/ will only run on openSuSE. This distribution has been chosen because it 
is widespread, well known and provides a reliable environment with practically 
every development tool.

DHCP Server Ensure that the server is running by issuing “rcdhcpd status”
Open a virtual console of a running guest domain and check that it has assigned 
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an IP address to eth0 by issuing “ifconfig eth0”. The root password is root by 
default in all DomUs.

NFS Server Check that NFS server is running in Dom0 by issuing “rcnfsserver status”
Watch /var/log/messages in Dom0 for error messages from NFS server.
Try to mount the NFS shares from inside Dom0 by issuing 
“mkdir /v; mount <IP_OF_Dom0>:/XEN/share/” 
(Replace <IP_OF_Dom0> by IP address of Dom0!).

Configure 
Domains

Check that you can log into every guest DomU from Dom0 via SSH without 
being asked for a password. If you get asked for a password then login with 
password “root” and check if the correct SSH public key has been added to 
/root/.ssh/authorized_keys.
Check that /etc/fstab in each DomU lists the correct IP address for /XEN/share/.
If the guest root filesystems is misconfigured then refer to Chapter 4.3.2 .

Create Guest 
Domains

Check that each domain is assigned the correct filesystem images and has the 
correct name as described in Chapter 4.3.3 .

Start Domains Several log files take error messages from various stages in different domains:
Dom0:  /XEN/share/xncN.log   log module loading in all DomUs
       /var/log/messages     logs messages of local servers in Dom0
DomUs: /var/log/messages     logs module loading in each DomU

Load Modules If smx_LoadModules.pl gets stuck during step 6, then a deadlock may have 
occurred during setup of event channels inside sm_communicator.ko. Check 
the output to /var/log/messages of one of the slave domains. If the same status 
message is repeated without progress then the modules got stuck.
A solution would be to kill all /usr/bin/perl processes and to restart the whole 
platform via smx_Control.pl.

Benchmarking All log files regarding benchmarking are created in /XEN/share/Benchmarks/.
The script smx_RunBenchmarks.pl creates one file with filename prefix “run.”.
Each individual benchmark creates its own report file with prefix “log.”.

4.5 Directory Structure

All files of the research platform reside in the central folder /XEN/ of Dom0. Though it is possible 
to replace this folder in the root directory by a symbolic link to a different location, this may lead to 
problems with the NFS server. The NFS servers of current Linux distributions do not allow to 
follow symbolic links on the server. Therefore if /XEN/ is a symbolic link, it may be required to 
change the scripts in /XEN/share/bin/ and /XEN/xen_StartUpGuest.pl inside the master image file 
to mount the link's destination instead of /XEN/share/.

All folders are accessible from Dom0. A subset inside /XEN/share/ is only visible via a NFS share 
from each DomU.
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4.5.1 Important Folders in Dom0

• /XEN/backup/

Backups of the current state of the whole research platform can be created or restored via 
smx_BackUpCreate.pl and smx_BackUpDelete.pl. 
The script smx_CreatePackage.pl creates a single container package from one backup in this 
folder.

• /XEN/bin/

The scripts in this folder form the text user interface of this platform. It is helpful to add it to the 
PATH environment variable.

• /XEN/images/

The image files of virtual hard drives for the master and all guest domains are stored here. A ll 
guest image files are duplicated from the file /XEN/images/root_guest1.img.

• /XEN/install/

Several scripts in this folder allow to automatically install the required software packages on 
openSuSE v11. Other distributions are not supported directly but the install scripts should provide 
a documentation of required packages.

• /XEN/source/

The source code of the three new kernel modules and a compile script are located here. In order 
to compile, the Linux kernel sources from /XEN/backup/common need to be extracted to this 
folder.

• /XEN/share/Benchmarks/

Every benchmark run creates one log file here. 
Two scripts get created automatically during each run: 

currentLog.sh displays the log file output of a currently running benchmark

resumeBenchmarkRun.sh starts a set of runs beginning where a former run crashed

4.5.2 Important Folders in DomU

• /XEN/share/

Each DomU must be able to mount this folder from a NFS server and allowed write access to it. 
The folder serves as a way of communication between the text user interface scripts and the 
scripts that are running inside the DomUs.

• /XEN/share/MPI/

A complete copy of the MPICH2 installation of each DomU is saved here. This folder is also used 
to copy the current Intel MPI Benchmark suite onto each DomU prior to each benchmark run.

• /XEN/share/bin/

Scripts which are executed from inside each DomU are to be found in this folder.

• /XEN/share/modules/

This folder stores the latest compiled kernel modules. Each DomU loads its modules from here.
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4.6 Coding Style

The source code of the kernel modules described below is written in native C language style 
according to ISO C90 syntax and obeys to some coding styles in order to improve its readability 
and to reflect a continuous style. Mainly three style paradigms are implemented: Text folding, 
naming schemes and continuous comments. 

4.6.1 Text Folding

The author believes that text folding can improve the readability of source code. The source code of 
the three new kernel modules and all SHELL and PERL scripts have been optimized for folding 
capable text editors. This is the reason why text folding is described in detail here.

Folding is a feature of some text editors which allows to collapse a range of text between two 
special fold marks into one single line. This single line is mostly the very first line of this range.   
The fold marks can be defined as any strings. The setting used here are curly brackets { } as fold-
start and -end marks.

The example source in Figure 20 shows an excerpt from the source code of sm_communicator.c as 
an example of how folding can look like. 

In this example, every opening curly bracket except in line 1 hides several lines of code. This view 
allows to see the basic control flow of module initialization of this module.
Some text editors like e.g. jEdit even detect fold marks inside comments. This allows to create 
additional logical blocks which can be folded too like in line 3 or 21. Here the only reason for 
placing curly brackets is to enable folding for a range of code. A decent comment describes what is 
implemented inside.

Text folding is supported by several text editors like jEdit or Kate. 

1   static int m_init(void) {
2     
3      //{ local variables..
13     if (!is_running_on_xen())  return -ENODEV;
14
15     if (debug_level > 0) {     // print startup message
19     rt_OwnerID = rt_create_owner("sm_communicator");
20     tidy_up();                 // prepare memory-buffers
21     //{ allocate dynamic buffers
70     if (master) {              // a master creates page-grants
117    else {                     // a slave maps pages to local memory
118    
119    if (ErrorStatus) {         // tidy up + return error
135    return 0;                  // module loaded successfully
136 } //m_init()

Figure 20: Example of Text Folding

4.6.2 How To Activate Folding With jEdit

We will show how to activate folding with the text editor jEdit as an example. This editor has been 
chosen because it is free ware, runs on many platforms and it is easy to configure and extend.

The editor can be downloaded from jedit.org. The user may choose among a Windows binary or a 
platform independent jar installation archive. The jar archive can be started from the command line 
via „java -jar <FILE.JAR>“, <FILE.JAR> being the file name of the downloaded file. The 
installation should take place almost automatically. The editor can be installed by user root for all 
users or by an individual user in its home folder. The installation automatically detects which install 
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folder is writable and fills out the text fields accordingly.

To enable folding with this editor, a plugin has to be 
installed. To install plugins in jEdit, the plugin manager has 
to be opened. The plugin to be installed is called 
Configurable Fold Handler. After clicking on install, the 
module should be downloaded from the Internet and 
installed automatically. A restart of the text editor may be 
required to enable the new plugin. Figure 21 shows the 
plugin manager of jEdit with a list of already installed 
plugins.

Figure 21: jEdit - Plugin Manager

If the plugin manager cannot download the 
plugin or even the list of plugins then the list of 
download mirrors may have to be updated or the 
proxy settings for the local network be 
configured. These settings can be find behind the 
button „Download settings“ in the plugin 
manager. Figure 22 shows the dialog that allows 
to update the mirror list and to choose the current 
download mirror.

Figure 22: jEdit - Download Mirrors

4.6.3 Naming Schemes

All function names obey standard Linux kernel naming scheme as described in [Lin?]. Function 
names contain only lowercased characters, numbers and the underscore. Global and local variables 
have self explaining unabbreviated names (E.g. SmallestSlaveDomainID instead of SmSID).

4.6.4 Continuous Comments

All comments start in the same column whenever possible. This allows to read only the comments 
or the source code very easily as it forms a visual two column effect of the text. Only fold marks 
enclosing a logical block of code (like in line 21 above) start at the current code indent.
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4.7 Implementation of the Three New Kernel Modules

Figure 23: Software Layout of One Domain

Figure 23 shows the basic layout of the shared memory communication loaded in each domain.

The three colors have different meanings:

• Yellow

The existing software parts are represented by a network application (e.g. an MPI application) 
and the TCP/IP stack. The network application directly communicates with the TCP/IP stack via a 
socket buffer interface. The TCP/IP stack then directly communicates with sm_nic via a kernel 
module interface for network card drivers as described in [CRK05] Chapter 17.

• Green

The kernel  modules that have been developed for this thesis consist of resource_tracker, 
sm_communicator and sm_nic. From the perspective of the TCP/IP stack, only sm_nic is visible. 
This module implements a fully functional network card interface. It makes use of shared 
memory pages and a basic signaling functionality which are provided by sm_communicator.

• Blue

The shared memory page frames build the basis to to realize a network communication . Sharing 
page frames is implemented in sm_communicator. Module sm_nic  uses this shared memory to 
realize a message passing interface over shared memory receive buffers.

The next three sections describe the functionality of each kernel module in more detail. 

4.8 Universal Kernel Resource Tracker (module resource_tracker)

The resource tracker is a universal module which has been developed to make tracking of resource 
allocations easier. Whenever a kernel module allocates dynamic memory via rt_kmalloc(), 
rt_alloc_pages() or similar functions, this module stores this allocation data allowing to deallocate 
the resources automatically at any time later. The module can be seen as a simple garbage collector.
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Features provided by the resource tracker:

• Allocate kernel pages and plain memory

• Keep track of all allocated pages and memories automatically

• Handle resources of different client-modules

• Check for valid arguments and print corresponding error-messages

• One call frees all resources of one client-module

Each module, that wants to use the resource tracker, needs to acquire an unique owner identification 
number. This is done by calling a registration function which generates a new number. This owner 
identification has to be provided with each call one of the functions described in the next section.

This module has been written during this thesis, but it can be helpful when developing any other 
kernel module as it makes resource tracking easier and less error prone.

4.8.1 Functions Being Exported by resource_tracker

All functions listed here are described in more detail in Appendix A.1 

• rt_create_owner() registers a string as new memory-owner

• rt_pages_allocate() allocates a number of memory pages

• rt_kmalloc() allocates an amount of memory via kmalloc() 

• rt_kmalloc0() allocates an amount of memory via kmalloc() and fills it with zeros

• rt_kfree() frees one memory block being allocated by rt_kmalloc() or rt_kmalloc0()

• rt_free_resources() frees all kernel resources whether pages or memories of one owner

4.8.2 Typical Usage Scenario of resource_tracker

Figure 24 shows an example code that uses the resource_tracker module to allocate memory.

When a user or a script issues an insmod on a kernel module, after some basic initializations, its init 
function gets called automatically. For further details on how to program kernel modules in detail 
see [CRK05]. In this case, m_init in line 14 serves as an init function to the module and is called 
upon a module load. The first thing to do is to create a new owner id from a given identifier string. 
This string must be different from those of all other modules which might use the resource tracker 
concurrently. The current module name suits perfectly here. 

Note: If a module can be loaded several times, then each of these instances has to register its own 
unique identifier string!

After creating an ID number, a block of zeroed memory is allocated in line 16. Instead of returning 
the start address like malloc(), the preferred paradigm with resource tracker is “call by reference”. 
The provided pointer &A is stored inside resource_tracker. When an individual resource is freed 
later, then A is reset automatically. Therefore it is important to use a global or local static variable to 
hold the start address. This behavior is specially interesting when it comes to local buffers inside 
functions. It is difficult to keep track of all of these distributed dynamic allocations. One could store 
these start addresses inside a global array and free them at program exit inside a for loop. To do so 
would mean to start to implement something like resource tracker itself. It gets even more 
complicated when these buffers should be resizable. When a function decides to resize its dynamic 
buffer, it basically has to free the old one and to delete all pointers to it. A rt_kfree() call on a start 
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address frees the memory block and resets the registered pointer to it.

1 #include "resource_tracker.h"      // inside header file
2
3 unsigned int rt_OwnerID = 0;
4 unsigned int *A = NULL;            // important to initialize with NULL
5
6 static void privateA(void) {       // private function which may get called
7   static char *Buffer = NULL;
8   if (!Buffer)  rt_kmalloc0( rt_OwnerID, sizeof(char) * 10, 
9                              GFP_KERNEL, (void**) &Buffer, 
10                              "privateA() Buffer" );
11   sprintf(Buffer, „Hello World\n“);
12 }
13
14 static int m_init(void) {          // module initialization
15   rt_OwnerID = rt_create_owner("MY_MODULENAME");
16   rt_kmalloc0(rt_OwnerID, sizeof(int) * 100, GFP_KERNEL, (void**) &A, "A");
17   A[42] = 1;                       // use dynamic memory
18     
19   return 0;                        // module loaded successfully
20 }
21
22 static void m_exit(void) {         // module gets unloaded
23     rt_free_resources(rt_OwnerID); // frees A[] and Buffer[] (if allocated)
24 }
25

Figure 24: Example Usage of Resource Tracker

It is also possible to use rt_kmalloc() and rt_kmalloc0() like normal malloc() since the buffer start 
address is returned too. In order to disable the automatic reset feature, a NULL value can be 
provided as fourth argument.

4.9 Basic Shared Memory and Signaling (module sm_communicator)

The shared memory communicator provides basic features to enable communication between 
individual domains:

• Shared memory page frames

It provides a configurable number of consecutive pages of shared memory. After 
sm_communicators have successfully initialized in all participant domains, the list of shared 
pages can be queried via a function call.

• Lightweight event signals

After loading the modules in all configured domains, signals can be send from every slave 
domain to any other slave domain. Each signal carries only the XEN ID number of its originating 
domain. To send data from one domain to another, shared memory must be used in addition to 
signals.

In order to let N domains communicate with each other, the sm_communicator has to be loaded in 
N+1 domains. At first, one domain loads this module in master mode. The remaining N domains 
load sm_communicator in slave mode.

The master allocates and grants a given number of memory pages for all given slave domains. It is 
possible to load a master in Dom0 or any other DomU. Loading a master in a DomU blocks this 
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domain from loading an instance of sm_nic. To reserve an extra domain for the master instance 
gives and advantage during module development. If a modified version of sm_nic produces a kernel  
oops, then only its DomU is affected and needs to be restarted. In many cases, a kernel oops in a 
slave domain gets logged in the master domain before the slave gets stuck.

Three different types of pages can be granted by sm_communicator: 

• pt_Init

Pages of this type are used to setup one event-channel between each two domains. These event-
channels allow to send signal events from any domain to any other domain which has loaded 
sm_communicator. The number of pages to be allocated of this type depends on the number of 
connected slaves and is calculated during module initialization.

• pt_Message

A single message page is used by smc_printk() to transmit text messages from the slave instances 
to the master instance of sm_communicator. One page is dedicated for this purpose because this 
makes smc_printk() independent from other transport mechanisms being implemented inside 
sm_nic. Thus allowing to debug a broken network interface.

• pt_Data

Pages of this type are free to be used by other modules like sm_nic. A list of these pages can be 
obtained by calling smc_get_shared_pages(). The number of pages of type pt_Data can be set via 
command line argument order_grant_pages. After handed over by smc_get_shared_pages(), 
pages of this type may be completely overwritten.

The type of a page is stored inside a struct GrantedPage_h located at the beginning of each memory 
page. This struct is provided for all page types. Pages of type pt_Data may be completely 
overwritten once the module has finished its loading. 

The master instance produces one grant-reference number for each page for each slave domain. 
These numbers are printed to /var/log/messages inside the master domain. The numbers have to be 
parsed from this log file and have to be passed as command line arguments whenever the module 
sm_communicator gets loaded as a slave.

We now show an example of how to load all modules for four domains (1 master + 3 slaves) in 
order to share 2 data pages among all domains.

1. Start master in domain 0:

0> insmod sm_communicator.ko master=1 current_domain_id=0 slave_domain_ids=1,2,3 
                               order_grant_pages=1

The module will print out grant reference numbers during its initialization to /var/log/messages. We 
assume that these are the numbers 10, 11,12 and 13 for domain 1, numbers 14, 15, 16 and 17 for 
domain 2 and numbers 18, 19, 20 and 21 for domain 3.

2. Start slaves in domains 1, 2 and 3 with corresponding reference numbers:

  1> insmod sm_communicator.ko current_domain_id=1 grant_refs=10,11,12,13
                               slave_domain_ids=1,2,3
  2> insmod sm_communicator.ko current_domain_id=2 grant_refs=14,15,16,17
                               slave_domain_ids=1,2,3
  3> insmod sm_communicator.ko current_domain_id=3 grant_refs=18,19,20,21
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                               slave_domain_ids=1,2,3

Figure 25 shows this example setup.

Figure 25: Allocate and grant pages

After all sm_communicator modules have been loaded successfully, the user may now load sm_nic 
modules in the slave domains 1,2 and 3.

4.9.1 Command Line Arguments of Module sm_communicator

All arguments that are known by sm_communicator can be categorized into one of three groups: 
common, master-only and slave-only according to the current value of the argument master.

Common arguments

• master               
=1: load module as master
=0: load module as slave

• current_domain_id
This gives the identification number of XEN domain which is loading this module 
(0 ≙ Dom0, value greater 0 ≙ DomU).

• slave_domain_ids[]
The XEN ID numbers of other slave instances have to be given as a comma separated list.

• debug_level
=0: no debug-, =1: some debug-, =2: more debug-messages

• test_irqs
=1: This option activates sending of periodic sample events to all other slaves.

• blocking 
=1: Module-load blocks until event-channels have been established among all slaves. 
=0: Module-load returns immediately. Event-channels get established by a parallel background-
thread.
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Master-only arguments

• order_grant_pages
The number of pages to grant to all slaves is calculated as 2order grant pages . Therefore a value of 0 
means to grant one page to all slave domains. Every page is granted to all slave domains. Every 
grant to one domain produces one grant-reference number.

• central_debugs
=1: This activates to transmit all debug messages from slaves to master DomU. Activating this 
feature slows down debug outputs but it can make debugging easier. This is because all messages 
arrive in one big log file in their time correct order. Even if a slave domain crashes, its debug 
messages can be examined here.

Slave-only arguments

• master_domain_id
Provides the XEN domain identification number of domain which granted memory-pages to 
current domain.

• grant_refs[]
Reference numbers of pages to be mapped to local memory from other domain. For the same set 
of memory pages, each domain gets its own set of reference numbers. When the provided scripts 
are used to load all modules, then the corresponding numbers can be found inside 
/XEN/share/GRANTS.<X>, <X> means the individual XEN domain ID.

• grab_console
=1: A new console device will be registered. This console redirects all kernel oops messages via 
smc_printk(). When central_debugs has been chosen on the master, then even the latest kernel  
oops before a domain crashes gets logged in the master domain.

4.9.1 Functions Being Exported by sm_communicator

All functions listed here are described in more detail in Appendix A.1  on p.76.

• smc_get_domains() returns identification-numbers of all connected XEN domains

• smc_get_shared_pages() returns list of available shared memory-pages

• smc_register_handler() registers a function as event-handler for incoming events

• smc_unregister_handler() removes registration of given function as an event-handler

• smc_send_event() sends a lightweight signal to a certain domain

• smc_printk() immediately sends a string as debug-message to master instance

• smc_memcpy_io() memcpy() replacement  suitable for shared memories

4.10 Shared Memory Network Interface (module sm_nic)

The virtual shared memory network interface implements a fully functional virtual network 
interface. This interface is always named “smn” and can be used like other network interfaces 
which drive physical hardware. An IP address can be assigned via the command line tool ifconfig. 
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The setup of this interface is done automatically when the research platform is started using the 
provided scripts as described in Chapter 5.3 .

4.10.1 Implementation of Message Passing over Shared Memory

Figure 26 shows how sm_nic realizes message passing via dedicated receive buffers in shared 
memory as described in Chapter 3.1.4 . Each of the N domains owns N-1 local RxBuffers and has 
write access to N-1 remote RxBuffers. From the perspective of a domain, a remote RxBuffer can also 
be referred to as a TxBuffer. E.g. domain 1 has local RxBuffers 1/2 and 1/3. The remote RxBuffers of 
domain 1 are RxBuffers 2/1 and 3/1. Each domain is allowed to read from its local RxBuffers and to 
write to its remote TxBuffers. The only exception is the status word which is allowed to be read and 
written by both associated domains in different stages of the transmission.

Figure 26: sm_nic: Domain 2 sends a message over Shared Memory

The numbering scheme for receive buffers is RxBuffer TARGET/SOURCE. Where TARGET and 
SOURCE mean the target and source XEN domain id of the two associated domains. On a real 
NoC, an RxBuffer is assumed to be local to its target and to be remote to its source domain. This 
means, that a read or write access to a remote buffer are established by sending packets over the 
network. Accesses to a local buffer can be seen as local memory accesses.

In in Figure 27, the network application (MPI) in domain 2 calls a function of the TCP/IP stack to 
send a data packet to domain 1. Level 3 of the TCP/IP stack calls a function of sm_nic #2 to 
transmit the provided socket buffer to its destination. This module copies all bytes from the socket 
buffer plus an extra header into RxBuffer 1/2  and sets its status to BufFull. It then sends a signal to 
interrupt sm_nic #1 in domain 1. 

The interrupt handler in domain 1 checks all local RxBuffers 1/2 and 1/3 for their status. The data of 
each buffer with status BufFull is copied into a socket buffer and handed to the local TCP/IP stack 
which passes it to its network application (MPI). After processing the RxBuffer, domain 1 resets the 
status of RxBuffer 1/2. Next time, when domain 2 wants to send a packet to domain 1 again, it will 
read the new status.
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Figure 27: Domain 1 processes RxBuffer and resets Status

This bidirectional use of message buffers may not perform optimal on certain architectures. In an 
outlook in Chapter 6.2.4  we discuss how real unidirectional buffers can be implemented.

4.10.2 Configuration of Basic Shared Memory Network Interface (smn)

When the module sm_nic.ko gets loaded, certain configuration options can be provided as command 
line arguments. If the module gets loaded without the required number of arguments, a help page 
with current default values is printed to the file /var/log/messages.

All arguments are case sensitive and can be passed to the module as space separated KEY=VALUE 
pairs. Lists of values have to be provided comma separated without any spaces.

E.g.: insmod sm_nic.ko debug_level=1 current_domain_id=2 master_domain_id=1

The arguments known by sm_nic.ko are listed below:

• debug_level

Sets the level of debug outputs. All debug messages are printed to the file /var/log/messages in 
the local domain or in the master domain. Three different levels are available:

• Level0: Only some messages during loading and unloading of modules

• Level1: More messages at loading and unloading and during operations

• Level2: Detailed messages regarding internal structures and address calculations

• debug_packets

If set to 1 then the contents of every transmitted packets and their headers are printed to the log.

• queue_size

The size of the output FIFO queue can be defined as the maximum allowed number of packets 
which can be stored for each target domain.
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• current_domain_id

The module cannot find out the XEN ID of the current DomU on its own.

• master_domain_id

This argument provides the XEN ID of the domain which has loaded the sm_communicator  
module as master.

• mtu

This option sets the initial maximum transfer unit (MTU) of the network interface. That is the 
maximum allowed packet size that this network interface accepts to send. The default MTU value 
for Ethernet like interfaces is 1500 bytes. If the number of shared memory pages does not allow 
to set the desired MTU, then the actual MTU will be as large as possible.

• max_tx_retries

The network interface maintains one output FIFO queue (called TxFIFO) per other domain. A 
parallel running kernel thread periodically tries to send the packets from these TxFIFOs to their 
target domains in a loop. Whenever this loop exits without being able to send any of the 
remaining packets, then a counter called Retries is decreased. When this counter reaches zero, all 
packets from all queues are dropped. 

The value of the argument max_tx_retries provides the start value of this counter. If the 
perfomance value tx_dropped shows a high value, then increasing max_tx_retries may help to 
avoid dropping packets too early. 

Performance values are discussed in more detail in Chapter 5.1 .

• extra_signal_every

Whenever the counter Retries (as described for option max_tx_retries) gets decreased, then a 
second counter called NextExtraSignalIn gets decreased too. If this second counter reaches zero 
then a signal is send to the target domain of the current packet. The intention of this extra signal 
is to wake up a domain in case that it has missed to serve an interrupt. The number of extra 
signals being sent is counted in the performance value ExtraSignalsSent. If this value shows a 
high number of extra signals, then lots of extra interrupt request are generated which may have an 
impact on network performance. 

Decreasing the value of extra_signal_every may decrease the number of extra generated signals. 
A higher value can lead to longer delays in case a domain misses interrupts more frequently.

Performance values are discussed in more detail in Chapter 5.1 .

4.10.3 Valiant Load Balance Routing Protocol As an Extension

As described in Chapter 2.6 , interrupt requests can have a major impact on system performance. 
Another reason to integrate a routing protocol into a network interface can be to make better use of 
parallel communication hardware on a many core chip. Nodes which currently to no communicate 
actively can help other nodes by forwarding their packets. This can increase on die communication 
bandwith dynamically.

The module sm_nic implements a form of Valiant Load Balance routing (VLB) as a compile option. 
A detailed description of the original VLB algorithm is discussed in Chapter 2.5 . This routing 
protocol can make use of otherwise unused parallel communication bandwidth. 

The implementation of VLB being described here allows to send more than one packet for the same 
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target immediately instead of having to wait for the target domain to react on every packet. 
Additionally, on a real many core CPU with level-triggered interrupts, more than one packet can be 
received per interrupt by target nodes.

Whenever a domain has more than one outstanding packet for the same target domain waiting in its 
transmit buffer then normally only the first packet is transmitted directly. This applies whenever 
active waiting for the receiver to process its RxBuffer would incur a major performance impact to 
the sender. This is true under XEN virtualization and maybe some many core chips in which the 
cores can only either compute or communicate. Under XEN virtualization signals are only 
transmitted when the originating domain issues an interrupt request on its own. This does not 
happen from inside an interrupt context. As the transmit function of sm_nic gets called from the 
TCP/IP stack in interrupt context, an event being generated during the function call is transmitted 
after the call returns. Therefore, while inside the function call, a domain cannot wait until the first 
packet gets processed by its target domain.

The traditional solution is to append the outstanding packets to a FIFO queue for later delivery. The 
network interface implemented here does provide N-1 of such TxFIFOs, one for each other 
domains. Whenever a packet cannot be send immediately, it is pushed into the corresponding queue. 
For simplicity, the Figures 28 to 30 show only one common TxFIFO.

With activated Valiant Load Balancing, if a direct RxBuffer is full, then some amount of outstanding 
packets can be send immediately as shown in the example in these Figures.

Figure 28: VLB: Step 1 - Transmit packet directly

Figure 29: Step 2: Evade packet to other domain
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In Figure 28, domain 2 wants to send two packets to domain 1. All RxBuffers are free and no other 
domain wants to communicate. Domain 2 transmits packet #1 directly to domain 1.

Figure 30: Step 3: Evade domain transmits to target

Now domain 3 wants to get rid of its foreign packet. The RxBuffer 1/3 is empty and domain 3 can 
send packet #2 directly to domain 1. Now all packets have been delivered to domain 1.

Domain 1 can now process both packets with just one context switch.

4.10.4 Configuration of VLB Routing Protocol

The kernel module sm_nic_vlb.ko provides several options to configure the VLB routing protocol. 
As benchmarks have shown, a misconfiguration has a major effect on network performance. The 
options listed below add to the basic module options as listed for sm_nic.ko.

• vlb_time_to_live

The initial value of the time to live field of each packet defines the maximum number of evade 
hops that it is allowed to visit. The value is decreased on each packet being received. If the value 
has reached zero, then the interface will transmit the packet directly to its target domain.

• vlb_randomize

In non randomized mode, if the interface has decided to send a packet indirectly, the list of evade 
domains is simply scanned in a linear manner from first to last for the next free TxBufffer. If 
randomized VLB is activated, then the list of evade nodes is permuted randomly before the scan 
is started.

• vlb_max_evade_ratio

This argument defines a maximum allowed ratio between indirect and direct packets that a 
domain is allowed to generate for each target domain. An evade ratio of E means that while the 
TxBuffer of a destination domain is busy, up to E packets may be send indirectly over evade 
domains. The counter of a domain resets when the next packet can be transmitted directly to it. 
Therefore this argument limits the amount of indirect traffic generated by a single domain.

• vlb_max_foreigners

The maximum allowed number of foreign packets that a domain accepts from each other domain 
can be limited with this option. If the limit is reached, then the RxBuffer over which an indirect 
packet was received is set to a special state. This special state forbids the associated sender 
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domain to pass any further indirect traffic over this link. The lock is released when the number of 
foreigners from this sender drops below the given limit. Thus this arguments limits incoming 
indirect traffic on a single domain that is generated by other domains.

• vlb_reduce_interrupts

Activating this switch will suppress interrupt request generation for all indirect packets on the 
target domain. Everytime when an evade domain is about to send a foreign packet directly to the 
intended target domain, then no signal will be send to inform the target domain. The switch does 
not affect the generation of interrupt requests for packets being sent to evade nodes. 
The reason to not signal the target domain for indirectly transported packets is to reduce stress 
from indirect packets on the target domain. If e.g. domain A sends packets to domain B, then 
most of these packets will travel to B via evade domains. The ability of domain A to send 
multiple packets per send function call increases the output bandwidth of A by a factor of up to 
N-2, N the total number of available domains. If every indirect packet would generate a single 
interrupt request in B, then with XEN virtualization, the average number of packets being 
received per interrupt cannot be greater than 1 as the XEN hypervisor serializes and delivers all 
requests to B.

As long as A continues to send packets to B, aproximately every N-1 packet is transmitted 
directly. Each of these direct packets is accompanied by an interrupt as with 
vlb_reduce_interrupts=0. During this interrupt, the direct packet and all indirect packets in the 
receive buffers get processed by domain B.

Note: In order to significantly increase the performance value VLB_AveragePacketsPerIRQ past 
1.0, the module argument vlb_max_evade_ratio needs to be set to a value greater than 1. 
This is because the module will send a signal to the target domain whenever the TxFIFOs 
run empty and if an amount of indirect packets has been sent to a target since the last 
direct packet.

• vlb_next_hops[]

By defining a list of domains to which indirect traffic is allowed to be sent, the network interface 
allows to shape the indirect traffic according to an intended network architecture.

• vlb_debug

If set to 1 then individual routing decisions of the VLB protocol get logged.

• log_source

This option allows to define the ID number of a source domain to log. All packets that originate 
from this domain get logged in detail.

• log_target

This option allows to define the ID number of a target domain to log. All packets that are targeted 
at this domain get logged in detail.

4.10.5 Functions Exported by sm_nic

All functions listed here are described in more detail in Chapter A.1 

• smn_receive_packets() Low level function to receive one or more packets.

• smn_transmit_buffer() Transmits given buffer to target domain.

• smn_send_packet() Sends content of socket buffer to target domain.
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4.11 Specification of an Unidirectional Message Buffers Implementation

Chapter 3.1.1  postulated the use of unidirectional message buffers as a performance optimization. 
The current implementation of sm_nic uses message buffers for unidirectional traffic except to the 
status word. By clearing the status word, a node signals that it has processed a certain buffer as 
described in Chapter 4.10.1 . The sender node has to read the status word from a foreign memory 
buffer to check if the receive buffer is free. Such remote read accesses can be very slow if generated 
frequently.

This can be solved easily by placing a duplicate of the StatusWord of RxBufferA/B in RxBufferB/A. 
All writes to the StatusWord can then be redirected to the remote buffer and all reads to the local 
buffer. This section describes a possible implementation of unidirectional message buffers.

Figure 31: Unidirectional Message Acknowledgment

Figure 31 shows how to acknowledge a received packet with unidirectional buffers. An extra field 
in the Status field of RxBuffer 2/1 signals that domain 1 has processed a message from domain 2.

Two main strategies may be used to reset the OK flag:

1. Domain 2 clears the OK flag after reading it.
This would imply to place the OK flag in its own cache line because otherwise a local write to 
this flag in RxBuffer 2/1 from domain 2 could overwrite a concurrent remote write from domain 
1 to the Status field.

2. Domain 1 toggles the OK flag after processing its RxBuffer.

Before setting Status=Full in RxBuffer 1/2, domain 2 memorizes the current state of the OK flag 
in RxBuffer 2/1. No writes to RxBuffer 2/1 would be required by domain 2.

4.12 Command Line User Interface

In order to start all virtual domains, to load kernel modules and for other purposes, a set of scripts 
has been written for this thesis. A more detailed description of all scripts can be found in the 
Appendix A.2 
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The scripts can be divided into two categories according to their location in the filesystem:

• Scripts in /XEN/bin/

These scripts build the command line user interface and allow to control the whole research 
platform. The path /XEN/bin/ may be added to the current PATH environment variable for 
convenience. All scripts in this directory start with the prefix “smx_” which avoids naming 
conflicts with existing commands.

• smx_BackUpCreate.pl Creates a backup of complete current platform..

• smx_BackUpRestore.pl Restores a previous backup.

• smx_Benchmark.pl Runs MPI benchmark suite on given set of domains.

• smx_Control.sh Starts, stops or restarts all configured user domains

• smx_DomainIP.sh Returns current IP address of a certain domain.

• smx_DomainNames.pl Prints out list of all currently configured user domains.

• smx_LoadModules.pl Loads, unloads or reloads required kernel modules.

• smx_TOP.pl prints list of running processes in all domains.

• smx_TestSSH.pl Tests SSH connectivity between a set of user domains.

• smx_UpdateIPs.sh Updates IP addresses of all user domains.

• smx_UpdateXenIDs.pl Updates current id numbers of running XEN domains.

• Scripts in /XEN/share/bin/

The scripts in this folder are required by running user domains to acquire all data to establish 
communication over shared memory.

• getXenID.sh Prints the XEN ID number of the currently running user domain.

• load_master.sh Loads or unloads master instance of sm_communicator.

• load_slave.sh Loads or unloads sm_communicator and sm_nic

• updateGrantRefs.pl Collects grant references of memory pages to be shared.
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Chapter 5
 Performance Evaluation    

After describing details of implementation, this Chapter compares the performance of the traditional 
virtual XEN network card (further called xnc) vs the new shared memory network interface (further 
referred to as smn). We will show that the current implementation of our virtual network interface 
basically provides the same performance as the XEN provided interface.
This chapter does not talk about VLB routing as the fine tuning of this extension is out of the scope 
of this thesis.

5.1 Benchmarking

For benchmarking all available module arguments of sm_nic.ko and sm_nic_vlb.ko being described 
in Chapters 4.10.2  and 4.10.4  can be used to parameterize the configuration of the research 
platform. 

Additional parameterizable configuration options are as follows:

• The number of slave domains

This is the number of domains which provide a sm_nic network interface. For configuration 
which do not make use of the VLB routing protocol extension, the instantiation of unused slave 
domains will not improve network performance. In a VLB enabled configuration, unused 
domains can help all other domains by forwarding their indirect traffic.

• The number of domains on which the benchmark runs

To vary the amount of domains being actively used to compute and communicate during a 
benchmark is the natural way to compare the scalability of different configurations of message 
passing hardware.

• The Maximum Transfer Unit (MTU)

Most Ethernet like network interfaces provide a MTU value of 1500 bytes, thus allowing to send 
up to 1500 bytes per individual packet. By decreasing the MTU, the platform allows to simulate 
the effect of small memory buffers. Smaller MTU values force the TCP/IP stack to create more 
packets for the same amount of data, thus increasing the protocol overhead. On a real many core 
CPU, the amount of shared memory available for message passing may be limited so that it might 
not be able to provide a 1500 byte MTU.

5.1.1 MPI Library MPICH2

The benchmarks described below have been run on version 1.0.8 of MPICH2. Earlier tests with 
MPICH1 showed a bug in the MPICH library. For MTU sizes of less than 1500 bytes, still packets 
of 1500 bytes were handed to the network interface for transmit. Also some system crashes 
appeared with the IMB suite. After upgrading to MPICH2, the MTU bug disappeared and the 
benchmarks ran more stable.

The guest OS images in the folder /XEN/images/ already provide v1.0.8 of MPICH2 preinstalled.
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5.2 Intel MPI Benchmark suite (IMB)

One part of the workloads used for benchmarking is provided by running a well known set of MPI 
benchmarks called Intel® MPI Benchmarks, formerly known as Pallas MPI Benchmarks, on 
varying sets of domains.

According to its documentation, the individual tests included in the IMB are categorized into three 
benchmark classifications:

• Single Transfer

This classification contains benchmarks in which signals are send between two processes.

• Parallel Transfer

The benchmarks under this classification simulate computation and communication on all 
configured nodes.

• Collective Benchmarks

Benchmarks in this classification do not perform computations but only communication. These 
tests are mainly targeted at the underlying message passing performance of the system.

Chapters 5.2.1  to 5.2.3  list the different benchmarks which have been run on this research platform 
for different message passing configurations. The individual benchmarks are described in detail in 
the users guide document of the IMB in the folder /XEN/share/MPI/IntelMPI_Benchmark32/doc/.
A current version of this benchmark suite can be downloaded from the Intel website.

5.2.1 Single Transfer Benchmarks

• PingPing One process constantly sends packets to another process.

• PingPong Like PingPing but each packet produces an answer

5.2.2 Parallel Transfer Benchmarks

• Sendrecv All Processes form a periodic communication chain. Messages are passed from 
the left to the right.

5.2.3 Collective Benchmarks

• Bcast One process periodically sends a message to all other processes.

• Allgather Every process provides data and receives the gathered data of all processes.

• Allgatherv Variable version of Allgather which may incur more overhead.

• Gather A root process receives data from all other processes.

• Gatherv A root process receives data from a varying number of other processes.

• Scatter A root process sends data to all other processes.

• Scatterv A root process sends data to a varying number of other processes.

• Alltoall Every process provides data and receives the sum of data from all processes.

• Alltoallv Like Alltoall but for a varying number of processes.

• Reduce Reduces a vector of float items to their sum.
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5.3 Manual Benchmark Run

When the smn network interface is successfully instantiated in all slave domains, then any kind of 
network load can be put on it like pinging other domains, copying to NFS shares or special network 
benchmark loads.

The preinstalled IMB benchmark suite which has been discussed in Chapter 5.2  can be issued to 
run on a given subset of all currently running domains via the script /XEN/bin/smx_Benchmark.pl. 
This script loads all required modules on all given domains and then runs the complete IMB suite 
once. The output of the whole benchmark run is logged into a file inside the folder 
/XEN/share/Benchmarks/.

Additional to the timing and throughput measures of individual benchmarks, the smn_nic.ko and 
smn_nic_vlb.ko modules maintain a set of performance measures. These measures are further 
referred to as “Perfomance Values” and described in more detail below. The performance values of 
a benchmark run are automatically appended to each log file when using the provided script.

5.3.1 Performance Values of Module sm_nic.ko

Performance values will be printed to the log file /var/log/messages by the module sm_nic.ko or 
sm_nic_vlb.ko whenever the corresponding network interface is shut down. 

In order to shutdown and restart the interface in all slave domains, two scripts have to be called:

1. /XEN/bin/smx_RestartAllInterfaces.pl RESTART

2. /XEN/bin/smx_ExtractPerformanceValues.pl <DOMAIN>

Here <DOMAIN> means the name or IP address of a slave domain from which the latest 
performance values should be extracted.

Figure 32 lists all performance values that are tracked by sm_nic.ko and sm_nic_vlb.ko.

5.4 Benchmark Automation

The script /XEN/bin/smx_RunBenchmarks.pl provides a way to automatically run the same 
benchmark on different configurations of the smn network interface. The different configurations 
have to be defined in the source code of this PERL script.

The automation of benchmarking different configurations, requires to run a set of nested for loops. 
Each loop runs over one configuration parameter. The provided script already implements a 
configurable multi level loop iterator. A whole set of benchmark runs just has to be configured and 
given to a run function. The run function then iterates over all provided parameters and issues a 
benchmark run for each different configuration. In most cases, the complete design space of all 
parameters would take too long to be simulated practically. For such cases, the run function allows 
to define a series of configuration sets. Each set may vary only one parameter.

A detailed description of how to define configuration sets can be found in Appendix A.2.21 .
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 Performance Value  Description
AllocatedPackets_Max highest number of packets managed at once

AveragePacketSize average size of packets sent
MinimumPacketSize size of smallest packets sent

MaximumPacketSize size of largest packet sent
MaximumTxRetries maximum occured retries before at least one packet could be send

ExtraSignalsSent number of signals sent to wake up other domains after a timeout
QueuedPackets_Maximum highest number of packets queued in all TxFIFOs

ImmediatePacketsTX number of packets sent immediately without being queued
rx_packets total number of packets received since last module reset

tx_packets total number of packets sent since last module reset
rx_bytes total number of bytes received since last module reset

tx_bytes total number of bytes sent since last module reset
rx_errors number of receive errors occured since last module reset

tx_errors number of send errors occured since last module reset
rx_dropped number of received packets which have been dropped

tx_dropped number of packets to send which have been dropped instead
VLB_LongestRoute largest hop count of all received packets

VLB_RX_Indirect number of indirectly received packets
VLB_RX_Direct number of directly received packets

VLB_MaxSeenForeigners maximum number of foreign packets seen since last module reset
VLB_AveragePacketsPerIRQ average amount of packets received on each interrupt

VLB_TX_Indirect number of indirectly sent packets
VLB_TX_Direct number of directly sent packets

VLB_TX_LimitedBySender number of packets forced as direct packets because 
vlb_max_evade_ratio was reached

VLB_TX_LimitedByReceiver number of packets forced as direct packets because 
vlb_max_foreigners was reached

Figure 32: List of Performance Values

5.5 Hardware Used for Benchmarking

The benchmarks were run on a 16 core Caneland server class machine named S7000FC4UR. The 
16 cores are provided by four Xeon X7350 MP CPUs clocked at 2.93 GHz. Each CPU basically 
consists of two dual core chips of the Core2 architecture. Each chip has 4MB L2 cache. The 
machine was equipped with 16GB of DDR3 RAM running at 266 MHz FSB frequency quad 
pumped. Specifications of this machine can be found on the Intel website.

The operating system used was the open source Linux distribution openSuSE v11.0 from Novell 
with physical address extension (PAE) and integrated XEN v3.2. The required software packages 
are described in Chapter 4.2.5 .
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5.6 Performance Results

This chapter shows an excerpt from the database of all measures. The database consists of several 
log files, one for each benchmark run, in the folder /XEN/share/Benchmarks/Evaluations/. A PERL 
script in the same folder scans through all log files. For each output graph, an individual filter 
function has been implemented inside this script. Each filter function extracts a certain subset of 
data from each log file and creates a comma separated value (CSV) file. The graphs below have 
been created from these CSV files.

The graphs compare the performance results of benchmarks that have been run via the native XEN 
network interface (marked as xnc) and via the sm_nic that has been written for this thesis (marked 
as smn). Most graphs show real data points and cubical interpolated curves. Some graphs contain so 
much data points that the curve got hidden. For these graphs, the display of data-points and 
interpolation has been disabled.

5.6.1 Single Transfer Benchmarks

In each benchmarks under this classification two threads communicate with each other. Both tests 
do not scale with the total number of domains used.

The PingPing benchmark constantly sends messages in one direction from one thread to another. 
The comparison of three different packet sizes shows three horizontal bars in the graphs of Figure 
33. Except for a maximum transfer unit (MTU) of 350 bytes, the graphs show the same bandwidths 
and latencies for smn and xnc. The right graph of Figure 33 shows an interesting effect for 
MTU=1500 where for both benchmarks, the latency drops from 100μs for MTU=375 down to 85μs. 
The reason may be that the TCP/IP stack is optimized for MTU sizes of 1500 bytes.

In addition to the unidirectional test, the PingPong benchmark sends packets in both directions. 
Therefore the graphs in Figure 34 show basically the same scenario. For messages of size 1kB, the 
MTU increase from 750 to 1500 directly shows has effect on the round trip latency. Instead of 
sending two packets to transport 1kB, a MTU of 1500 bytes allows to send the message in one 
packet. Thus giving half the turnaround latency than for 750 bytes. The left graph also shows that 
the bandwidth scales nearly linear over the message size from 230 kB/sec for messages of 16 bytes 
up to 102 MB/sec for messages of 16 kB each.
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Figure 33: Benchmark Results for PingPing
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Figure 34: Benchmark Results for PingPong
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Figure 35: Scalability of PingPong Benchmark

Figure 35 shows the scalability of both network interfaces over the size of each message. The 
saturation is reached at approximately 100kB. The limit may be a result of the window size of the 
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TCP/IP stack. If an application constantly sends out messages, then the TCP/IP stack will buffer a 
certain amount of packets which are not yet acknowledged by the receiver. As the packet size is a 
constant value, only a constant amount of data can be buffered.

5.6.2 Parallel Transfer Benchmarks

The benchmark in this classification simulates global activity on the network by spawning several 
processes and assemble them in a periodic communication chain. Therefore the graphs show 
throughput and latency under heavy network load.

The left graph of Figure 36 shows the same hard bandwidth limit for message sizes greater than 
100kB. The values are nearly the same regardless of the MTU value. Therefore this graph shows 
how effective the fragmentation engine in the TCP/IP of current Linux kernels is implemented. The 
graph on the right directly shows the near constant ratio between bandwidth and MTU size in this 
benchmark.
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Figure 36: Benchmark Results for Sendrecv

5.6.3 Collective Benchmarks

All benchmarks under this classification transmit messages of varying length. Therefore we would 
expect not to find a preferred MTU size as for the PingPing and PingPong tests.

The results of the Bcast benchmark are shown in Figure 37. During this test messages are constantly 
being sent from one node to all other nodes. One would expect that the XEN network 
implementation can benefit from its zero copy strategy. For a broadcast, the same memory page can 
be granted to multiple domains at the same time. Such an implementation should provide broadcasts 
which scale over the number of domains. But as the graph on the left shows, both networks provide 
no scalability at all. The xnc and smn network do scale well over the message size as shown in the 
graph on the right.
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Figure 37: Benchmark Results from Sendrecv
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Figure 38: Benchmark Results from Alltoall
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The Alltoall benchmark simulates a scenario where all domains communicate all the time. This test 
puts the most stress in terms of interrupt requests on the message passing interface. The two upper 
graphs of Figure 35 show a linear increase of latency over the message size while scaling by the 
power of two over the number of participating domains. The smn network provides lower latencies 
in some configurations. The reason for this may be the direct signaling technique between domains. 
Signals which are generated by the XEN network interface do not travel directly to their destination 
domain. Instead the interrupt request first is delivered to the corresponding backend driver in dom0. 
The xnc network instead benefits from its zero-copy strategy. While the sm_nic always copies data 
into remote memory buffers, its XEN pendant simply hands the affected memory page to the 
receiver domain. The lower left graph of Figure 38 shows that both network interfaces have their 
own optimal MTU sizes. The overall trend shows no advantage of one of the two implementations.

Figure 39 shows the results from the Reduce benchmark scenario for different MTU sizes and 
numbers of domains. The benchmark simulates the inverse operation of the Bcast scenario. 
Messages are send from a group of domains to one so called “root” domain. This test puts the 
individual root domain under heavy stress regarding incoming interrupt requests. For a message 
size of 16kB, the MTU is critical for the latency of each message. Therefore, the smallest MTU 
sizes of 150 and 187 bytes greatly increase the latency. When benchmarked against the number of 
sender domains, the latency scales rather non linear. Some tests show a lower latency for the XEN 
network but a real trend cannot be seen in the graph on the right.
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Figure 39: Benchmark Results from Reduce

5.7 Summary of Performance Evaluation

115 benchmarks have been run on the research platform on a 16 core machine as described in 
Chapter 5.5 . These benchmarks have shown that the new network interface, based on emulated 
hardware message passing, can provide similar network performance as the original XEN network 
interface. It can be concluded that the implementation being documented in this thesis has no major 
design flaws. All graphs show nearly the same asymptotic behavior for both types of network 
interface. 
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Chapter 6
 Conclusion and Outlook

After describing functionality, implementation and benchmarking of the research platform, this 
Chapter gives an overall summary of the goals of this approach that were described in Chapter 1.2  
and checks if they were met.

6.1 Conclusion

During this thesis, we have presented a software only research vehicle that enables research in the 
field of hardware based message passing interfaces on todays PC hardware. The research platform 
allows to retrieve results much faster than with the traditional approaches of hardware simulation 
and emulation. One disadvantage of the approach is that it is basically limited in the number of 
available cores and the different signaling mechanism of the XEN virtualization. Though it is 
possible to start more virtual domains than physical processing cores in the machine, no real parallel 
computations can take place. This would decrease the correlation of performance results to a real 
many core CPU further. 
The signaling mechanism provided by XEN mainly differs from hardware based signals in two 
ways:
• Signals under XEN are edge triggered.

The XEN hypervisor puts all generated signals into a FIFO queue and guarantees their delivery in 
order. On a real CPU, incoming interrupts are level triggered, while the interrupt is being 
serviced, other interrupt requests with the same number are ignored. This behavior leads to packet 
loss and requires special treatment by driver software.

• XEN delivers signals only outside of interrupt context.
The transmit function of a network interface under Linux gets called in a interrupt context. In 
order to send the given packet to its destination, a signal has to be sent to the target domain to 
inform it about the new data. This signal is not transported by the XEN hypervisor before the next 
interrupt in the sender domain takes place. XEN delays these signals in order to minimize overall 
context switches. For a network interface, this behavior increases latencies for individual packets.
This implies that the transmit function cannot busy wait for the receiving domain even if more 
than one packet is waiting in the TxFIFO. 

As the performance evaluation has proven, the implementation shows basically the same 
performance under different network loads as the one provided by the XEN virtualization. Because 
the new network interface makes use of an emulated hardware message passing interface, it can be 
configured to behave like a network on chip of a real many core CPU as defined in chapter 2.1 . The 
prove of applicability currently lacks the availability of such a CPU. Therefore it has to be given by 
further research. This thesis is an enabler for this kind of research.

The vast design space of all configuration options of the VLB routing protocol cannot be evaluated 
within this thesis. With activated VLB routing, small transmissions see a performance improvement 
while many benchmark runs simply do not complete. This is because the routing protocol quickly 
generates more packets being in transit than the current TCP/IP stack implementation can handle. 
This incurs retransmissions of packets and therefore big performance drops and deadlock situations. 
Therefore VLB has a similar problem as with todays high speed fiber optic network interfaces 
which can have hundreds of packets in transit within an optical link. The TCP/IP stacks identifies 
these packets as being lost and starts a retransmission. The evaluation of VLB will require an 
evaluation of the current TCP/IP stack implementation inside the Linux kernel too.
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6.2 Outlook

This section lists some ideas for extensions and improvements of the research platform presented in 
this thesis.

6.2.1 Non Uniform Routing Costs

The current implementation of sm_nic can send packets to every other node at the same latency. 
These uniform routing costs may not reflect an intended NoC implementation. Therefore, non 
uniform routing costs could add latency penalties for each packet being sent to distant nodes. A 
static function could take XEN ID numbers of source and destination domain and calculate a 
millisecond penalty. Instead of directly sending packets, smn_send_packet() would add every 
packet to TX queue for later delivery via work_send_packets(). The function work_send_packets() 
would then calculate the routing penalty for each packet and issue a ndelay(Penalty) before trying 
to send it. In a more precise model, one domain could simulate the current state of the network and 
calculate packet latencies on the fly.

6.2.2 Simulation of Broken Interconnects Between Certain Nodes

Future many core chips may be imperfect in terms that some network links or processing cores 
might be broken. These defects can occur during manufacturing or even during operation. Such 
scenarios are already known today when it comes to hard drive storage in RAID systems. These 
systems already anticipate the failure of individual drives by providing redundant capacities.

To simulate broken interconnects, a module argument can be added to sm_nic which takes a list of 
XEN ID pairs for which smn_transmit_buffer() will always assume that the target receive buffer is 
busy. For non VLB operation, outgoing packets for this broken domain would accumulate in the 
corresponding TxFIFO until its size reaches queue_size packets. With activated VLB routing, all 
packets would be automatically delivered indirectly via evade nodes. A performance evaluation of 
such a defect could be very interesting.

6.2.3 VLB Optimization: Evade Packets To Free Slot Neighbors

With activated VLB routing and whenever a packet cannot be delivered directly, the packet may be 
evaded via a third domain. Currently, one of two strategies may be applied:

• Evade to next free node

Remote receive buffers of all other evade domains are checked in order of their XEN ID number. 
The packet is evaded to the first node which receive buffer is empty.

• Evade to random node

The list of evade domains is first permuted randomly before the current packet is evaded to the 
next free node.

If the intended NoC implementation allows every node to read receive buffers of all other nodes, 
then a sending node could check which evade node currently has an empty receive buffer at the 
packets destination node. The packet is then evaded to this node if possible.

In order to be able to read from receive buffers of other nodes, the shared memory configuration has 
to be calculated from the perspective of every other domain. The current implementation calculates 
only the memory addresses of remote and local receive buffers which belong to the current domain. 
As the whole shared memory configuration is stored in a global variable of type 
SM_Configuration_t, it is possible to calculate an array of configurations for each domain.
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6.2.4 Unidirectional Message Buffers

The principle of local receive buffers with faster access than remote buffers does  apply for the 
postulated type of future many core CPUs and in some way for todays multi core architectures. In a 
todays SMP machine with 16 cores, different cache levels do exist. Such a system is typically 
divided into several CPU sockets. Each socket carries one CPU that contains up to two identical 
dies. Each of the dies provide two or more processing cores. Each core has its own local cache and 
each die provides its own cache. From the perspective of one core, accesses to its L1 cache are 
faster than those to the L2 cache and much faster than accesses to data that is currently stored in L2 
or L3 caches of other sockets.

Therefore the unidirectional use of message buffers that is described in Chapter 4.11 can provide a 
speedup even on todays multi core CPUs.

6.2.5 Port Network Interface Onto Many Core CPU

The sm_nic.ko kernel module has been designed with a small footprint. The implementation details 
of shared memory setup and event signaling are capsulated inside the sm_communicator.ko module. 

Therefore to port the smn network to a real many core CPU, the following requirements have to be 
fulfilled:

• The many core CPU fits into the targeted class as described in Chapter 3.1 .

• A new implementation of sm_communicator.ko provides all functions being exported by this 
module as described in Appendix A.1.7  to A.1.13  for the individual architecture.

The current implementation of this module has to deal with a variable list of memory pages for a 
variable number of domains. An implementation for a fixed size many core CPU would allow to 
define one constant memory range as being shared. Therefore such an implementation should be 
simpler than the current one working with XEN virtualization.

• Some compile settings need to be changed inside sm_nic.h.

Mainly only the compile switch “RUNNING_ON_XEN” has to be commented out.

6.3 Wrap Up

The implementation of the enhancements described above can build a more precise model of 
emulated hardware message passing and increase the correlation of benchmark results from this 
research platform to real many core CPUs.
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Appendix
A.1 Function Index

This section describes all functions being exported by the three new kernel modules. The module a 
function belongs to can be identified by its prefix:

• rt_ functions belong to resource_tracer.ko

• smc_ functions belong to sm_communicator.ko

• smn_ functions belong to sm_nic.ko

A.1.1 rt_create_owner()
Prototype: unsigned int rt_create_owner(char* Owner)
@Owner:    Unique name identifying registrator. 
           Each module using resource_tracker.ko is seen as one owner.
@return:   Each Owner-string gets its own unique identification number 
           to be used for all further function-calls.

This function registers a given string as new memory-owner and returns the corresponding owner-
ID.

A.1.2 rt_pages_allocate()
Prototype: unsigned long rt_pages_allocate(unsigned int Owner, unsigned int Order, 
                                           unsigned char* Purpose)
@Owner:   Owner-id as returned by rt_create_owner() earlier.
@Order:   Power of two of number of pages to allocate.
@Purpose: Used in debug messages to identify individual memory allocations.
@return:  Start address of first allocated page.

This function allocates a given number of memory pages. It behaves like pages_allocate(). All pages 
are  allocated consecutively in order.

A.1.3 rt_kmalloc()
Prototype: unsigned long rt_kmalloc(unsigned int Owner, size_t Size, int Flags, void** 
                                    Pointer, unsigned char* Purpose)
@Owner:   Owner-id as returned by rt_create_owner() earlier.
@Size:    Number of bytes to allocate.
@Flags:   kmalloc flags like GFP_KERNEL, GFP_ATOMIC, GFP_USER, …
@Pointer: !=NULL: Variable will be loaded with start address of allocated memory 
                  (NULL in case of error)
                  Pointer will be stored and reset to NULL automatically by 
                  rt_free_resources().
                  This allows to allocate memory in static function variables without 
                  having to worry about deallocation or even reallocation any more.
          ==NULL: Feature disabled
@Purpose: Used in debug messages to identify individual memory allocations
@return:  Start address of allocated memory
          This return value is provided mainly for compatibility reasons.
          Using the Pointer argument is the prefered way to use tghis function.

This function allocates a given amount of memory via kmalloc() and returns its kernel logical start 
address. This functions can replace kmalloc() in every case.
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A.1.4 rt_kmalloc0()
Prototype: unsigned long rt_kmalloc0(unsigned int Owner, size_t Size, int Flags, void** 
                                     Pointer, unsigned char* Purpose)
@Owner:   Owner-id as returned by rt_create_owner() earlier
@Size:    Number of bytes to allocate
@Flags:   kmalloc flags like GFP_KERNEL, GFP_ATOMIC, GFP_USER, …
@Pointer: !=NULL: Variable will be loaded with start address of allocated memory 
                  (NULL in case of error)
                  The pointer will be stored and reset to NULL automatically by 
                  rt_free_resources().
                  This allows to allocate memory in static function variables without 
                  having to worry about deallocation or even reallocation any more.
          ==NULL: Feature disabled
@Purpose: Used in debug messages to identify individual memory allocations
@return:  Start address of allocated memory
          This return value is provided mainly for compatibility reasons.
          Using the Pointer argument is the prefered way to use tghis function.

This function allocates a given amount of memory via kmalloc() and fills it with zeros. See 
rt_kmalloc() for further details.

A.1.5 rt_kfree()
Prototype: void rt_kfree(unsigned int Owner, unsigned long Address)

This function frees one memory block being allocated by rt_kmalloc() or rt_kmalloc0().

Note: Memory blocks that have been allocated via rt_kmalloc() or rt_kmalloc0() must always be 
freed by rt_kfree() or rt_free_resources(). Otherwise rt_free_resources() will free an already freed 
memory block and cause a kernel warning.

A.1.6 rt_free_resources()
Prototype: void rt_free_resources(unsigned int Owner)
@Owner:  != 0: Unique identification number of owner of memories to be freed as 
               returned by rt_create_owner().
         == 0: Means to free all resources of all owners

This function frees all kernel resources whether pages or memories that have been allocated by 
given owner. It is safe to call this function if no resources have been allocated so far. Owner may 
immediately allocate resources again.

A.1.7 smc_get_domains()
Prototype: unsigned int smc_get_domains(unsigned int** DomainIDs)
@DomainIDs: Will be filled with pointer to read-only array of XEN IDs of all connected 
slave domains (inclusive current domain)
@return:    Number of connected slave domains (inclusive current domain)

This function returns a list of identification-numbers of all connected XEN domains. The list does 
not contain the XEN ID of master instance of sm_communicator.

Note: This function will block until all event-channels have been successfully established with other 
domains.
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A.1.8 smc_get_shared_pages()
Prototype: unsigned int smc_get_shared_pages(MappedPage_t*** PageInfosPtr)
@PageInfos:   Will be filled with pointer to read-only array of pointers 
              to MappedPage_t structs.
@return:      >0: number of entries in (*PageInfos)[]
              =0: Error occurred

This function returns list of all mapped memory-pages usable for inter-domain communication

Note: This function will block until all event-channels have been successfully established with other 
domains.

A.1.9 smc_register_handler()
Prototype: int smc_register_handler(void* InterruptHandler, 
                                    unsigned long HandlerArgument)
@InterruptHandler:  Prototype: void InterruptHandler(unsigned long HandlerArgument, 
                                                     unsigned int DomainID)
@HandlerArgument:   Provided as constant argument to InterruptHandler() on each call.
@return:            =0: success, error-code otherwise.

This function registers the given function as an event-handler for incoming events. 

InterruptHandler() will be called on every incoming event and provided with HandlerArgument and 
the XEN domain id number of the originator of this event. All events are handled in IRQ context 
which forbids to make calls to functions which offer the cpu to another process, like  schedule() or 
msleep(), inside InterruptHandler(). 

Note: This function will block until all event-channels have been successfully established with other 
domains.

A.1.10 smc_unregister_handler()
Prototype: void smc_unregister_handler(void* InterruptHandler)
@InterruptHandler:  prototype: void ec_interrupt_handler(unsigned long HandlerArgument, 
unsigned int DomainID)

This function clears the registration of the given function as an event-handler. The handler function 
registered before will not be called anymore.

A.1.11 smc_send_event()
Prototype: int smc_send_event(unsigned int TargetID)
@TargetID:  XEN domain id number of target domain
@return:    0 on success, error code otherwise

This function sends an event to one given target domain. Signals are lightweight under XEN. This 
means that signals do not carry any extra information than the domain id number of their originator. 
The target domains interrupt handler must be able to gather more knowledge about a signal on its 
own. This is implemented by using a dedicated shared memory range to exchange more data.

Note: This function will block until all event-channels have been successfully established with other 
domains.
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A.1.12 smc_printk()
Prototype: void smc_printk(const char *Format, …)

This function immediately sends the given string as a debug-message to the master instance of 
sm_communicator.

It behaves similar to normal printk() but it prints the resulting string into a shared memory buffer 
and transmits it to master instance of sm_communicator. If no master instance is available or 
central_debugs is unset, then the message will be passed to local printk().
This function will block until message has been successfully sent. Though this is very slow, it has 
the lowest possible latency. When this function returns the message has definitive arrived. This 
behavior can be very helpful when it comes to debug a kernel oops inside sm_communicator or 
sm_nic.

It is even possible to create a new console which reports directly to smc_printk(). This allows to 
redirect every oops message from kernel to master. See module parameter grab_console for details.

Note: smc_printk() is interrupt safe and may be called from IRQ context.

A.1.13 smc_memcpy_io()
Prototype: volatile char* smc_memcpy_io(volatile char *Dest, volatile char *Source, 
                                        unsigned long Size)
@Dest:   start address of destination buffer
@Source: start address if source buffer
@Size:   number of bytes to copy

This function copies a number of bytes from Source to Dest suitable for shared memories. It serves 
as a central place to try several implementations of memory copying. sm_nic uses this function to 
copy data to and from input buffers.

A.1.14 smn_receive_packets()
Prototype: int smn_receive_packets(unsigned int TxID, unsigned long* OctetsCount, 
unsigned int* PacketCount, struct sk_buff** ReceivedPackets)
@SenderID:        >0: XEN ID number whose corresponding receive buffer is to be checked
                  =0: will check all receive-buffers for incoming packets (takes longer)
@OctetsCount:     loaded with number of octets received in total 
@PacketCount:     value is increased for each packet being received 
@ReceivedPackets: Array that stores pointers to all received packets
                  This array must be able to store one packet pointer per receive-
                  buffer.
                  Note: The returned sk_buff blocks do only store the retrieved data. 
                        smn_receive_packets() does not know about any packet-types or 
                        linux devices.
@return:           1: successfully received at least one packet
                   0: no incoming data received 
                  <0: general error occured during receive

This low-level receive function will check only the given receive-buffer or all receive buffers for 
incoming packets from other XEN domains.

The function does not use the TCP/IP stack at all. It is the fastest way to receive data from other 
domains. This function is normally called from an interrupt handler to grab data from the receive 
buffers on an incomming interrupt or signal event.
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Note: As the returned packets have been allocated dyamically, the caller of this function has to call 
packet_free() on each of them in order to return them to the memory pool.

A.1.15 smn_transmit_buffer()
Prototype: int smn_transmit_buffer(unsigned int TargetID, unsigned char* Buffer, 
                                   unsigned int Length)
@TargetID:  XEN domain id number of domain to send data to
@Buffer:    Binary data to send
@Length:    Number of octets (bytes) to send from Buffer[]
@return:    =1: buffer send successfully + target domain signalled 
                There is no guarantee that target domain has processed its buffer.
            =0: Buffer has not been sent because target buffer was not free and no 
                signal was sent to target domain
            <0: Error-code

This function transmits a given buffer over shared memory to the named target domain. It 
implements a low-level send function.

The TCP/IP stack is not incorporated at all. Therefore it provides the fastest way to send data to 
other domains. The delivery is not guaranteed.

This function is not protected against concurrency. Especially when the smn device is in use by the 
TCP/IP stack, then lots of concurrent calls may occur.

In such cases, the caller has to ensure that interrupts are disabled to avoid concurrent calls while this 
function is busy transmitting a buffer!

For concurrency safe transport use smn_send_packet() instead! 

A.1.16 smn_send_packet()
Prototype: int smn_send_packet(int TargetID, struct sk_buff *Packet)
@TargetID: XEN domain id number of domain to send data to.
@Packet:   Socket buffer which stores data to send.
@return:   =0: Packet has been queued for later delivery.
           =1: Packet has been sent immediately and *Packet was freed automatically.
           <0: Error code                       
               (Packet has NOT been freed and caller has to free it!)
           -E_TOO_MUCH_PACKETS: Packet has been freed before being processed.

This function sends the content of a given socket buffer to the given target domain. It will send the 
given buffer immediately if the corresponding target receive buffer is free. A send job in a work 
queue is scheduled for delayed transmission otherwise.

The socket buffer if freed automatically after a successful transmission.

This function protects itself from concurrent calls. If smn_send_packet() is called concurrently, then 
the packet will be added to the corresponding wait queue instead of sending it. The delivery will 
then be initiated by a parallel worker thread later. This worker thread will call smn_send_packet() 
outside of IRQ context.
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A.2 Scripts Providing the Text User Interface

A.2.1 /XEN/bin/smx_BackUpCreate.pl
Synopsis: smx_BackUpCreate.pl COMMENT

This script creates a backup of all directories inside /XEN/ except /XEN/backup/. It automatically 
shuts down all running user domains before starting the backup. The argument COMMENT serves 
as a short description of the state of the current system to back up.

A.2.2 /XEN/bin/smx_BackUpRestore.pl
Synopsis: smx_BackUpRestore.pl TIMESTAMP

Backups from the folder /XEN/backup/ can be restored with this script. Before the restoration ist 
started,  all old folders inside the folder /XEN/ are moved  into /XEN/alt/. 

The individual backup to be restored is identified via its time stamp. If the argument TIMESTAMP 
is omitted, then a list of all valid back up time stamps is displayed.

A.2.3 /XEN/bin/smx_Benchmark.pl
Synopsis: smx_Benchmark.pl IDENTIFIER NIC_PREFIX COMPUTE_HOST1 COMPUTE_HOST2 …

This script runs the pre installed MPI benchmark suite on the given set of domains via the currently 
running shared memory or the default XEN network.

IDENTIFIER string which is used as filename prefix for log file of this run

NIC_PREFIX = xnc: communicate via XEN network

= smn: communicate via smn devices

COMPUTE_HOSTx: valid entry from /etc/hosts of domain to include in benchmark

Examples:

    smx_Benchmark.pl xnc xnc2 xnc3 xnc4 xnc5 xnc6 xnc7 xnc8  
    smx_Benchmark.pl smn xnc2 xnc3 xnc4 xnc5 xnc6 xnc7 xnc8 

The log files of all benchmark runs are stored in /XEN/share/Benchmarks/. The current benchmark 
can be observed by starting the shell script /XEN/share/Benchmarks/currentLog.sh from a text 
console.

A.2.4 /XEN/bin/smx_BenchmarkFileCopy.pl
Synopsis: smx_Benchmark.pl IDENTIFIER NIC_PREFIX COMPUTE_HOST1 COMPUTE_HOST2 …

This script implement another benchmark by copying a file of fixed size from one domain to 
another. The time of this copy process is taken and printed to a log file.
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A.2.5 /XEN/bin/smx_Control.sh
Synopsis: smx_Control.sh start|stop|restart

This script allows to start, stop or restart all currently configured user domains. It automatically 
obtains a list of domain names from the script smx_DomainNames.pl.

During the stop action, domains which do not shut down properly after some delay will be 
destroyed automatically.

A.2.6 /XEN/bin/smx_DomainIP.sh
Synopsis: smx_DomainIP.sh DomainName

When called, this script returns the current IP address of one user domain.

A.2.7 /XEN/bin/smx_DomainNames.pl
Synopsis: smx_DomainNames.pl

This script prints out a list of all currently configured user domains. The list of all domains is 
obtained from the xm command line tool that is provided by the XEN tools. Only those entries are 
returned which name start with the string “xnc”.

This script is called by all other scripts to determine the current set of XEN domains to operate on. 
If less than the full number of configured xnc<N>, <N> a number, should be used then a space 
separated list of domain names has to be provided in the file /XEN/share/cfg.Domains.

A.2.8 /XEN/bin/smx_ExtractPerformanceValues.pl
Synopsis: smx_ExtractPerformanceValues.pl DOMAIN

Every time when sm_nic.ko gets unloaded, it prints out values of internal performance counters. 
This script logs into domain DOMAIN and extracts the performance values from /var/log/messages. 

A.2.9 /XEN/bin/smx_LoadModules.pl
Synopsis: smx_LoadModules.pl start|stop|reload||load_smn|unload_smn|load_smn [RESETLOG]

This script loads, unloads or reloads all kernel modules that are required to establish the message 
passing network. It is also possible to load, unload or reload only the sm_nic module in the slave 
domains. This allows to reuse the already shared memory pages.

It calls /XEN/share/bin/load_master.sh and /XEN/share/bin/load_slave.sh to  load the individual 
modules.

A.2.10 /XEN/bin/smx_RestartAllInterfaces.pl
Synopsis: smx_RestartAllInterfaces.pl RESTART

During interface shutdown, the kernel module frees all outstanding packets in its TxFIFOs. When 
the interface is brought up again, its buffers are empty and the module starts in a defined state. This 
script shuts down the smn interface in all domains and restarts it afterwards.

A virtual platform for high speed message-passing-hardware research v1.0 82/88



A.2.11 /XEN/bin/smx_RunBenchmarks.pl
Synopsis: smx_runBenchmarks.pl COMMENT|STOP|SIMULATE [START_INDEX]

COMMENT filename prefix for log files of all benchmark runs in current set

STOP                          stops a currently running set of benchmarks after finishing current run

SIMULATE                prints out configurations of each run without issuing a real run

START_INDEX allows to resume at a certain benchmark run

This script runs individual sets of benchmark runs. It is intended to be duplicated and modified 
according to individual needs. The original version, that is provided with this thesis, implements the 
set of benchmark runs which where used to create the benchmark results in Chapter 6.

The log files from all benchmark runs are created in the folder /XEN/share/Benchmarks/.

A.2.12 /XEN/bin/smx_TOP.pl
Synopsis: smx_TOP.pl

This script connects to each running user domain and prints a summarized list of all processes 
which currently consume CPU time.

A.2.13 /XEN/bin/smx_TestSSH.pl
Synopsis: smx_TestSSH.pl NIC_PREFIX ALL|HOST1,[HOST2, ..]

This script allows to test SSH connectivity between all named user domains. It tests if it is possible 
to automatically login via SSH between each two domains. The printed table shows the overall 
connectivity between each two domains.

In order to successfully run MPI benchmarks, SSH connectivity is required at least from first 
domain to every other. This script can be used to detect broken connectivity automatically.

NIC_PREFIX = xnc: communicate via XEN network
= smn: communicate via smn devices

Examples:

  /XEN/bin/smx_TestSSH.pl smn ALL
  /XEN/bin/smx_TestSSH.pl xnc xnc1 xnc2 xnc3 xnc4

A.2.14 /XEN/bin/smx_UpdateIPs.sh
Synopsis: smx_UpdateIPs.sh

This script logs into all configured user domains and collects the current IP addresses of XEN and 
smn network interfaces. The file /etc/hosts of Dom0 and all user domains gets updated accordingly. 
After issuing this script, the network interfaces of all domains can be accessed by their XEN names 
instead of only their I addresses.
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A.2.15 /XEN/bin/smx_UpdateXenIDs.pl
Synopsis: smx_UpdateXenIDs.pl

This script calls the xm tool to obtain current XEN ID numbers of all running user domains. Each 
time when the domains are restarted via smx_Control.sh, all domains get new id numbers assigned.

It creates a file named “/XEN/share/XenID.<NAME>”, <NAME> is the corresponding domain 
name. Each file contains the current domain ID number.

A.2.16 /XEN/bin/smx_Watchdog.pl
Synopsis: smx_Watchdog.pl

Whenever a benchmark run finishes successfully then a special file is created which acts as a flag. 
The script smx_Watchdog.pl deletes this file and checks if it reappears within one hour. If not, it is 
assumed that the benchmark has crashed. All domains will be shut down and the last benchmark 
gets restarted. This script gets invoked by smx_RunBenchmarks.pl automatically.

A.2.17 /XEN/share/bin/getXenID.sh
Synopsis: getXenID.sh

Thi script prints out the XEN ID number of the currently running user domain. For this it reads the 
files which have been created by smx_UpdateXenIDs.pl.

A.2.18 /XEN/share/bin/load_master.sh
Synopsis: load_master.sh start|stop

This script loads or unloads a master instance of sm_communicator in the current domain. A master 
instance may be loaded in Dom0 or any user domain. To Load sm_communicator as master in a user 
domain has the advantage that a kernel oops, caused by this module, will not likely crash the whole 
machine. The script updateGrantRefs.pl is used to extract grant reference numbers from the file 
/var/log/messages and to update configuration files in the folder /XEN/share/.

A.2.19 /XEN/share/bin/load_slave.sh
Synopsis: load_slave.sh start|stop

This script loads or unloads the modules sm_communicator and sm_nic in the current DomU. It 
reads in reference numbers that have been extracted by load_master.sh and passes them to the slave 
instance of sm_communicator.

A.2.20 /XEN/share/bin/updateGrantRefs.pl
Synopsis: updateGrantRefs.pl
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This script extracts all generated page grant reference numbers from /var/log/messages and writes 
them into files of format “/XEN/share/GRANTS.<ID>”. Where <ID> is the XEN ID number of 
each user domain.

A.2.21 Defining Configuration Sets for Benchmarking

The scirp /XEN/bin/smx_RunBenchmarks.pl allows to define several sets of configurations for the 
research platform to use for benchmarking. Rhe current configuration is applied to the whole 
platform before each benchmark run. This section describes how the individual configuration sets 
can be defined inside the script.

The sets have to be defined as nested arrays in PERL syntax. Nested arrays are supported in PERL 
by placing references to arrays inside arrays. Such array references may be defined directly with 
their content by enclosing individual scalar values by square brackets.

E.g.: “[ [1,2,3], [4,5,6] ]” in PERL syntax defines an array that contains two array, each of which 
containing three scalar values.

For the run script, each parameter of a configuration has to be given as reference to an array which 
contains these two elements:

• A reference to an array containing all possible values

• A reference to a sub routine that modifies the current configuration

The individual value is passed as $_[0] to this subroutine. It may directly change the values 
in the two Hashes %CFG and %VLB. A more detailed description of these data structures 
can be found inside the PERL script.

PERL allows to define a so called “unnamed” subroutine and return a reference to it. This can be 
done by use of the keyword “sub” which is followed by a block that is enclosed by curly brackets.

The example below shows the definition of one configuration parameter called MTU:

[ [1500, 750, 375, 187, 150],  sub { $CFG{MTU} = $_[0]; } ]

When one or more of these configuration parameters are put into one array, then this forms one set 
of configurations. Any number of configuration sets may be handed to the run function as a comma 
separated list at once.

The example in Figure 40 shows how to run two sets of benchmarks. One set varies only the MTU 
value, while the second set varies the network interface type and the number of domains.

All individual benchmark runs are enumerated. If the machine crashes during a run, then it can be 
continued at any time later.

1 RunBenchmarkSets( 
2     [ 
3       [ [1500, 750, 375, 187, 150],  sub { $CFG{MTU}           = $_[0]; } ],
4     ],
5     [ 
6       [ ['xnc', 'smn'],              sub { $CFG{InterfaceType} = $_[0]; } ],
7       [ \@BenchmarkDomains,          sub { $CFG{Domains}       = $_[0]; } ], 
8     ],
9 );

Figure 40: Example Definition of Two Configuration Sets
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A.4 Glossary

DomU /
Dom0

Under XEN virtualization, each  running instance of an operating system is 
called domain. The very first domain is special in that is has no privilege 
restrictions on accessing hardware resources. This domain is called Dom0. All 
other domains are called user domains or DomU. → p. 33

Evade Node Node which accepts indirect packets to forward them to their intended target. 
→ p. 28

Foreign Packets Data packets which have been received by a node and which are destined at 
another node. → p. 28

insmod Command under Linux which loads a kernel module into memory and calls 
its initialization function().

kmalloc() Kernel function which allocates a range of memory.

Kernel Oops Special error message generated by Linux kernel in case of a severe error. 
Prints out CPU registers, caller stack and some other usefull debug data. In 
most cases, the occurrence an a kernel oops is accompanied by a freeze of the 
operating system.

malloc() User space function which allocates a range of memory.

memcpy() Kernel function that copies a block of memory to another address.

MPA Message Passing Architecture → p. 22

NoC Network on Chip. Reuse of standard network technology to transmit data 
among several blocks on the same die. NoCs provide better scalability than 
buses for higher number of nodes.

Node Used as synonym for domain in context of this thesis. In a NoC, each 
individual participant is often called a node. This research platform uses XEN 
domains to emulate the nodes of a shared memory based message passing 
network. → p. 12

NUMA Non uniform memory access. Type of memory architecture for multi 
processor architectures. From perspective of each CPU memory if divided 
into local and remote memory with different latencies and bandwidth.

paravirtualization Type of virtualization by which the virtualized operating system knows about 
its virtualization and cooperates with the hypervisor. Paravirtualization is 
faster and does not require hardware support for virtualization but it requires 
a modified guest OS.

Perfomance Values Performance measures that are tracked inside the kernel modules sm_nic.ko 
and sm_nic_vlb.ko. → p. 65

resource_tracker Kernel module providing basic functionality to other kernel modules. → p. 49

RxBuffer Receive Buffer. Shared Memory which I situated local to the node which 
reads data from this buffer. On a SMP machine, such a locality may not exist. 
→ p. 55

sm_communicator Kernel module implementing basic features required for message passing 
over shared memory. → p. 51
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sm_nic Kernel module implementing a virtual Shared Memory Network Interface 
Card. → p. 54

SMP Symmetric Multiprocessing. Two or more identical processors can access the 
same coherent shared memory [Wik09].

TLB Translation Lookaside Buffer. On x86 architectures, a dedicated buffer caches 
a certain amount of translations from virtual to physical addresses. This 
buffer gets flushed under certain conditions. Each flush can have a great 
performance impact, because further memory require new translations to be 
computed.

trap-n-emulate Basic technique of hardware based virtualization. Whenever a guest domain 
executes a privileged instruction and exception is generated by the CPU. This 
is because the operating system runs in a lower privileged ring than its 
intended ring (ring 0 for kernel code). This is called a trap. The exception 
handler then emulates the behavior of real hardware.

TxBuffer Target Buffer. Buffer being remote for the sender node. → p.22
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