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Chapter 1 · Introduction

Chapter 1

Introduction

Errors in computer memory have been the subject of scientifically and econom-
ically motivated research for a couple of decades. This research led to various
hardware and software based detection and correction schemes for memory
errors.
This diploma thesis discusses the question

“How could a feasible software based memory test for low- to
midrange servers be designed?”

by identifying and analyzing its crucial aspects. Additionally, the hereby
elaborated aspects will be put into practice by implementing and evaluating a
software based memory test for the Linux kernel. Further, this diploma thesis
aims to lay the groundwork for research in the area of software based memory
testers. Visualising the usage and state of the physical memory can greatly
help to understand, what is happening inside memory management systems.
The purpose of this diploma thesis is to minimize the chances of encountering
undetected data corruptions in memory. Technically, the purpose is to detect
ill-behaving or broken memory modules as early as possible, minimizing the
period in which the module corrupts data.
The means to accomplish this is to proactively run a memory tester like
memtest86+ [13] in the background and detect errors before they cause harm
to data. In case the detector finds ill-behaving memory, a fault management
process that removes the memory from usage by the Linux kernel will be

Proactive Memory Error Detection for the Linux Kernel 1



Chapter 1 · Introduction

initiated. Additionally, a theoretical discussion of a more elaborated fault
management process will be included.
For the best code and knowledge reuse, and in order to support the imple-
mentation of a Linux fault management architecture, the implementation will
support and build on the Linux kernel and its failure handlers. This chapter
motivates the goals of the thesis, and provides context and background for the
motivation.
This thesis is based on employing existing hardware, software and empirical
research. A distinction between this thesis and related work will be presented.
The following sections are the introduction to the analytical and evaluational
goals of this thesis.

1.1 Implications of Defective Memory

Today’s Age of Information Technology has an increasing impact on lifestyle
and business. As a result the quality and reliability of software and hardware
systems is of particular importance [47]. Companies and researchers alike take
significant efforts to improve software quality by various means. Examples of
these efforts can be found in [41, 91, 90, 75] and many other resources.

1.1.1 The Effects of Hardware Reliability on Software

Reliability

Software makes assumptions about the environment it runs in. E.g., layered
software generally relies upon correctly working layers below. The lower layers
provide services by exporting interfaces that are used by higher layers or client
programs. In most cases an interface consists of multiple elements including
the binary interface, machine readable descriptions of the interface, and human
readable documentation. Together they form what often is called a contract
that describes which services are provided under which pre- and postconditions.
Both signers, the client and the service, expect each other to fulfill this contract.
A detailed discussion of design by contract can be found in [91]. A party that
does not abide by the contract is said to be misbehaving. The behaviour of

2 Proactive Memory Error Detection for the Linux Kernel
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client and service can be undefined when either of them misbehaves.

Service provided by the system

JBoss

Servlet engine

Java runtime

Kernel

Database

libc

User space

device driver

kernel module Bkernel module A

memory subsystem

Hardware

memory controller

chip #nchip #1 ...

misbehaving device 

An (unexpected) error 
in a device occurs.

The error propagates and 
causes consequential errors 
in dependent components.

Finally, the services of this 
computer are disturbed.

1) 

2) 

3) 

World

Figure 1.1: Example of error propagation in a software stack.
This image shows a simplified typical software stack for a
business application. Grey boxes are software components and
arrows denote dependencies between components.
At the bottom of the image, an unexpected error happens
in a device. The device fails to handle the error properly
and passes it to the driver(1), at the bottom), leading to a
violation of the contract with the driver. This misbehaviour
causes consequential errors by the driver and other components
(2)) that spread up through the software stack and lead to
disturbances in the services the computer provides (3), at the
top).
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In other words, the correct behaviour of a running program depends on the
correct behaviour of all services that it depends on directly or indirectly.
Examples for this are the use of libraries, the Java Virtual Machine, the
operating system, or the hardware – as will be discussed in the following.

1.1.1.1 Memory Errors

Hardware errors that cause memory corruption are an especially dangerous
kind of error. They can corrupt the data handled by the software and the
software itself, potentially affecting every service.

Bit errors in memory are a significant threat to the integrity of data. While
a flipped bit in a computer game might only slightly discolour a pixel, it can
have severe consequences if the data is the foundation for important decisions.

Often, it is very difficult, maybe even impossible, to determine whether or not
a given data set is corrupted, especially if memory errors are not detected the
moment they happen. In essence, undetected bit errors violate a very basic
axiom of a hypothetically underlying Turing machine: Data on tape can only
be changed by the head and does not change due to outside factors.

It is important to distinguish between two forms of misbehaviour: a client that
uses a service incorrectly, and a service that violates its own contract. But even
under the optimistic assumption of a correctly implemented client, a client that
correctly uses a service can still be disturbed by a misbehaving service, as shown
in figure 1.1. Therefore this diploma thesis considers the hardware to be the
lowest layer of the system and only misbehaviours originating in the hardware
will be examined. In detail, the software based detection of RAM defects will
be discussed. This can be understood as verifying the contract between the
operating system and the physical memory. It will be assumed that higher
layers work correctly. Thereby, the problem space of misbehaving services is
narrowed up to a point where the number of failure scenarios corresponds to
the scope of this thesis.

4 Proactive Memory Error Detection for the Linux Kernel
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1.2 Identifying Defective Memory

In mid 2009 Google and Bianca Schroeder from the University of Toronto
published a study (see [105]) that showed that Google’s – albeit commodity
grade – server hardware is prone to memory errors: Each year a third of the
studied systems suffered at least on correctable memory error (CE). According
to their study, a system that had a CE in the past is very likely to have much
more CEs or even uncorrectable errors (UE) in the near future.

It is safe to assume, that consumer grade hardware1 is likely to show worse
behaviour. These results emphasize the importance of the early detection of
defective memory modules.

1.2.1 Hardware-Based Counter Measures

The dangers of errors in computer memory and caches lead to the development
of countermeasures, with the most prominent and most widely implemented of
them being ECC (Error-Correcting Codes). In this context, ECC stands for
memory subsystems equipped with in situ detection and correction capabilities
of certain error classes. The basic form of ECC is termed SEC-DED (Single
Error Correction, Double Error Detection) and allows the detection of two bit
errors and the correction of one bit errors, for details see Levine and Myers [83]
and Chen [50].

Various vendors improved ECC for systems that need a greater level of con-
fidence in the correct behavior of memory. The list of ECC-improvements
includes IBM (see the whitepaper Chipkill[70]), Extended ECC (patent entry
[67]), Intel SDDC (described in an application note [73]) or Chipspare from HP.
These technologies are mostly used in more expensive server systems. The same
is true for Intels MCA Recovery, a mechanism that allows operating systems
to detect and potentially repair/circumvent hardware errors, for details see the
whitepaper [72].

In 2010 Yoon and Erez presented ongoing research about virtualized ECC. By

1Consumer grade hardware is commodity hardware targeted at office and home users.
The price of these system is often more important than their reliability.
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modifying a memory controller by hardware simulation and by extending the
operating system, they showed that ECC checksums can be stored in regular
memory, as opposed to the special memory used today[119]. They also showed
how important data could be selectively protected by more potent detection
and correction schemes.

1.2.2 Software Based Counter Measures

Software-based counter measures against defective memory have a great disad-
vantage compared to hardware-based counter measures. They cannot detect
memory errors the moment a client uses the memory because the interaction
between memory and client is private to the client.

Most software based counter measures work as memory testers that write
different patterns to the memory and verify that the memory works correctly
by reading the data. These software memory testers run either on the bare
metal or in cooperation with the regular operating system that the computer
runs.

Bare metal memory testers like memtest86+ prevent any other usage of the
computer while the tests run[13]. This makes them infeasible for timely de-
tection of defective memory, because a downtime must be scheduled for each
run.

At first, the act of writing a memory tester that runs under an operating system
seems simple: Create a kernel thread that iterates over every frame and tests
each frame. Sun implemented a memory tester prototype with this architecture
for Solaris 8, see [109] for details. Although this simple algorithm might work
in practice - and Suns implementation did find memory errors - it ignores
several important factors that need to be considered.

Listing 1.1 is an example implementation of such a simple tester and is used to
highlight several aspects of a memory tester. First of all, there is the question of
frame acquisition, implemented in acquire_frame. Operating systems manage
the available memory, each page frame is either allocated or free. Free memory
can be allocated to the memory tester, but memory that is allocated to other
entities must be reclaimed before it can be used.

6 Proactive Memory Error Detection for the Linux Kernel
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1 /*
2 * Simple scanner that tests all frames for errors
3 * and marks bad frames by calling ‘mark_frame_bad ‘.
4 */
5 void test_all_frames(size_t max_pfn) {
6 // Frames are numbered [0.. max_pfn[
7 for (size_t page_frame_number = 0;
8 page_frame_number < max_pfn;
9 page_frame_number ++){

10 // Test for missing / already marked as bad frames
11 if (! is_page_frame_marked_bad(page_frame_number))
12 if (IS_OK( acquire_frame(page_frame_number)))
13 // ‘test_frame_for_errors ‘ returns true , when the frame showed errors
14 if (test_frame_for_errors(page_frame_number))
15 mark_frame_bad(page_frame_number);
16 else
17 release_frame(page_frame_number);
18 }
19 };

Listing 1.1: Example of a simple memory tester

test_all_frames is a show-case implementation of a simplicistic mem-

ory tester.

The method acquire_frame tries to allocate the specified page-frame

for the caller on a best-effort base.

test_frame_for_errors tries to find errors by writing and verifying dif-

ferent testpatterns to the page frame.

Depending on the circumstances it can be fairly difficult or even impossible to
claim a currently used frame for a memory test. A frame can be acquired at
nearly no cost the moment a client releases it to the memory manager, while an
actively used frame from the scarce DMA(direct memory access) region would
be very expensive to claim. Testing memory from such restricted memory
regions can also have a high impact on system performance and stability, when
the memory tests starves other parts of the kernel of memory frames.

1.2.2.1 Scheduling which Frames to Test

This leads to the idea of a Frame Scheduler that determines which frame should
be tested when and how. By iterating over each frame, the implementation
sketched in listing 1.1 implements a very straightforward scheduling strategy.
More sophisticated schedulers would implement a better weighing of different
interests.

Proactive Memory Error Detection for the Linux Kernel 7
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1.2.2.2 Scheduling Testing

Testing memory for failures can be a very resource consuming activity. An
exhaustive test for an n-bit memory would need to test O ((3n2 + 2n) 2n)

combinations [65], this is obviously infeasible for memory sizes larger than a few
bits. Algorithms that detect a restricted set of errors can be written in O(n)

[102]. Limited resources like memory bandwidth, CPU cycles or lock contention
suggest that even an O(n) implementation would consume significant resources,
leading to the observation that the scrubbing process should be scheduled as
well.

1.2.3 Conclusion for Low-End Servers

The most important thing about ECC and the other hardware improvements
is: they have to be integrated into the system. It goes without proof that most
home and office computers and many low-end server systems do not have ECC
memory installed and thus are more susceptible to memory errors.
Using a software based memory tester on these low-end systems improves the
chance that defective memory can be found earlier. Systems equipped with
ECC could also benefit, because a thorough memory test would write many
different patterns into the memory, increasing the probability to detect errors
that affect more bits than covered by the ECC detection.

1.3 Handling Defective Memory

Actions have to be taken if a defective frame is found. The Linux EDAC project
supports frame-to-module mapping for certain chipsets and mainboards, the
more actively maintained mcelog package provides a similar set of features,
for details on the projects see their respective websites at [4] and [30]. Both
projects allow a defective frame to be related to a specific physical memory
module. This allows the operator to find and replace the impacted module.
Lastly the question of fault management remains to be solved. Currently no
sophisticated and unified fault management architecture for Linux exists. The
approach mostly taken is logging and/or halting the system. More sophisticated

8 Proactive Memory Error Detection for the Linux Kernel
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automatic responses to error symptoms could greatly increase the reliability of
Linux as a platform.

1.3.1 Fault management

Faults must be handled to ensure the stability of a system. Fault management
is the process of responding to detected faults2 . The correct response to a
fault heavily depends on the context the fault happens in and the policy set in
place for the detected class of error.

In section 1.2.2 the question was posed, what should be done, when an ill-
behaving memory frame had been found by the software based memory tester.

The study by Google, mentioned in section 1.2.1 [105] suggests, that the er-
ror is likely caused by a hardware defect and not caused by external factors
like alpha particles (compare to [115]). The rapid pace of microminiaturisa-
tion of chip structures will probably increase the transistors’ susceptibility
to external influences like temperature and cosmic rays. Both the Deutsche
Forschungsgemeinschaft (DFG) and the International Technology Roadmap for
Semiconductors (ITRS) see this as a challenge for the near future [66, 106].

Googles study further indicates, that memory modules with an existing error
are more likely to have additional errors than modules without known errors.
Increasing the efforts to examine all frames of the suspect memory module
would be a prudent reaction to errors found in it. Possible long term actions
could be the removal of the affected memory module by an operator or a
thorough examination of the hardware.

Modern systems like the Intel-Nehalem EX family of processors allow the
operating system to react on errors detected by the ECC-system, different action
can then be taken, depending on whether a correctable or an uncorrectable
error has been detected.

2According to Mukherjee, user visible errors are manifestations of underlying faults [94].
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1.3.1.1 Considerations for defective memory fault handling

If a defective memory frame has been found by the software tester, then no
other part of the systems should be affected, since the frame is solely allocated
to the software memory tester. Errors detected by ECC are more difficult to
handle because errors in memory areas allocated to different subsystems or
client applications must be handled with extra care. These errors might affect
program flows that are not equipped to react properly to corrupted memory.
Specifying or implementing a fault management system for Linux is beyond
the scope of this thesis. A description of fault management in general and how
the detection of and reaction to defective memory could be embedded into a
fault management implementation rounds off the subject.

1.4 Goals of this thesis

The goal of this thesis is to answer the question stated in the first section:

“How could a feasible software based memory test for low- to
midrange servers be designed?”

This question can not be answered in general, because important aspects of
feasibility can only be answered for a specific context.
A running memory test consumes resources such as CPU-runtime, free memory
and puts stress on the memory bus. A given overhead that is acceptable
for systems with high requirements for stability will probably be evaluated
differently in environments, where performance is more crucial than timely
detection of defective memory.
Hardware differences between systems can also affect the runtime behaviour of a
memory test. Aspects that might lead to different results include, beside others,
the memory type used, the number of DIMMs used, the memory controller, the
number of processor cores, the number and type of NUMA-memory domains,
the usage of cache coherence protocols or the memory bandwidth.
Systems with similar hardware and similar requirements regarding performance
can still exhibit very different behaviour. Some systems run very memory
intensive applications, some systems run CPU intensive applications and other
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systems are very I/O-bound. Most systems will probably run a specific mixture
of these loads. Performance is a multifaceted metric and includes aspects like
throughput, latency and scalability. Each of these facets could be influenced
by running a software based memory tester.
If the question of feasibility can not be answered in general, it will be answered
exemplary for a given system and given workloads.
To make this possible, this thesis will accomplish four different goals:

• Design and implement tools to visualize the usage of the physical memory
frames.

• Design and implement a software based memory tester for the Linux
kernel and userland, including mechanisms to define different scheduling
policies on which memory frame is scheduled to be tested when and how.

• Establish performance tests and evaluate the performance impact of run-
ning the implemented memory tester under different scheduling policies.

• Describe the current status of fault handling in Linux, compare it to fault
handling as it is implemented in Solaris and propose how the Linux fault
handling process could be improved.

1.5 Structure of this thesis

In this chapter the idea behind this diploma thesis has been explained, the
usage of hardware- and software based mechanisms to detect faulty memory has
been motivated, and the goals of this thesis stated. In chapter 2 the problem
will be described in more detail. This includes the introduction of fault models,
a description of fault handling, including a vision for a unified fault handling
under Linux. Further, the Linux memory management (mm) will be introduced,
and aspects especially relevant to this thesis will be discussed in more detail.
In the third chapter then relevant work, both hardware- and software based,
is presented and discussed. In chapter 4 the design of the implementation is
presented, but before that requirements for the implementation are elaborated.
Implementation details are discussed in chapter 5, followed by the evaluation

Proactive Memory Error Detection for the Linux Kernel 11
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in chapter 6. Chapter 7 concludes this thesis with a retrospective of the
implementation, and an outlook on further developments.

12 Proactive Memory Error Detection for the Linux Kernel
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Chapter 2

Problem Description

This chapter describes the problems highlighted in the first chapter in more
depth. Starting with a functional description of how RAM is typically abstracted
by the hardware memory subsystem, the origins of memory faults are explained
on a level suitable for this context. The requirement to detect faults in memory
poses the question, how faults in memory can be detected by a program running
on the CPU. Several fault models for memory hardware have been proposed in
the last decades, two of them, the PSF-fault model introduced by Hayes [65],
and the fault model introduced by Nair et al. [95] are introduced. Both models
origin in the mid seventies and are the base for many other fault models. These
fault models where chosen for two reasons: First, they are both fault models
that are the base for many fault models used today. Secondly they show a very
different complexity. Testing Hayes’ fault model requires a number of tests
that is exponential to the number of bits in the memory, and testing Nair’s
model can be done in linear complexity.
After the theoretical basis for fault detection in RAM is described, the topic
of fault management is introduced. To ensure the reliability of a system,
the detection of faults is only the first step. Once a fault has been detected,
or suspected, counter measures can be initiated. Section 2.3 gives a birds
eye overview of fault management and describes how a Fault Management
Architecture (FMA) can be implemented to handle faults in memory.
The proof of concept implementation stipulated in chapter 1 is targeted for
the Linux kernel. Section 2.4 justifies Linux as implementation target, and

Proactive Memory Error Detection for the Linux Kernel 13
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introduces the relevant aspects of memory management.
The following sections use the word “frame” in advance of the discussion in
section 2.4. For now, the explanation of frame is, that Linux manages memory
in units of frames. A frame consists of a fixed number of consecutive bytes,
and each frame is uniquely numbered by its Page Frame Number (PFN).

2.1 What Causes Faults in RAM

It makes sense to distinguish between externally induced errors, and innate
errors of the physical chip. Externally induced errors are often called soft
errors, errors that are caused by physical defects are called hard errors. The
line between hard and soft errors is somewhat blurred, taking for example a
chip that behaves well at 30◦C and shows errors at 50◦C. A major cause for
soft errors are neutrons and cosmic rays [98].
Hard errors are physical defects like shorts caused by metalization of memory
chips, buses, or the memory controller, particle contamination of the silicon, or
voltage differences between the ground level of memory controller and module,
and many more [86]. Hardware that suffers from hard errors should be replaced
as soon as possible to uphold the reliability of the system.

2.1.1 Reliability

The reliabilty of memory modules is judged by their Failures In Time per billion
device hours (FIT)-rate1. It is unclear, what can be considered the average FIT
rate of computer memory because different research groups deliver different
results. To quote from a study done by Google[105]

We observe much higher error rates than previous work. Li
et al cite error rates in the 200–5000 FIT per Mbit range from
previous lab studies, and themselves found error rates of < 1 FIT
per Mbit. In comparison, we observe mean correctable error rates

1see the glossary entry for a definition.
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of 2000–6000 per GB per year, which translate to 25,000–75,000
FIT per Mbit.

Despite all difficulties in distinguishing between hard- and soft errors, and the
stark variations in the detected average FIT rate of memory, it can be taken
for granted that computer memory will show errors. These errors have to be
assessed depending on the context and the frequency they happen at. Fault
management is discussed in section 2.3.

2.2 Fault Models for RAM

Modern computers are behave according to the van Neumann model shown in
figure 2.1[97]. The system memory (RAM) plays a central role in this computer
model because it stores the program, the source data for and the results of all
calculations of the processor. Although modern system architectures extend
this model by various layers of caches and backend storage, the general principle
still applies.
A fault model of a system describes the correct behaviour and the to-be-expected
types of faults of the specified system. Specifying a fault model allows the
prediction of the consequences of faults, and the design and verification of
fault detection and prevention measures. Fault models can be related to the
contracts between a service and its clients described in section 1.1. In addition
to the correct behaviour of the system, a fault model also includes possible
misbehaviours of the system, it can be said that a fault model supersedes the
contract. To draw on the contract of a malloc service found in the C library,
a fault model for the malloc service would describe the correct behaviour of
malloc, and additionally could include faults like “failure to release memory
upon free”, or “the memory area returned by malloc is too small”.
The following sections describe memory fault models for RAM and research
efforts to detect the described faults.
In 1974 John P. Hayes published a paper on Detection of Pattern-Sensitive
Faults in Random-Access Memories [65]. In it he described a functional model
of RAM that abstracts from the physical implementation of RAM. Further, he
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Figure 2.1: Classical van Neumann architecture.
This image presents the classical van Neumann architecture for
computers [97]. The memory (RAM) contains both instructions,
and data for the CPU, indicated by the software stack that
served as an example in the first chapter.
In this case a hardware defect in the memory causes faults in
the database, that then propagate through the software stack.
In contrast to the example in figure 1.1, where a faulty device
caused an error that started to spread from a specific location,
a memory error can affect each and every software component
currently in memory. If the operating system employs tech-
niques like memory deduplication or shared libraries, one fault
can affect multiple services simultaneously.

proposed a fault model that covers a large range of memory faults based on his
logical model of RAM, and algorithms to detect these faults.

In contrast to prior research, his thesis focuses on faults on the functional
level of random access memory, thus concentrating on the correct functional
behaviour and excluding the physical layout, and behaviour of the underlying
hardware. Research that reckons physical and layout aspects can be found in
[49, 118, 111] and others.

By focusing on the functional level it is possible to test for defective memory
without knowing the internal physical layout of the memory, and the whole
memory hierarchy. This is an important aspect, because the goal of this thesis is
to detect errors on server hardware that runs Linux. It is unrealistic to assume
that detailed data about the whole physical memory subsystem is available,
as this includes detailed information about internals of the installed processor
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and memory controller, the mainboard, and the equipped memory modules.

2.2.1 The Logical Structure of Memory

This section summarises the memory model that Hayes described in his publi-
cation [65]. Hayes’ model of memory is used as base, and referenced throughout
this thesis. To improve comparability with the original paper, the notation and
phrasing used here stays close to the ones Hayes used.
Hayes defined memory as a set of r addressable binary storage cells
Mr := {C0, C1, . . . , Cr−1}, where i denotes the address of Ci and where each
storage cell Ci can store exactly one bit.
Operations READ and WRITE can be performed on Mr, and each cell can
be written to or read from independently of previous READ or WRITE

operations: Mr is a random-access memory.
A memory of r cells stores r independent bits, leading to a total of n = 2r

distinct memory states. Y0..n−1 denotes the possible states a memory Mr can
be in. A single state Yj can be described by a vector (yj,0, yj,1, . . . , yj,r−1), with
yj,0..r−1 ∈ {0, 1} being the content of Ci.
The operations READ and WRITE 0/ WRITE 1 are associated with the
functions Wi, W̄i and Ri on the states of Mr with

Wi(yj,0, yj,1, . . . , yj,i, . . . yj,r−1) = (yj,0, yj,1, . . . , 1, . . . yj,r−1) (2.1)

W̄i(yj,0, yj,1, . . . , yj,i, . . . yj,r−1) = (yj,0, yj,1, . . . , 0, . . . yj,r−1) (2.2)

Ri(Yj) = Yj,i (2.3)

2

The functions W̃i and Xi denote any write operation, respectively any read or
write operation (Xi) for cell Ci.
Hayes considered Mr to be an incompletely specified n-state Mealy automaton
with 3r input symbols: READi, WRITEi 0 and WRITEi 1 for i ∈ {0..r − 1},
and 0/1 as output symbols. The function z (2.4) describes the output function

2The orginal paper states Ri(Yj) = Yj , but this is probably a technical error.
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of the automaton.

z(Xi, Yj) =

yj,i if Xi = Ri

— if Xi = W̃i

(2.4)

Functions (2.1) to (2.3) describe the state transitions. Figure 2.2 shows a
corresponding state diagram with all valid transitions for a two bit memory
M2.

A sequence S of n functions f0···n−1 ∈ X is called an input sequence for Mr.
When S is applied to the state Yj of Mr, it leaves Mr in a final state Yk. The
functions F0 =

{
Wi, W̄i, Ri, z

}
with i ∈ {0 . . . r − 1} completely describe the

behaviour of Mr.

Let S be an input sequence. z∗(S, Yj) is the output of the Mealy automaton,
when S is applied to Mr in state Yj. The output is pruned of “—”s, so it
contains only the output of READs, i.e. z∗(W0R0W̄1R1R0) = 101.

2.2.2 Pattern-Sensitive Fault Model (Hayes)

A fault is said to occur, when the functions F0 =
{
Wi, W̄i, Ri, z

}
change

to F =
{
W F
i , W̄

F
i , R

F
i , z

F
}

where W F
i , W̄

F
i , R

F
i with i = 0, 1, · · · r − 1 are

arbitrary mappings on {0, 1}r, and zF is any mapping {0, 1}r → {0, 1} [65].
Hayes terms the fault-types this model describes as Pattern Sensitive Faults
(PSF).

The fault types stuck-at fault, coupling fault, and address decoding fault, are
described in section 2.2.3.

The fault F changes the machine Mr, described by F0 into MF
r , described by

F .

Hayes distinguished three different aspects of “state” ofMF
r : the internal state of

MF
r , the expected state of MF

r , and the apparent state of MF
r .

internal state The actual pattern of 0’s and 1’s stored in MF
r , denoted as Yj

is called the internal state of MF
r .
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R1/1
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W̄1/—

W1/—

W̄1/—

W̄0/—W0/—W0/— W̄0/—

W1/—

Input

State y0y1

W0 W1 W̄0 W̄1 R0 R1

00 10,— 01,— 00,— 00,— 00,0 00,0
01 11,— 01,— 01,— 00,— 01,0 01,1
10 10,— 11,— 00,— 00,— 10,1 10,0
11 11,— 11,— 01,— 10,— 11,1 11,1

Figure 2.2: RAM state diagram for a memory with 2 cells M2 [65].
The four states 00 . . . 11 are all possible states of the mealy-
automaton for a two bit RAM.
A state transition Wi denotes a WRITE 1 operation into cell
i, W̄i is an analogous WRITE 0 operation into cell Ci, and Ri

reads the content for Ci.
The left cell is indexed by i = 0, the right cell by an index of
i = 1.
For Mr the state table has 2r rows and |{R,W, W̄}|∗r columns,
resulting in a fully connected Eulerian graph with 2r states and
3 ∗ r ∗ 2r = 3 ∗ 2r+1 arcs.

expected state The expected state of MF
r is Yk, written as E(Yj). It is the

state MF
r would be in, if it were fault free.
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apparent state A(Yj) is defined as (zF (R0, Yj), z
F (R1, Yj), . . . , z

F (Rr−1, Yj))

and is termed the apparent state, the output of reading each cell C0···r−1.

Let S be any input sequence that leaves Mr in the state Yk, independently of
the previous state of MF

r . Iff, at some time t, the functions E(Yj) and A(Yj)

differ for any internal state Yj of MF
r , the fault F is a detectable PSF.

2.2.2.1 PSF Fault Detection

Fault detection is conducted by feeding an input sequence S into Mr and MF
r .

If the output of feeding S into Mr and the output of feeding S into MF
r differ,

then a PSF has been detected. S is called a checking sequence, when it allows
the detection of every fault described in the fault model.
Hayes proved, that the checking sequence needed to detect every PSF in MF

r

has a minimum length of O ((3r2 + 2r) 2r).

2.2.2.2 Neighbourhoods

Current server and workstation configurations have memory configurations
that include memory sizes in the area of several gigabits. A test algorithm
with exponential runtime is clearly infeasible for this amount of memory. By
restricting the fault model it is possible to significantly reduce the complexity
of the test algorithm.
The first restriction Hayes introduced was the introduction of local PSFs (LPSF).
In an unrestricted PSF, each READ or WRITE can affect, or be affected by
every memory cell Ci. The reduction of test complexity is achieved by restricting
the affected and affecting cells of an operation Xi to a neighbourhood Ni of
Ci, with Ci ∈ Ni. Hayes justified this constraint to neighbourhoods by arguing
that a PSF is likely to be caused by physical defects that affect adjacent cells
or lines.
N , the set of all neighbourhoods, is defined as N = {N0, N1, · · · , Nr−1}.
If N is a partition, that is, N consists of k ≤ r non-overlapping neighbourhoods
Ni, it is called a closed neighbourhood, else open neighbourhood. A LPSF
F (N) that affects a closed neighbourhood is termed closed fault, respective
open fault for an open neighbourhood.
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Optimal fault detection in closed neighbourhoods To quote from the
article:

“Let N = {N1, N2, · · · , Nk} be a closed set of distinct neigh-
bourhoods in Mr. Every closed fault F (N) can be detected by a
sequence S = S1S2 · · ·Sk, where Si is a checking sequence for Ni

and 1 ≤ i ≤ k. S is an optimal test for F (N) if each Si is an
optimal checking sequence for Ni” [65].

By partitioning the r bit memory into α partitions of length q = r
α
with q, α ∈ N,

the test complexity of O ((3r2 + 2r) 2r) for the detection of unrestricted PSF
can be reduced to O ((3q2 + 2q) 2q ∗ α).
Testing for PSF’s in an open neighbourhood is more difficult but can be greatly
simplified, when only one faulty memory element is allowed. Hayes called these
faults Single PSF and provided an O ((4q + 3) ∗ 2q ∗ r)-algorithm [65].

2.2.3 Fault Model by Nair et al.

The PSF fault model developed by Hayes is very potent, but ignores the
experience that certain types of faults occur more often than others. This is
aggravated by the fact that the algorithms to test for PSF-type faults require
significant resources to test even modest memory sizes.
Nair et al. presented a simpler fault model, that draws from these insights and
allows Mr to be tested in O(r) [95].
Although the fault model presented by Nair et al. is functional, the described
types of faults have their roots in the fact that certain hardware related faults
occur more frequently than others. Because of this empirical background, and
the possibility to efficiency test for these faults, Nair’s fault model is still used –
sometimes extended – today [102, 76].
In order to allow the definitions portrayed here to be easily recognized in Nair’s
work on the one hand, and to allow a comparison with the fault model of Hayes
on the other hand, the next sections follow Nair’s structure and nomenclature
very closely and refer to related concepts in Hayes model where appropriate.
Nair’s fault model is built on the idea of three functional blocks that form the
memory. A separate fault model is defined for each of the functional blocks:
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Memory Cell Array The memory cell array corresponds to the model of
addressable binary cells discussed in section 2.2.1. The fault model Nair
et al. proposed contains the following types of faults of the Memory Cell
Array:

stuck-at fault One or more cells are stuck at 0 or 1. More for-
mally this means that a given cell Ci is stuck at x when
z∗(WiRi, Yj) = z∗(W̄iRi, Yj) = x.

coupling fault One or more pairs of cells are coupled. Two cells (Ci, Cj)

with i 6= j, are coupled, when a change in cell Ci from x to ¬x causes
a cell Cj to change as well. This relationship is not necessarily
symmetric: a change in Cj might not affect Ci. Each cell can
participate in more than one coupling, e.g. it is valid under the
fault model that (Ci, Cj) form a coupled pair and that (Ci, Ck) form
another coupled pair at the same time.

Decoder The decoder selects the memory cell for the requested address. Nair
et al. treated decoder faults as faults in the memory cell array, if the
fault does not change the decoder into a sequential circuit. They present
two different faults that might affect the decoder:

wrong cell selection The decoder addresses a cell Cj instead of cell Ci,
with i 6= j, or the decoder selects no cell at all. Nair et al. argued
that, if no cell is selected, Ci behaves like suffering from a stuck-at
fault.

multiple cell selection If an operation Xi affects other cells Cj, . . .
besides Ci, it is said to affect multiple cells. According to Nair et
al., this is equivalent to a coupling-fault.

Reader/Writer logic According to Nair et al., the Reader/Writer logic con-
sists of the sense amplifiers, the write drivers and other supporting logic.
They visualize stuck output lines of the sense amplifiers, or writer drivers
as stuck-at faults. Shorts or capacitive coupling between data input/out-
put lines are interpreted as coupling faults.
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A memory Mr of r cells can be tested in O(r), in, as they call it “about” 30 ∗ r
tests.

2.2.3.1 Extended Fault Model

Nair et al. extended their fault model with k-coupled faults. A k-coupling
fault is a fault, where the change of one cell Ci in a set of k cells Ck causes a
change in Cj ∈ Ck when the other k − 2 cells in Ck have some fixed values.
Comparable to Hayes’ neighbourhoods, Nair et al. restricted the k-sets to be
non-overlapping. These restricted k-coupled faults are less complex to test,
and they provide an O(r ∗ log2r) algorithm for restricted 3-coupling faults. No
efficient algorithm for k > 3 is presented in the paper.

2.2.4 How Fault Models Relate to this Thesis

The two fault models presented in the previous sections are not the only fault
models for RAM. Many more are published, e.g. [49, 48, 69, 84, 45, 118, 76,
111, 55], or held as trade secret by semiconductor manufacturers.

Different fault models and memory tests often aim for different goals: Hayes
presented a very thorough fault model, that can only be tested with significant
resources. Nair, on the other hand, presented a fault model that can be tested
efficiently, but detects fewer errors. The test complexity and comprehensiveness
of the published fault models is distributed between linear, quadratic and
exponential complexity. Riedel and Rajski published a research paper that
compares several fault detection algorithms and their respective fault models
[102].

Choosing the right fault model is making a trade-off decision between perfor-
mance and thoroughness. An ideal solution would be, that the fault model used
by the memory test is exchangeable, so that different models can be selected,
depending on the needs.
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2.3 Fault management

Defective main memory is not the only source of data corruption. Different
research groups analysed various components of computer systems including
disk storage[110, 43], and CPU caches[93], and found that they may corrupt
data as well. Even without data corruption, physical and software systems
alike are subject to faults.
Large scale systems reach complexity levels that are so high, that errors that
seldomly occur in modestly sized systems occur fairly frequent in these complex
systems. An enlightening example for hardware complexity is one of the primary
design goals for the BlueGene supercomputer[37]:

The desired MTBF of the system is at least 10 days.

Besides hardware induced faults, software is seldom error free. A good example
for the inherent complexity of software is the quicksort algorithm: Created by
C. A. R. Hoare in 1961[68], incorrect implementations that handle corner cases
wrong are still found.
Fault management is the process of responding to detected faults. The correct
response to a fault heavily depends on the context the fault happens in, and
the policy set in place for the occured class of errors.
A common approach to fault handling is the fail fast-policy: Upon the detection
of an error condition, the system fails and stops to operate as quickly as possible.

2.3.1 Generic fault management architecture

Fail fast is not always the appropriate response to a fault. Some faults, such as
a unavailable resource, can easily be handled by retrying the action, probably
with an exponential backoff to reduce congestion caused by frequent retries.
Other faults require more or less complex counter actions, especially when
they affect workflows in distributed systems. Workflow and business related
fault management are treated by other projects[38], and are not subject of this
thesis.
Fault management in the context of operating systems deals with faults in
hardware, and entities directly managed by the operating system, mostly
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processes. A specific instance of a fault management architecture, “Predictive
Self Healing” for Solaris 10, is described in section 3.2.1. Section 2.3 takes a
more abstract view on the subject of fault management, and specifically relates
fault management to memory errors.

Sensors
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Aux. Value(s)

Event

Sensor
Name

observed 
effect(s)

creates 
measurement

measured effect

Diagnosis

Name
DiagnosisEngine ..
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ResponseAgent
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...
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Metadata

*
*

Entities are related to each other, 
e.g. Service A depends on 
Service B.
This knowledge base is modeled 
by these relationships.

Figure 2.3: Abstraction of a fault management architecture
This figure depicts the class diagram of an idealised fault man-
agement architecture.
The box labeled World in the bottom left corner represents
the managed system, and every FMA related aspect of it, in-
cluding human operators, etc. Entities show measurable effects
like hardware temperature, or CPU usage. Everything that is
observable is understood as an effect.
Central to an FMA is a knowledge base of the relationships
between the hard- and software components forming the man-
aged system.
Sensors, on the top left, measure the effects produced by the
world.
Diagnosis engines interpret the measurements of the systems
and diagnose faults.
Faults are then handled by response agents that act upon the
system.

An abstraction of an FMA convenient for further discussion is shown in figure
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2.3. The presented abstraction aims to separate the aspects of data collection,
fault detection by analysing the collected data, and fault handling into dis-
tinct aspects. Four distinct subsystems represent these aspects and form this
architecture:

World The world is everything that either directly affects the operating
system, e.g. hardware, external influences or artifacts that are affected
or managed by the operating system, e.g. processes, filesystems, devices.
These entities show effects like, but not limited to, logfile entries, disk
activity, process creation and termination, signals and messages, et cetera.

Sensors Effects arising in the world can be measured by sensors. A sensor is
primarily defined by its software component. A good example for a sensor
is a temperature sensor. It consists of a hardware device that measures
the temperature (effect) of something else (an entity, e.g the processor)
and a software component that provides these measurements (events) to
clients.

Diagnosis Staying with the example of a temperature sensor, a diagnosis unit
interprets the measurements provided by the sensors. If the temperature
is too high, the diagnosis unit suspects a fault. The diagnosis unit is
not limited to one sensor or one type of fault. More complex reasoning
can be done by interpreting chassis temperature, processor load, the
voltage of the processor fan and finally the temperature of the processor.
Correlating these factors could lead to several faults being diagnosed, e.g.
“processor temperature too high” and “processor fan out of order”.

Diagnosing faults is a process that utilizes different fault models for the
computer system monitored to detect or predict faults.

Response Ideally, detected faults trigger responses. A reasonable first response
to the faults detected in the last step of the response agent would be
to lower the processors frequency, or to schedule tasks running on that
processor to a different processor to take the load of the processor. A
failed fan probably needs quick human intervention, so paging an operator
is another response to the fault.
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Responses may influence the world and trigger new effects, causing new
events to be recorded, and maybe new faults to be diagnosed.

2.3.1.1 Example

The following example shows how two related subsystems work together to
compensate a hardware fault. The first system is the Service Management, it
knows the dependencies between different services and knows, how to start
and stop the installed services. The second system is the Fault Management
Architecture.
Suppose the Service Management knows, that serviceA depends on serviceB
and needs to be restarted every time serviceB is restarted.
The following chain of events show how the unexpected termination of serviceB
leads to a degraded system state that is automatically repaired by the fault-, and
the service management. It also shows that a sophisticated fault management
implementation needs to know a substantial amount of meta information cov-
ering dependencies between hardware and software components, and potential
recovery measurements.

1. The fact that serviceA depends on serviceB and that serviceA needs to
be restarted when serviceB is restarted is made known to the service
management.

2. The user instructs the system to start serviceA.

3. The service management recognizes that serviceB needs to be started
and initiates the startup of serviceB.
serviceA is left in a waiting_for_dependencies state.

4. When serviceB is up, the service management continues the startup
process of serviceA.

5. serviceA is now in a clean state and ready to serve its clients.

6. The memory controller reports an uncorrectable error, causing an excep-
tion that triggers the memory failure sensor to record this effect.
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7. The diagnosis subsystem detects that serviceB is affected by the error.

8. A response agent kills serviceB and offlines the affected memory frame.

9. serviceB terminates abnormally.

10. The fault management detects that serviceB terminated.

11. According to the configuration made in the first step a diagnosis expert
recognizes a fault for serviceA.

12. A response agent instructs the service management to shut down serviceA
and to initiate process described in step 3.

13. The fault has been recovered.

2.3.2 Fault Trees

Describing and analysing the impact that certain faults have on a system can
be a daunting task. Fault Trees describe how various events within the system
may lead to undesired events [63], and greatly help to estimate the impact faults
have on a system. First introduced in 1961, fault tree analysis is nowadays an
important tool in risk management.
Figure 2.4 shows a basic fault tree for undetected memory errors. Depending
on the importance, and the complexity of the problem analysed, fault trees can
get very large and very complex. Haasl presented two approaches to fault tree
analysis that he called Primary- and Secondary Failure Technique. A primary
component failure is a failure, that happens, when the component showing the
failure is operating within its specification. A secondary component failure is
a failure that happens while the component is subject to enviroental stress,
such as can be caused by the failure of other components in the system [63]. If
only primary component failures are included in the fault tree, the Primary
Failure Technique is used. For more critical systems, the Secondary Failure
Technique can be used. It extends the former technique by including secondary
component failures, and is substantially more complex.
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By assigning probabilities to faults in leaf nodes, the probability of top level
faults can be calculated, compare to [82], [96], and many more publications
concerning fault tree analysis. For a discussion on fault tree analysis of computer
systems see [101].
Fault trees are an important tool for a FMA. An example for the usage of fault
trees is presented in section 3.2.1.

2.3.3 Error Reporting of Memory Errors

It would be beneficial if the ECC hardware would report detected memory errors
to the operating system. The Intel x86 architecture supports a mechanism
termed Machine Check Exception (MCE) that allows the processor to report
different hardware error conditions to the operating system [9, Chapter 15].
The format and content of the different exceptions is highly platform specific
and needs specialised decoders to normalise them.
Recent Intel processors (starting with 45nm Intel 64 processors a with CPUID
signature DisplayFamily_DisplayModel encoding of 06H_2EH) allow software
to “perform recovery action on a certain class of uncorrected errors and continue
execution”[9, Chapter 15.6]. The Linux kernel supports this recovery for ECC-
errors with the HW-Poison patches[60].
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Figure 2.4: Basic Fault Trees
This figure shows basic fault trees as they are described by
Haasl [63].
A basic fault tree has an “undesired event” as root. Child nodes
denote events or conditions that trigger the parent node. In
the most basic form of fault trees, child nodes are either gates
(AND, OR (1a+b)) that combine multiple inputs into one
output, or different types of fault events (2a-c)).
A simplified fault tree for undetected memory errors is shown
in 3 a-d)).
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Figure 2.5: Exemplary handling of a detected ECC-fault
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2.3.4 Handling Memory Errors

Once a memory error is reported, the FMA is responsible for handling the
error. The abstractions introduced in section 2.3.1 are used to discuss how CEs
and UEs could be handled by a fault management implementation. Figure
2.5 shows how memory error detection, diagnosis, and handling influence each
other.

Several things need to be done, when a memory error has been detected by
the ECC hardware. In case of an UE, processes that use the frame have to be
informed, and probably killed to prevent the corruption caused by the error
to spread further. The same applies to kernel subsytems that use the frame.
Handling a CE is easier, because no corruption has happened yet.

After these immediate actions have been performed, decisions about the actual
state of the frame must be made. The error could have happened by random
chance, for example by cosmic radiation. It is also possible, and the field study
realized by Google suggests that it is more likely, that a physical defect of the
memory module caused the error.

The process of handling an immediate error and the process of deciding what
to do in the long term should be distinguished. Both processes have different
contexts and different objectives. The objective for the short term handler is
to prevent that corruption caused by the memory error is spread. The runtime
context is probably a machine check handler running in an interrupt context,
that reacts upon a machine check exception from the memory controller. Thus
the short time handler has to act fast and without any human intervention. In
figure 2.5, the short term handling is implemented by several components in
concert. ECC Sensor, Memory Error Diagnosis, and the Unrecoverable
Memory Error Response are steps that need to run as quickly and as
seamlessly as possible to prevent corruption from spreading.

After the direct danger of spreading corruption has been removed, the medium
term handler needs to decide what to do next. In contrast to the short time
handler the medium term handler has more time and more resources at its
disposal. It runs decoupled from the short time handler and is probably
implemented as a user process. The objectives of the medium term handler are
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located at a higher level and include sophisticated error detection and reporting.
In figure 2.5, the swim-lane labeled Correctable Memory Error Response
is an example for a medium term handler. No immediate action is required,
when a CE has been detected. Still, it is prudent to verify the neighbourhood
surrounding the memory location that showed the CE.

2.3.4.1 Policies

What the correct treatment for a memory error is, depends on the context and
type the error. In chapter 1 it has been motivated, that different usage scenarios
for computer systems require different levels of confidence, and performance.
The processes in figure 2.5 contain several decisions that can be configured
by policies. This allows the behaviour of fault management to be configured
without explicitly changing the software itself.

2.3.5 How Fault Management Relates to this Thesis

One of the objectives of this diploma thesis is to discuss, how Linux can be
extended with a FMA. Section 2.3 described an idealised FMA and laid out,
how this FMA can react to faults in memory.
Several candidates for components of this architecture exist. Candidates for
the Service Management are the Upstart-project [35] originally developed for
Ubunbtu or the SMF developed for Solaris 10 [104]. Detected memory faults
can be handled by the HW-poison patches [60], that allow defective frames to
be offlined and the mcelog program, that listens for memory faults reported by
the hardware [30].

2.4 Using the Linux Kernel

In the first chapter it is stated, that the feasibility of a software based memory
tester will be analysed by implementing such a memory tester for the Linux-
kernel. This section is split into three parts: A justification for the usage of
Linux as implementation target, an introduction into the Linux mm subsystem,
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followed by a description of the current state of fault management in the
Linux-kernel and distributions.

The Linux-kernel itself has been ported to many different architectures, from
embedded systems to clustered high performance systems [23, 12, 87, 89]. The
development process itself has been driven by a multitude of interest parties
as well, the list of contributors includes companies and organisations like Sun,
Intel, SuSE, RedHat, the US American National Security Agency (NSA), and
many more: Between 2005 and 2008 “over 3700 individual developers from
over 200 different companies have contributed to the kernel” [27]. This lead to
the highly adaptive and complex system Linux is now. Section 2.4.3 presents
statistics and statements from the kernel documentation that illustrate how
volatile the kernel code in general and the mm-code specifically really is.

2.4.1 Why Use the Linux Kernel?

The operating system that is used as implementation target for the thesis’
online memory tester has to fulfill a number of requirements. First of all,
it must be possible to access most of the physical memory installed. This
requirement is probably fulfilled by all mainstream operating systems for low-
to midrange servers. Linux on x86 can manage nearly all memory the CPU
can access [12].

Secondly, and for several reasons, the operating system selected should be in
wide use. Selecting an operating system that is not widely used limits the body
of knowledge available, as there are, for example, fewer books and fewer experts.
Although this is not strictly an academic argument, the number of possible
users for the memory tester is lower, when a rarely used operating system is
selected. A higher number of users may improve the chances, that further
academic research will be based on this work, such raising the significance of
this diploma thesis.

For practical reasons, the operating system selected should run on readily
available hardware. Further, it should be open source, so that the operating
system itself is malleable and can be modified, when necessary. Publishing
fragments of open sourced software reduces the risks that the publication of
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excerpts of proprietary, closed source code poses. Lastly, the author’s existing
experience, and knowledge influences the choice as well.

2.4.1.1 Choosing Linux

The Linux-kernel is at the core of many different distributions, for example
Gentoo, Ubuntu, SuSe, and RedHat [5, 8, 7, 6], and is published under the
GNU Public License (GPL). As such it is open source and can be modified
and extended to any extent. A number of books have been published on the
subject of Linux kernel development in general [46, 53, 87, 89, 103], and there
exists a book specifically treating Linux memory management – even if it was
written before the current 2.6 series of the Linux kernel was released [62].
The Linux homepage http://www.kernel.org describes Linux as follows:

“Linux is a clone of the operating system Unix, written from
scratch by Linus Torvalds with assistance from a loosely-knit team
of hackers across the Net. It aims towards POSIX and Single
UNIX Specification compliance. It has all the features you would
expect in a modern fully-fledged Unix, including true multitasking,
virtual memory, [. . . ], proper memory management, [. . . ]. Although
originally developed first for 32-bit x86-based PCs (386 or higher),
today Linux also runs on (at least) [. . . ] AMD x86-64, [and many
more] architectures; for many of these architectures in both 32- and
64-bit variants. Linux is easily portable to most general-purpose
32- or 64-bit architectures as long as they have a paged memory
management unit (PMMU) [. . . ]” [12]

Together with the large number of academic Linux users – in may 2010, searching
for the keyword “Linux” in the ACM digital library yielded 17,227 results –
and with the strong presence of Linux in the targeted low- to mid-range server
ecosystem, Linux complies to all requirements stated.
For similar reasons, the Intel x86 family of processors is used as underlying
hardware: This architecture is predominant in the low- to midrange server
market, and readily available to developers.
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Certain important features like MCE were only available in the 64-bit version of
the Linux kernel, although they have been back ported to recent 32 bit kernels.
Restricting the implementation to the 64-bit kernel does not greatly reduce
the meaningfulness of the implementation. Many server systems run a 64-bit
kernel, so evaluating the runtime and coding impact of the implementation on
a 64-bit kernel is more significant than for the 32-bit kernel.

2.4.2 The Linux Memory Management

The Memory Management subsystem of the Linux kernel is often called the VM
for Virtual Memory. This term expresses, what the Linux memory management
does at its core: It virtualizes physical memory, thereby abstracting from the
underlying hardware.
The virtualization is not only restricted to the basic hardware aspects like the
total amount of addressable memory, the memory topology provided by the
hardware, or processor architecture specifics. The mm also manages the virtual
address space for of the kernel and user space processes, and many things more.
The details described in this section have been extracted from the kernel
source, the kernel’s homepage [12], and various books and papers including
[46, 53, 62, 87, 89, 103, 42, 23, 60].
The following sections describe the tasks and structure of the Linux mm to the
extend, that all important aspects that relate to a memory test are covered.
Figure 2.6 on page 37 shows an overview, of how several components of the
mm and the hardware relate to each other.

2.4.2.1 Tasks of the Linux MM

Virtually every service the kernel provides uses the memory subsystem. This
central role requires the memory subsystem to work as efficient, and as reliable as
possible. Besides the demand to provide these services as efficient as possible, the
memory subsystem has to work on different processor and memory architectures
that provide different mechanisms to handle physical memory. This calls for
an implementation design that can abstract from the actual hardware. The
amount of memory handled ranges from systems, like embedded routers, with
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Figure 2.6: Overview of the Linux mm.
The Linux mm is a layered architecture that consists of different
components. The usage-of or depends-on relationship is top-
down, e.g. the process memory depends on the handling of
page faults.
The hardware focused concepts are shown the bottom of the im-
age (1a-c)). The system in this example features 2n processors
on two NUMA nodes (1a)). Physical memory is partitioned
into memory zones (1b)), and each zone is partitioned into
frames (1c)).
The software components in 2) abstract most hardware re-
lated aspects. 2a) The most basic memory management is
implemented by the buddy allocator, which manages areas of
consecutive frames. Clients request memory in sizes of 2order

frames, where 0 ≤ order ≤MAX_ORDER.
2b) The slab allocator manages objects of a fixed size, e.g. file
descriptors, in caches that are themselves allocated from the
buddy allocator. The kernel kmalloc implementation then is
based on the slab allocator.
2c) Process memory and disk caching is based on a number of
abstraction mechanisms and mm-subsystems. Most of these
services are based on the concept of address spaces. address
spaces are a central abstraction of the mm and are implemented
by different subsystems called backing stores.
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a very constrained amount of memory to systems, like supercomputers, that
have to handle several TiB of RAM [23, 62, 12].
Together this makes the mm one of the most complex, and most performance
tuned parts of the Linux kernel [89]. Section 2.4.3 elaborates on the complexity,
and the volatility of the mm-subsystem implementation.
The tasks of the Linux memory management can be broken down into four
main services:

1. Detect and manage the available physical memory frames.

2. Efficiently manage the allocation of large contiguous and of non-contiguous
memory areas.

3. Efficiently manage the allocation of small memory areas.

4. Efficiently and securely manage process memory.

Figure 2.6 summarizes, how these services relate to each other.
The detection of available memory is a very hardware dependant task and
will not be discussed here, because it is not important for a memory test that
builds on top of an operating system. What is important though, is the relation
of memory frames to physical memory modules. This is discussed in section
2.4.2.10. Further hardware related topics are discussed in section 2.4.2.3, that
discusses how the Linux kernel manages Uniform Memory Access (UMA) and
NUMA architectures.
The next section discusses virtual memory, a very fundamental and powerful
abstraction mechanism used by the Linux mm.

2.4.2.2 Virtual Memory

At the core of the Linux mm lies the virtualization of memory. Instructions
that execute on the processor do not directly access physical memory. The
addresses used by instructions are virtual, not physical, addresses. Before the
actual RAM is accessed by an instruction, the virtual address is translated
into a physical address. This translation step is done at runtime, and with
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the help of the processor’s Memory Management Unit (MMU)3. The decision,
which virtual address is mapped to which physical memory location is made
by the Linux kernel. Mapping each virtual address separately to a physical
address would be very inefficient. On processors like the Intel x86 family, Linux
uses a concept called frames. The available physical memory is split up into
equal sized frames Frame0..max_pfn−1 of regions of contiguous physical memory.
Each region spans a range of 2PAGE_SHIFT addresses, and the memory is
byte-addressable. The physical memory regions are called page frames, or just
frames.

1010000011101..01101 00..11MSB LSB

PAGE_SHIFT bits

frame selector offset in frame

Figure 2.7: Virtual Address.
This image shows, how the virtual address av can be visualised
as consisting of a selector for the memory frame and an offset
within the selected frame.

Thus, a virtual address av can be visualised as consisting of a selector for a
frame, and an offset within the frame. Figure 2.7 shows, how a virtual address
is split up.
A (virtual) address space spans a range of 0 · · · 2n − 1 virtual addresses, where
n is 64 for the 64 bit kernel on the x86-64 architecture. Address spaces are
used at the core of the Linux mm to manage memory for processes and the
kernel itself.
Figure 2.8 on page 41 depicts, how address spaces and physical memory relate
to each other. The address spaces of two processes are shown at the top and at
the bottom of the image, the physical frames are located in the middle, arrows
denote the mapping of a page in the address space onto a physical memory

3With certain restrictions, Linux can run on devices without MMU [10]. These architec-
tures are used in embedded systems and not in server systems. For this reason they are not
covered by this diploma thesis.
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frame.
Virtualizing memory has several benefits, and some of these benefits are shown
in the figure. By decoupling the virtual memory from the physical memory,
frames can be shared between address spaces. In this example, the kernel code
and text (shown in blue) is mapped into both processes. Another frame is shared
between two processes, either as a means for inter-process communication, or
to reduce the number of frames with duplicate content. The later is used by the
operating system to transparently share the TEXT segments of libraries between
processes. The implementation of UNIX process forks in Linux prevents the
copying of the whole address space of the forked process by implementing a
copy-on-write scheme [46]. Recent developments for the Kernel Virtual Machine
(KVM) also periodically scan the RAM for duplicated frames [42, 59].
Figure 2.8, points 4b) + 4c) show two pages that are not backed by physical
memory. In most circumstances, nearly all pages from a processes address space
will not be connected to a physical frame. This stands to reason, because a
system with an n-bit addressing scheme can normally only address and manage
2n bytes of memory, but Linux provides each process with a virtual address
space that has a size of up to 2n bytes [62, 87, 89].
The figure hints at how the mapping between pages and frames is established:
When a process accesses a virtual address that belongs to a page that is not
mapped to a physical frame, a page fault is raised. Linux handles this page
fault differently, depending on what exactly has caused the page fault.

2.4.2.3 UMA and NUMA

The memory access model for small Symmetric Multi-Processing (SMP) systems
is often designed as an UMA-architecture. Each processor core can access every
cell in the RAM at the same cost. Figure 2.9 shows an UMA system that is
reduced to the components of CPU, RAM, and the memory bus that connects
CPU and RAM.
Architectures based on UMA can be detrimental, if many processors access the
memory. Bottlenecks can lie in the memory bus that connects the processors
and the memory modules or in the memory modules themselves. E.g., the
widely used Double Data Rate Synchronous Dynamic Random Access Memory
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Figure 2.8: Virtual Address Spaces.
This image shows, how address spaces are mapped to physical
memory (2)).
Each of the two processes has its own virtual address space
(1a, b)), that is mapped (3)) onto physical memory.
A few things are noteworthy:
The kernel resides in the first few page frames and each process
maps the kernel at the end of its address space. Both processes
share one frame, but process #1 has it mapped to a different
page than process #2 (4a)).
A page of process #2 has been swapped out (4b)). If process
#2 accesses an address in this page, a fault will be generated,
and the page would transparently to the process be connected
to a frame with the then swapped-in data.
4c) shows a page that has no mapping, accessing this page
would cause the kernel to kill the process with a segfault.
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CPU 0 CPU 1 CPU 2

RAMNode 0

memory cells

memory bus

Figure 2.9: Uniform Memory Access.
The processors at the bottom access the figure access the
memory cells shown at the top of the figure via the memory
bus. Each processor can directly access each memory cell. Both
the memory bus and the RAM itself can be bottlenecks, as
discussed in section 2.4.2.3.

(DDR-SDRAM) memory allows only one row of a DIMM to be accessed
simultaneously.

For large systems with many processors and huge amounts of RAM, these are
severe disadvantages. The concept of Non Uniform Memory Access is often
used in the domain of high performance clusters. Figure 2.10 shows, how
NUMA systems partition memory and processors into distinct and autonomous
memory nodes. Processors access their local memory, the memory that resides
on the same node as the processor, like they would in a UMA system.

If a processor needs to access memory on another node, the access is channelled
through the addressed node. Although non-local access is slower than local
access, the model has several advantages over the UMA model. If mostly
processors from the same node access the memory, the pressure on the memory
is reduced because all intra-node memory access on the other nodes is removed
from the local memory bus. This greatly eases horizontal scaling by adding
more memory nodes to the system (compare to [23]).

Modern x86 multicore systems like AMD Athlon [39] and Intel Nehalem [9]

42 Proactive Memory Error Detection for the Linux Kernel



Chapter 2 · Problem Description

CPU 0 CPU 2 CPU 4

RAM RAM

Memory interconnection

RAMNode 0 Node 1 Node 2

CPU 1 CPU 3 CPU 5

The dotted and green lines denote a direct access to a memory cell. This kind of 
access is comparable to the memory access in a UMA system.

The dashed and blue line denotes the access to a memory cell in another memory 
domain. The access has to be channeled from the source processor to the memory 
bus of the target node.

Figure 2.10: Non Uniform Memory Access.
This NUMA system consists of three memory nodes. Each
node is structured comparable to the UMA system in figure
2.9. Processors can directly access the memory in their local
memory node. Processors that want to access memory in
another memory node must do so by communicating with
the memory controller of the addressed node, hence the name
Non Uniform Memory Access.

also implement a NUMA design. For an introduction into how Linux handles
NUMA architectures see [44].

2.4.2.4 Physical Memory Organization

The physical memory on x86 architectures is not set up as homogeneous
memory area. The address space of Physical memory is interstratified with
various areas of special-treated address ranges. The Basic Input Output System
(BIOS), devices connected to the Peripheral Component Interconnect (PCI)-
and Industry Standard Architecture (ISA)-bus and others peripherals can
reserve memory ranges that are not directly accessible as physical memory.
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The most commonly known example for such a special address range is the
video memory overlaid at 0xA0000.
A map that contains all address regions reserved by the BIOS is called e820
map and can be queried from the BIOS [54].
The fragments 2.1 to 2.3 were obtained from a 2.6.34-rc4-gbea481a-dirty kernel
running on an AMD X2 CPU with 8 GiB of RAM and exemplify, how the
memory is fragmented. Various other important informations about limited
resources are included as well. Noteworthy are the restricted size of the Direct
Memory Access (DMA)-zones, that indicate why reserving and testing large
memory parts in these regions can lead to a shortage in memory.
A much more detailed instruction into the organization of the physical memory
with Linux and 32 bit x86 systems can be found in [62, 89, 46, 53].

2.4.2.5 Memory Organization in User Space

Linux provides each process with a private address space. Depending on the
architecture the kernel was compiled for, and the architecture the user space
program was written for, the size of the addresses used are 32 or 64 bit [53, 77].
User space programs always use virtual addresss, and are unable to directly
read or write a physical address.
To be able to access specific frames is an important precondition for the
implementation of a memory tester in user space. Kernel modules can implement
an interface that allows user processes to utilize the mmap system call to map
frames into their address space. The implementation presented in this thesis
uses this approach to write a user space based memory tester.

2.4.2.6 Memory Organization in Kernel Space

On 32 bit x86-architectures, the Linux kernel is loaded into the first GiB
of physical memory. Virtual addresses pointing to kernel memory start at
PAGE_OFFSET ,which in x86 is defined as 0xC0000000 (3 GiB) [26], al-
though this depends on the architecture (x86-32 bit/x86-32 bit + PAE/x86-64
bit/other architectures) and the division of memory between userspace and
kernelspace [24]. Section 2.4.2.4 showed, that not all physical memory is usable
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1 linux2 .6.34:~ jens$ dmesg
2 ...
3 BIOS -provided physical RAM map:
4 BIOS -e820: 0000000000000000 - 000000000009 fc00 (usable)
5 BIOS -e820: 000000000009 fc00 - 00000000000 a0000 (reserved)
6 ...
7 BIOS -e820: 0000000100000000 - 0000000230000000 (usable)
8 ...
9 Zone PFN ranges:

10 DMA 0x00000001 -> 0x00001000
11 DMA32 0x00001000 -> 0x00100000
12 Normal 0x00100000 -> 0x00230000
13 ...
14 On node 0 totalpages: 2097006
15 DMA zone: 56 pages used for memmap
16 DMA zone: 0 pages reserved
17 DMA zone: 3942 pages , LIFO batch:0
18 DMA32 zone: 14280 pages used for memmap
19 DMA32 zone: 833544 pages , LIFO batch :31
20 Normal zone: 17024 pages used for memmap
21 Normal zone: 1228160 pages , LIFO batch :31
22 ...

Listing 2.1: Bootmessages

This is the output the Linux kernel generates at boot time.

Lines 3–7 show the shortened e820 map.

Lines 9–12 show the physical frames (PFN) for the zones DMA,

DMA32 and Normal. DMA for ISA devices is only allowed in

the physical frames 0x00000001 · · · 0x00001000, the first 16 Mib,

excluding the first 4 KiB. This limitation stems from the ISA

specification. DMA32 is an extended DMA zone for devices

capable of accessing it. The initial patch for DMA32 includes

more detailed documentation [78]. Normal memory is memory

that can directly be accessed by the Linux kernel. 32 bit kernels

include a HIGHMEM zone (not shown here) that cannot be

directly accessed by the Linux kernel, because the virtual address

space chosen for the kernel is only 1 GiB big [89]. Compare to

figure 2.6, where the zones for Linux running on a 32 bit x86

are shown.

Lines 14–21 show how the zones are filled for each NUMA node.

LIFO batch is an mm internal configuration that dictates the

batch-size used when a zone needs to be refilled.
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1 linux2 .6.34:~ jens$ cat /proc/cpuinfo
2 processor : 0
3 vendor_id : AuthenticAMD
4 ...
5 cpu cores : 2
6 ...
7 TLB size : 1024 4K pages
8 ...
9 address sizes : 40 bits physical , 48 bits virtual

10 ...

Listing 2.2: /dev/cpuinfo

The information about the installed CPUs includes two items

interesting for the mm: The total address size this processor

can address, and the size of the TLB.

1 linux2 .6.34:~ jens$ cat /proc/iomem
2 00000000 -00000 fff : reserved
3 00001000 -0009 fbff : System RAM
4 ...
5 00100000 - cffcffff : System RAM
6 01000000 -014 cff4f : Kernel code
7 014cff50 -01 b77aaf : Kernel data
8 01e0b000 -0276 fc37 : Kernel bss
9 20000000 -23 ffffff : GART

10 cffd0000 -cffddfff : ACPI Tables
11 cffde000 -cfffffff : ACPI Non -volatile Storage
12 d0000000 -febfffff : PCI Bus 0000:00
13 d0000000 -dfffffff : reserved
14 d0000000 -dfffffff : pnp 00:0c
15 e0000000 -efffffff : PCI MMCONFIG 0000 [bus 00-ff]
16 e0000000 -efffffff : pnp 00:0b
17 ...
18 fd7f9000 -fd7f9fff : 0000:00:05.0
19 fd7f9000 -fd7f9fff : sata_nv
20 ...
21 fec00000 -fec00fff : reserved
22 fec00000 -fec003ff : IOAPIC 0
23 ...
24 100000000 -22 fffffff : System RAM

Listing 2.3: /dev/iomem

This file shows you the current map of the system’s memory

broken up per device, the complete file on that system contains

57 rows.

Lines 3, 5, and 24 contain the physical addresses that address

RAM.

Lines 5–8 show, where the kernel is loaded into the physical

memory.

The Graphics Address Remapping Table (GART) in line 9 is

used to map the memory of the graphic card into system memory.

ACPI tables (line 10) describe the computer hardware, including

the systems address map, power management, and more [54].
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by the operating system, and that the memory that is usable contains holes. On
32 bit x86 systems, the physical memory starting after the first MiB (0x100000

and onward) is used for the code and data of the Linux kernel [89, chapter 3].
In most cases it is impossible or very difficult to reliably test memory frames used
for kernel code and data, as a consequence, the implementation accompanying
this diploma thesis does not test for memory errors within kernel memory.

2.4.2.7 Frame Management

Frame management is the fundamental responsibility of the mm. Each frame is
associated with a data structure called struct page, shown in listing C.1 (page
136) and listing C.2 (page 137).
Each frame is managed by maintaining one struct page instance. This leads
to 220 distinct struct page instances for a frame size of 4 KiB and 4 GiB
of managed memory. Consequently a small size of struct page instances is
desired to reduce the amount of memory needed for frame management. This is
achieved by removing members of struct page needed for aspects that are not
compiled into the kernel, and the polymorphic use of certain memory regions
inside a struct page instance by using the C keyword union4

As a result, the interpretation of a given struct page instance p depends on the
subsystem this instance is allocated to, effectively making p an opaque structure
that can only be analysed by relying on knowledge that should be encapsulated
in the subsystem that owns p. Additionally, the lock hierarchies that protect
p or specific attributes of p are partially private to the implementation of the
owning subsystem.
An, albeit slightly outdated, discussion of struct page can be found in chapter
3 of [89].

2.4.2.8 Frame Management in Zones

The primary management of single frames centers around struct page, but
not all information available about a frame is stored inside the struct page
instances.

4union allows multiple variables to share the same memory space [74].
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Frames are assigned to zones. Lines 9–12 in listing 2.1 show exemplary values
for the zone-size on a 64-bit Linux kernel. Within the zone, non free frames are
kept in the active/inactive lists that are used for paging decisions. A limited
number of frames are kept for the per-CPU Hot’n’Cold allocator that acts as
a small cache for single frame allocations. Mostly, the memory in a zone is
managed by the Buddy Allocator described in the next section.

2.4.2.9 Buddy Allocator

Figure 2.6 showed the Buddy Allocator at the bottom of the Linux memory
management hierarchy. The Buddy Allocator manages hierarchical pools of
ranges of consecutive frames. Each pool Porder contains free regions of each 2order

free consecutive frames. A client that requests memory does so by requesting
2n free frames. If the allocator finds a free region in Pn, it is allocated to the
client. If no free region can be found in Pn, a region is removed from Pn+1, and
split in halve into two buddies. One of the buddies is allocated to the client,
the other is used as new free region in Pn.
Figure 2.11 shows how the Buddy Allocator manages the request for 8 KiB,
when only one 32 KiB region is available. A more detailed description of the
Buddy Allocator can be found in [108].
The Buddy Allocator in Linux manages memory per zone, and tries to allocate
the requested memory on the same NUMA node, the requesting client is
running on. In low memory situations, the buddy allocator also utilizes various
strategies to free memory. Different strategies are necessary, because e.g. a
memory allocation in an interrupt context must be very fast and must not
switch the execution context and go to sleep, whereas a user space process has
much less stringent requirements. Much of the complexity of the Linux mm lies
in the management of free memory. A more detailed description of the Linux
implementation of the Buddy Allocator can be found in [89, 46, 62].

2.4.2.10 Relating Frames to Hardware

The Linux kernel has no direct data about which frame is located in which
memory module(s). This can be problematic, when the system operator needs
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Figure 2.11: Buddy Allocator.
This figure shows by example, how the Buddy Allocator splits
up a larger buddy to satisfy the request for a smaller buddy.
1) The Buddy Allocator has one free range of 32 KiB (order
3). A request for 8 KiB (order 1) arrives.
2) The buddy is split into halves.
3) The lower halve is recursively split again into two buddies
of the order 1.
4) The lower of the order 1 buddies is allocated to the client.
The range of the order 3 is now split into two buddies of the
order 2, one of them free, the other one again split up into
two buddies.
5) The memory region is freed by the client.
6 – 7) Analogous to the recursive decomposition of steps 2+3,
the free buddies are recursively merged back.

to find a module with known defects by the physical address Linux uses.
Fortunately the BIOS DMI tables mentioned in section 2.4.2.4 often allow
physical addresses to be related to memory modules. The program mcelog,
that will be discussed in the related works chapter, can parse the DMI tables
and provide the sought information to the user [30].

2.4.3 Complexity of the Linux Kernel

From its modest beginnings in 1991, the Linux kernel has grown to an impressive
size. The following sections illuminate some aspects of the Linux kernel that
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1 linux -2.6.34 jens$ git branch
2 * v2.6.34 -rc7
3
4 # All non -empty lines that do not contain a comment
5 linux -2.6.34 jens$ grep -v ’#’ .config| grep -v ’^$’ | wc -l
6 3257
7
8 # All lines with not set defines
9 linux -2.6.34 jens$ grep ’not set ’ .config|wc -l

10 708
11
12 # Count the number of ifdef/ifndef preprocessor directives in the mm subsystem
13 linux -2.6.34 jens$ grep -R -E ’if[n]?def ’ mm|wc -l
14 361

Listing 2.4: Counting the number of configuration options for the Linux

Kernel

The number of configuration options for the Linux kernel can

be calculated by analysing the .config file [12].

Lines 12–14 extract the number of preprocessor directives em-

bedded in the mm-directory. Only one of these ifndefs stems

from the common C-header file preamble.

directly influence many of the design decisions that have to be made for an
online memory tester.

2.4.3.1 Linux Implementation Aspects

The upcoming kernel 2.6.34 can be configured with nearly 4000
(3257 + 708 = 3965, see listing 2.4) different configuration options. Some
of these options exclude each other, and most options determine whether a
given device driver should be built or not. Still, some of these options change
how certain aspects of the kernel are implemented.
The mm subsystem alone contains 361 conditional preprocessor directives. One
of these directives is the preprocessor guard against including the header file
multiple times, the other #ifdef/#ifndefs directly influence the generated
kernel.

2.4.3.2 No stable Kernel interfaces

The community of Linux kernel developers has agreed, that kernel internal
interfaces and implementation details are not stable and can be changed any
time [81]:
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This is being written to try to explain why Linux does not
have a binary kernel interface, nor does it have a stable kernel
interface. Please realize that this article describes the _in kernel_
interfaces, not the kernel to userspace interfaces. The kernel to
userspace interface is the one that application programs use, the
syscall interface. That interface is _very_ stable over time, and will
not break. I have old programs that were built on a pre 0.9something
kernel that still work just fine on the latest 2.6 kernel release. That
interface is the one that users and application programmers can
count on being stable.

Taking into account, that all books covering the Linux kernel in depth where
published between 2000 and 2006 [108, 53, 87, 89, 103, 46, 62], it is no wonder,
that all books describe a Linux kernel that differs to a greater or lesser extent
from the kernel in 2010.

2.4.3.3 Volatility of Kernel code

The kernel code has gone through a lot of changes during the last years. To
visualize these changes, figures 2.12 and 2.13 plot the size and the amount
of change the mm subsystem underwent between kernel releases 2.6.11 and
2.6.33. The data has been obtained by analysing the kernel source code in
the official Linux-kernel git repository at git://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux-2.6.git.

2.4.4 How Linux Relates to this Thesis

In section 2.4.1 the choice of Linux as implementation target for the prototype
memory tester has been justified. The following sections examine the mem-
ory management implementation of the Linux kernel (section 2.4.2) and the
complexity and volatility of the kernel (section 2.4.3).
These observations are the base for many of the design decisions made in
chapter 4.
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Figure 2.12: Size of the mm Subsystem
Both graphs describe the size of mm subsystem. Between
2.6.11 and 2.6.33 the size of the mm subsystem more than
doubled.
The left axis measures the size in lines of code, the right axis
in KiB of files. Only files in the mm directory were counted as
mm related code. mm code in other directories is not included
in the data.
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Figure 2.13: Changes of the mm Subsystem
Using the same source data as in figure 2.12, this figure
describes the changes that happened between the releases.
The left axis shows, from release to release, the number of
lines deleted from, or inserted into files in the mm directory.
The right axis shows, how many files were changed in the mm
directory.
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Chapter 3

Related Work

Detecting and reacting to memory faults in computers has gotten more and
more attention in recent years. Improvements in the hardware, for example the
extended MCE handling of Intel Nehalem processors [72], lead to improvements
in operating systems [9, 113]. Research is not limited to hardware development
though, for example other researchers investigate how programming models for
software can be extended in a way, that they support fault recovery [92].
This section presents selected work that relates to this diploma thesis. Three
different research topics are be presented: memory tests, fault management,
and hardware based solutions to detect and correct errors in RAM.

3.1 Memory tests

In section 1.2.2 a classification for memory testers has been introduced. Memory
tests were distinguished into bare metal memory tests that run directly on the
system, without an underlying general purpose operating system, and memory
testers running on top of an operating system.
In the following sections, three different memory testers are presented. The
first of these is memtest86+ and is a bare metal tester. The second tester is an
exploratory kernel based implementation that had been written for the Solaris
8 kernel. The third tester runs as a user space process on Linux.
These three examples were chosen, because each of them uses increasingly
more layers of services to access the physical memory. Discussing the benefits
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and drawbacks of the respective positions in a software stack (similar to the
example given in figure 1.1) is beneficial for the finding of a “sweet spot” for a
memory tester.

3.1.1 Memtest86+

memtest86+ [13] is a well known, classical bare metal memory tester, and stands
as an example for this class of memory testers. memtest86+ is distributed
under the GPL, and widely used. For example it is distributed together with
many Linux distributions [6, 7, 8]. A screenshot of memtest86+ is shown in
figure 3.1.
The usage of memtest86+ is simple: it is booted from CD or other boot medium,
and immediately starts to test for defective memory. Testing will continue,
until the user cancels the test procedure. If all test patterns have been verified,
the test cycle will restart with the first test pattern. The recommended usage
of memtest86+ is, to run it until each test algorithm has been applied to each
memory region [14].
Noticeable is that the RAM where the program will finally reside is tested in
advance. This allows memtest86 to test all memory accessible by the CPU.
Besides the default settings, several adjustments for advanced users are possible.
These settings include to adjust the memory refresh rate and to enable/disable
hardware based ECC checks. Adjusting these parameters can cause the memory
to be accessed outside its specification, a good instrument to gauge the safety
margin of the default parameters the hardware runs with.
The test algorithms implemented by memtest86+ are based on an idealised
algorithm (listing 3.1) and are termed Moving Inversions and Modulo-X. A
transcription of the definition found on the memtest86 homepage[14] can be
found in listing 3.2 and 3.3 [13].

3.1.1.1 Relation to this Thesis

Bare metal memory testers like memtest86+ share some principal shortcomings
and difficulties, on the other hand they have advantages over memory testers
that run on top of a general purpose OS.
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1 # The first algorithm is , according to the memtest86 description , this
2 # algorithm detects pattern sensitive faults. It is considered
3 # to be the ideal algorithm for memory tests.
4 1. write a cell with a zero
5 2. write all of the adjacent cells with a one , one or more times
6 3. check that the first cell still has a zero

Listing 3.1: “Ideal” algorithm for memtest86+

This pseudo code is the description of the test algorithm that

the authors of memtest86 consider to be “an ideal strategy for

testing memory” [14].

The pseudo code has been copied from [14].

1 1. Fill memory with a pattern
2
3 2. Starting at the lowest address
4 2.1 check that the pattern has not changed
5 2.2 write the patterns complement
6 2.3 increment the address
7 2.4 repeat
8
9 3. Starting at the highest address

10 3.1 check that the pattern has not changed
11 3.2 write the patterns complement
12 3.3 decrement the address
13 3.4 repeat

Listing 3.2: Moving Inversions algorithm used by memtest86+

This pseudo code is the description of memtest86+’s Moving

Inversions test.

The pseudo code has been copied from [14].

1 1. For starting offsets of 0 - 20 do
2 1.1 write every 20th location with a pattern
3 1.2 write all other locations with the patterns complement
4 1.3 repeat above one or more times
5 1.4 check every 20th location for the pattern

Listing 3.3: Modulo-X algorithm used by memtest86+

This pseudo code is the description of memtest86+’s Modulo-X

test.

According to the author of Memtest86 (the predecessor of

memtest86+), the Modulo-X algorithm is not affected by caching

or buffering. The pseudo code has been copied from [14].
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Figure 3.1: Screenshot of memtest86x
This image is a screenshot of the bare-metal memory tester
memtest86+, and shows a detected memory fault.
The screenshot has been obtained from http://www3.
informatik.uni-erlangen.de/Research/FAUmachine/.

The first and most noticeable shortcoming of a bare metal memory tester is that
it runs as the sole program on the computer. From a user’s perspective, this
is a disadvantage, because it causes a downtime of the services this computer
provides. Though unwanted by te user, this monopolisation of the hardware
allows the test program to access the memory without regard to anyone else.
By disabling interrupts and DMA, a bare metal tester can increase its accuracy
by eliminating external memory accesses. Additionally, the memory tester
can modify hardware parameters that could have adverse side effects on the
stability of the system.

A program that runs without an underlying operating system can have full
hardware access, the advantages of this have been described in the previous
paragraph. The drawback of disregarding the services of an operating system
is that the program cannot rely on the hardware abstractions provided by
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the operating system. In the case of a memory tester this means, that many
hardware near functionalities must be implemented. Detecting the memory
regions explored in section 2.4.2.4 can be a problem, if for example the memory
map provided by the BIOS is erroneous. Operating systems like Linux provide
corrections or workarounds for many of these issues.

To be able to modify hardware parameters, the memory test has to include
drivers for different types of hardware. Other challenges are discovering NUMA
nodes and their respective local memory, and to utilize multiple processors to
test for memory errors.

Regarding the goals of this thesis, bare metal memory testers like memtest86+
can be considered as complementary to memory testers that run on top of
an operating system. The later run under a more constrained environment,
because several of the options open to bare metal scanners cannot be used. On
the other hand, memory tests running in parallel to the tasks the computer is
intended to do from the users point of view, can permanently test for defective
memory.

Both types of memory test are complementary, if bare metal testers are rated
as hardware specific tools that are used when the memory is already suspected
of being faulty, and OS based memory testers are understood as a permanent
monitoring and probing tools that assess the reliability of the installed RAM
without disturbing normal usage of the computer.

3.1.2 Online Test for Solaris 8

An example for a memory test running on top of an operating system is the
implementation Singh, Bose and Darisala from Sun Microsystems presented
in their 2005 publication “Software Based In-System Memory Test For Highly
Available Systems” [109].

Singh et al. implemented a memory tester that is comparable to the
approach taken in this diploma thesis – a closer distinction between the
two approaches follows in section 3.1.2.1. Implementation wise, they
chose a simple, kernel based architecture that sequentially tested memory
ranges by applying the fault model of Nair et al. (section 2.2.3). The
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implementation of the frame scheduler abstraction introduced in section
1.2.2.1 is very minimalistic and calculates the to-be-tested memory range
based on the configured allocation size and the test-iteration number as
Start Address = (Physical Memory Start Address× Iteration Number).
The fault management steps proposed by Singh et al. are a small subset
of the fault management process described in section 2.3.4. In detail they
proposed, that frames with defects should be excluded from further usage and
that processes that accessed a frame at the time of an UE should be killed.
The experimental results of Singh’s research are interesting. They installed
faulty memory modules into a server and ran, as two different experiments, two
different workloads. The faults detected in the respective experiments differed
between the experiments. Only about a third (30.4% respectively 27.3%) of the
detected errors overlapped – a result that correlates with findings of Schroeder
et al. in 2009 [105]. One of the results of this study is that system utilization
has a strong influence on the number of memory errors detected by the ECC
hardware. Singh’s results seem to support this.

3.1.2.1 Relation to this Thesis

Superficially, the presented work of Singh et al. resembles the research of this
diploma thesis. However, there are profound differences between both works.
Singh et al. did not publish any performance related results – an important
information, if the feasibility of online memory tests needs to be evaluated.
Further, neither source code nor a detailed description of the implementation
is presented – another important element that is needed for research that bases
on this implementation. Other differences are the mode of implementation:
Kernel based (Singh) versus a mixture of user- and kernel based (this thesis),
and the targeted hardware (SPARC vs. x86) and operating system (Solaris 8
vs. Linux).
In a private communication with the author of this diploma thesis, Singh
answered to the question, whether further research has been undertaken by
his group, that “I am not aware of any other papers.”. Further investigations
regarding additional information about this study did not find additional
research either.
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3.1.3 Effo GPL

Complementary to the work of Singh et al., a group of developers released a –
disregarding a minuscule kernel module to translate a virtual address into a
physical address – purely user space based implementation of a memory tester.
The memory tester targeted the Linux operating system and implemented
several of the fault models implemented by memtest86+ [28].
The problem of frame acquiration had been solved in very straight forward
manner: The program allocated all the memory it could get and used said
kernel module to translate virtual addresss to physical addresss. By iterating
over each page in the allocation, the corresponding frame could be identified.
Although this proceeding is not described expressis verbis, it can be deducted
by analysing the source code.
Unfortunately the publication that described the program and test algorithms
have been removed from the programs website.
Other implementations of purely user space memory tests exists, for exam-
ple the memtester program [29]. These programs often work similar to the
Effo implementation: They allocate memory and test it, often by mmaping
/dev/mem and execute memory tests on the mapped memory.

3.1.3.1 Relation to this Thesis

Compared to the memory tester implemented by Singh et al. and memtest86+,
the Effo implementation brings together some of the strengths and some of the
weaknesses of both approaches.
Similar to a bare metal memory test, the Effo implementation monopolizes the
system memory. From user space the implementation cannot directly acquire
specific frames, it can only do so by allocating many frames and hope, that
the sought frame is included there. Allocating all available memory is an
effective, albeit not very efficient, workaround to this problem. By reducing
the amount of memory allocated, the pressure on the memory system can be
reduced, although this goes at the cost that the probability that the sought
frames are included in the allocated memory is reduced. This monopolizing of
resources is a serious shortcoming for a memory test that should not severely
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degrade the system’s performance. Additionally, this approach cannot predict,
which frames are to be allocated. In contrast to a bare metal memory test, this
implementation cannot directly influence hardware parameters or access all
available memory, due to fact that the kernel requires private memory as well.
Similar to the approach Singh et al. took, the Effo implementation utilized
the operating systems capabilities to abstract from specific hardware details.
Additionally, the downtime of the system can be reduced to a time of degraded
performance.
This user space implementation shows promise to be a usable implementation
of a user space memory test. What this implementation is lacking, is the
possibility to allocate specific frames in a direct, non performance detrimental
fashion. The architecture designed in this diploma thesis not only takes the
existence of third party memory tests into consideration, it specifically tries
to enforce Dijkstras idea of the separation of concerns [58] and treats specific
memory test implementations as replaceable components.

3.2 Fault Management

Section 2.3 described an idealised fault management architecture. This section
presents three different approaches to fault handling. Two of them, the Linux
EDAC project [4] and the Linux mcelog project [30] are narrowly focused on
the aspects of sensing memory faults detected by the memory hardware and to
react to these faults.
The other project is the Predictive Self Healing technology for Sun (now
Oracle) Solaris 10 and OpenSolaris, and is a complete implementation of a
fault management architecture [20].

3.2.1 Solaris Predictive Self-Healing

In late 2004, the Sun employee Michael Shapiro published an article titled
“Self-Healing in Modern Operating Systems” in the ACM’s periodical Queue
[107]. He argued that computer systems in the year 2004 are still far less
reliable, than it is desirable. Improving reliability, he wrote, can be done by

60 Proactive Memory Error Detection for the Linux Kernel



Chapter 3 · Related Work

doing three things: By improving the quality of each component, by introducing
redundancies to cope with failures, and by predictively avoiding failure, or at
least to reduce the downtime caused by unexpected failures.
To predict imminent failures, warning signals must be identified, and analysed.
According to Shapiro, the task of fault prediction falls to a fault manager that
interprets hardware errors and signals and semantically enriches them. If a
hardware component is diagnosed to be broken, or expected to fail in the near
future, the fault manager tries to offline the component in a controlled manner.
To reduce the downtime caused by interruption of hardware availability – be it
expected failures like the controlled offlining of a component, or an unexpected
fault – a service management comparable to the one described in section 2.3 is
used.
Predictive Self Healing has been introduced in the “Solaris Express 6/04”-release
and been enhanced in subsequent releases [20].
This technology implements many of the aspects examined in section 2.3 and,
as will be discussed later, influenced the design of the FMA presented in this
thesis.
To understand, what the developers of Solaris 10 understood under the term
Predictive Self Healing it is insightful to quote an excerpt from the “Writing
Device Drivers” book from Sun [22, chapter 13]:

A system like the Solaris OS predictive self-healing system
is first and foremost self-diagnosing. Self-diagnosing means the
system provides technology to automatically diagnose problems
from observed symptoms, and the results of the diagnosis can then
be used to trigger automated response and recovery.

The following sections give a high level overview of several techniques used by
Solaris Predictive Self-Healing.

3.2.1.1 Service Management

Analogous to the architecture presented in section 2.3, the implementation of
fault management in Solaris relies on a service management implementation to
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start, stop, and restart services. A detailed description of the Solaris service
management facility (SMF) can be found in [104, 57].

Contrary to the init.d start/stop scripts historically used on UNIX systems,
services registered in the SMF are annotated with meta data that declares,
besides others, the services Fault Management Resource Identifier (FMRI), the
dependencies of the service, the location of the start- and stop-scripts, and
configuration parameter private to the specific service instance. Listings 3.4 to
3.6 give an overview of a services properties and management.

3.2.1.2 Enriched Fault Logs

An important step towards automated fault management is the movement from
unstructured, and unconnected log messages to standardized, structured, and
semantically enriched messages.

Operating systems and their accompanying software often log errors as text
messages addressed to the system administrator. In the case of a (suspected)
fault, the system administrator had to read the logfiles, and diagnose the fault
that happened, trying to deduce the impact of the fault and the required
corrective action. Faults that, as the software stack in figure 1.1 exemplified,
are the results of other faults are notoriously difficult to analyse by reading
logfiles. The administrator has to correlate the content of logfile entries, to
detect the whole chain of events that lead to the observed fault, which is often
the outage of services provided by the system.

Standardizing error messages can help to analyse these messages automatically.
A common protocol describes common aspects of error-, or fault events, and
an encoding of an event. The different subsystems define event classes, e.g.
ereport.cpu.amd.nb.mem_ce for CEs on AMD platforms. Resources, e.g. ser-
vices and hardware components, are each identified by an FMRI. An example
of the FMRIs assigned to services is shown in listing 3.4.

Events are observed by the Fault Manager-daemon (fmd(1M)). This daemon
implements functionalities comparable to the Diagnosis and Response compo-
nents of the FMA presented in section 2.3. Listing 3.7 shows the case of a
faulted and repaired PCIe device.
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1 # List all services registered with the SMF
2 jens@xvm :~$ svcs -a
3
4 STATE STIME FMRI
5 legacy_run May_17 lrc:/etc/rc2_d/S20sysetup
6 ...
7 online May_17 svc:/ system/filesystem/minimal:default
8 ...
9 disabled May_17 svc:/ network/talk:default

10 ...
11 online May_17 svc:/ network/nfs/server:default
12 online May_17 svc:/ milestone/multi -user -server:default
13 ...
14 maintenance May_17 svc:/ milestone/xvm:default

Listing 3.4: Using the Solaris SMF: Listing Services

Listings 3.4 to 3.6 highlight aspects of the SMF. This listing

presents the output of the svcs command that lists all managed

services.

Lines 5–14 show an excerpt of the services managed by the SMF

on a computer running OpenSolaris, the total number of services

managed on this instance is 220.

Line 5 contains a service that is managed by init.d-style run-

scripts, and not directly by the SMF. Although the SMF does

not directly managed these services, it tracks theirs existence

for completeness.

Line 9 shows a service that has been disabled, i.e. the service

will not start automatically.

Line 11 shows a service that has been started by the SMF, and

that is currently running. The SMF will restart the service if it

faults.

SMF used the annotated dependency information presented in

listing 3.4 to replace the UNIX runlevels by dependency-only

services called milestones, e.g. lines 12 and 14.

Line 14 contains a service that is in maintenance mode, i.e. the

service has faulted too often and is disabled until the operator

tells the SMF, that the service is repaired.
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1 jens@xvm :~$ uname -a
2 SunOS xvm 5.11 snv_133 i86pc i386 i86xpv Solaris
3
4 # Show details for the xvm service
5 jens@xvm :~$ svcs -l svc:/ milestone/xvm:default
6 fmri svc:/ milestone/xvm:default
7 name xvm milestone
8 enabled true
9 state maintenance

10 next_state none
11 state_time May 17, 2010 01:09:21 PM CEST
12 logfile /var/svc/log/milestone -xvm:default.log
13 restarter svc:/ system/svc/restarter:default
14 dependency optional_all/none svc:/ system/xvm/store (online)
15 dependency optional_all/none svc:/ system/xvm/console (online)
16 dependency optional_all/none svc:/ system/xvm/domains (online)
17 dependency optional_all/none svc:/ system/xvm/virtd (online)
18 dependency optional_all/none svc:/ system/xvm/xend (online)
19
20 # Show the configuration of the xvm service
21 jens@xvm :~$ svcprop svc:/ milestone/xvm:default
22 general/enabled boolean true
23 general/entity_stability astring Unstable
24 general/single_instance boolean true
25 hypervisor/pin_vcpus boolean false
26 ...
27 restarter/logfile astring /var/svc/log/milestone -xvm:default.log
28 restarter/start_pid count 2505
29 restarter/start_method_timestamp time 1274094561.653359000
30 restarter/start_method_waitstatus integer 24320
31 restarter/transient_contract count
32 restarter/auxiliary_state astring method_failed
33 ...

Listing 3.5: Using the Solaris SMF: Service Configuration

This excerpt from a shell session shows how the Solaris SMF

configures services.

Services managed by the SMF are treated as distinct objects

that can be managed. Lines 6–18 show several properties of the

xvm ([36]) milestone. For example, line 13 names the start/stop

implementation to be used, lines 14–18 list the services the

milestone depends on.

A more detailed view of the milestones configuration is shown

in lines 22–33 which show how the configuration of the service

is stored in a unified, structured storage system.

1 # Tell the SMF , that the xvm service is no longer
2 # in maintenance.
3 jens@xvm :~$ svcadm clear svc:/ milestone/xvm:default
4 # The SMF will now try to restart the service
5 # ..

Listing 3.6: Using the Solaris SMF: Service Management

This excerpt is an example for service management: The

command svcadm clear · · · /xvm · · · tells the SMF, that the

xVM service has been repaired, and should be cleared of its

maintenance state.
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1 jens@xvm :~$ fmdump
2 TIME UUID SUNW -MSG -ID
3 ...
4 Feb 27 21:19:30.2936 8e9ea33f -9c2f -4ee9 -ce31 -9 ba0b861af5f PCIEX -8000-J5
5 ...
6 Feb 27 21:50:04.7108 8e9ea33f -9c2f -4ee9 -ce31 -9 ba0b861af5f FMD -8000 -4M Repaired
7 Feb 27 21:50:04.7275 8e9ea33f -9c2f -4ee9 -ce31 -9 ba0b861af5f FMD -8000 -6U Resolved
8 ...
9 jens@xvm :~$ fmdump -v -u 8e9ea33f -9c2f -4ee9 -ce31 -9 ba0b861af5f

10 TIME UUID SUNW -MSG -ID
11 Feb 27 21:19:30.2936 8e9ea33f -9c2f -4ee9 -ce31 -9 ba0b861af5f PCIEX -8000-J5
12 100% fault.io.pciex.device -interr -corr
13
14 Problem in: hc://: product -id=PowerEdge -T300:server -id=xvm:chassis -id=G46WD4J/motherboard =0/

hostbridge =7/ pciexrc =7/ pciexbus =1/ pciexdev =0/ pciexfn =0
15 Affects: dev ://// pci@0 ,0/ pci8086 ,2948@1c ,4/ pci1028 ,210@0
16 FRU: hc://: product -id=PowerEdge -T300:server -id=xvm:chassis -id=G46WD4J/motherboard =0
17 Location: MB
18
19 Feb 27 21:50:04.7108 8e9ea33f -9c2f -4ee9 -ce31 -9 ba0b861af5f FMD -8000 -4M Repaired
20 100% fault.io.pciex.device -interr -corr Repair Attempted
21
22 Problem in: hc://: product -id=PowerEdge -T300:server -id=xvm:chassis -id=G46WD4J/motherboard =0/

hostbridge =7/ pciexrc =7/ pciexbus =1/ pciexdev =0/ pciexfn =0
23 Affects: dev ://// pci@0 ,0/ pci8086 ,2948@1c ,4/ pci1028 ,210@0
24 FRU: hc://: product -id=PowerEdge -T300:server -id=xvm:chassis -id=G46WD4J/motherboard =0
25 Location: MB
26
27 Feb 27 21:50:04.7275 8e9ea33f -9c2f -4ee9 -ce31 -9 ba0b861af5f FMD -8000 -6U Resolved
28 100% fault.io.pciex.device -interr -corr Repair Attempted
29
30 Problem in: hc://: product -id=PowerEdge -T300:server -id=xvm:chassis -id=G46WD4J/motherboard =0/

hostbridge =7/ pciexrc =7/ pciexbus =1/ pciexdev =0/ pciexfn =0
31 Affects: dev ://// pci@0 ,0/ pci8086 ,2948@1c ,4/ pci1028 ,210@0
32 FRU: hc://: product -id=PowerEdge -T300:server -id=xvm:chassis -id=G46WD4J/motherboard =0
33 Location: MB

Listing 3.7: Using the Solaris SMF: Fault Management

Once faults have been recorded by the fault management, they

are grouped in to cases. Each case is identified by unique

identifier (UUID).

Lines 1–7 show the history of the case with the uuid 8e9 · · · af5f .

Three events are assigned to this case: A fault, an attempt to

repair the device, and the successful reparation of the device.

Lines 9–33 cover these events in more detail. The problem

location (lines 14, 22, and 30) is a path that uniquely identifies

the faulted device and functionality.
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fault.a 1

error.b1 1

ereport.c1

fault.b

1
fault.a

1

error.d

2

error.c

1

error.i

1

1

prop fault.a ->error.c, error.i; 
prop error.i, fault.b ->(2) error.d;

prop fault.a -> error.b -> ereport.c;

Fault tree with two types of faults that can trigger two types of errors2)

Simple cascading fault tree.1)

error.d is triggered, if at least 
two events reach it

2b)

Figure 3.2: Eversholt Fault Trees
These examples are taken from the book Eversholt Fault Tree
Language ([114]) and show two simple fault trees. The place-
holders fault.a, error.b, etc. stand for fault and error events
that can be triggered by components of the system.

3.2.1.3 Predicting Faults

In simple cases, fault prediction can be implemented as programs written in a
general purpose language. Although using general purpose languages is possible,
a domain specific language and framework can greatly ease this task. Solaris
features the Eversholt language to describe fault trees [114].

A fault tree describes, how faults propagate through a system. A simple example
would be a tree prop fault.a -> error.b; prop error.b -> ereport.c;.
Figure 3.2 shows two fictional fault trees from the Eversholt manual [114].

The placeholder events in the figure can be annotated with constraints,
e.g. “fault.cpu.ultrasparcIII.overtemp@sb/cpu,FITrate=20;”, so com-
plex fault trees can be specified with relative ease.

Diagnosing specific faults is assisted by engines that act as filters for faults. For
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1 /* Example SERD engine declaration that triggers a report
2 * if too many correctable errors have been found by the CPU.
3 *
4 * In this example , "too many" is 10 CE -events in 12 hours.
5 */
6 engine serd.cpu.ultrasparcIII.ce@sb/cpu ,
7 N=10,
8 T=12 hours ,
9 trip=ereport.cpu.ultrasparcIII.too_many_ce@sb/cpu;

Listing 3.8: Example of the Eversholt SERD engine

“The SERD algorithm is a thresholding algorithm that uses the

above properties [N , T , and trip] to decide when to trip and

issue the specified event. The properties N and T describe the

threshold as a density of events in time (N events within time

T ). The trip property specifies which event to issue when the

Soft Error Rate Discrimination (SERD) engine detects that the

events exceed the threshold.” [114]

example, to distinguish soft- from hard-errors, a SERD engine can be utilized.
See listing 3.8 for an example taken from the Eversholt manual.

3.2.1.4 Relation to this Thesis

The theme comlex surrounding FMA and SMF is very complex and requires
many parties to agree on a common approach. In contrast to Solaris, where
kernel and userland origin in the same source, Linux is only the kernel. The
userland is specific to the distribution, making a unified approach at service-
and fault handling very difficult to coordinate. The website distrowatch lists 11
major Linux distributions and more than a hundred lesser known distributions
[33], plainly showing the diversity of Linux distributions.

The Solaris Predictive Self Healing have been of great influence to the Fault
Management Architecture described in section 2.3 and many of the ideas
found in the Solaris implementation were used in the presented abstraction.
From a software engineers viewpoint, Solaris Predictive Self Healing is an
implementation of an Fault Management Architecture. A FMA implementation
for Linux would be well advised to learn and adapt its FMA solution(s) from
Solaris.
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3.2.2 The Linux EDAC project

Moving from the bigger picture of a complete FMA-implementation to fault
detection for RAM, this section presents the Linux EDAC patches [4]. EDAC
stands for Error Detection And Correction, and is the name of several patches
and kernel modules that help to handle hardware-related errors, there focusing
on ECC errors in memory. As of kernel version 2.6.27− rc5, the EDAC patches
have been merged with the Linux vanilla kernel.

memory controller

CS row
*

csrow3 DIMM_B1DIMM_A1

DIMM_B1DIMM_A1csrow2

DIMM_B0DIMM_A0csrow1

DIMM_A0csrow0 DIMM_B0

Channel 1Channel 0

2)

sytem

*

1) Memory abstraction provided my EDAC as object model. Relation of CS-row, channel and DIMM.

1a) The system can have several 
memory controllers.

1b) Each memory controller 
addresses a number of chips.

(per channel) 
statistics

* 1c) CE/UE statistics are broken up 
per channel.

Figure 3.3: Memory abstraction provided by EDAC.
This figure presents the memory layout, as it is presented to
the user space by the EDAC patches [117].
1) corresponds to the object hierarchy EDAC builds in the
/sys/devices/system/edac directory.
2) shows, how four DIMMS (DIMM_A0, DIMM_A1,
DIMM_B0, DIMM_B1) on two channels map to the csrow
directories in 1b) .

The EDAC patches set up a hardware abstraction mechanism with two main
objectives. On objective is to provide an abstract layer that represents the
physical layout of memory in modules, down to the level of the modules Chip
Select (CS) rows. Figure 3.3, points 1a-c) show this object model. This requires
dedicated hardware drivers for specific chipsets, and memory controllers.

The second objective is to detect ECC-errors in non-RAM components, such as
buses, DMA engines, L1 · · · 3 caches, etc [117]. EDAC is not CPU architecture
specific, and currently, there are drivers for both x86 and ppc architectures.
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3.2.2.1 Relation to this Thesis

A memory tester running on a machines provokes errors in the memory sub-
system. A fault management implementation handles the effects of detected
faults. Tools like the EDAC patches connect both systems by making detected
memory faults – that have probably been provoked by the memory tester –
accessible to the fault management implementation. By relating memory faults
to DIMM modules, the EDAC patches ease the system administrators task of
replacing defective modules.

3.2.3 mcelog

Current Linux kernels like version 2.6.34 log machine check exceptions into
/dev/mcelog. This includes exceptions that report CEs and UEs. A program
called mcelog reads and parses these exceptions, and allows actions to be
triggered, when errors are found [30].
To quote from the README file that accompanies the mcelog package:

mcelog is the user space backend for logging machine check
errors reported by the hardware to the kernel. The kernel does the
immediate actions (like killing processes etc.) and mcelog decodes
the logfiles.

Themcelog program provides several ways, in which it can react to MCE-events:
Polling, triggering by the kernel, and running as a daemon. When mcelog is
run as daemon, it tries to predict hardware errors.
mcelog rivals with EDAC, and this is one of the reasons, why it is included
here.

3.2.3.1 Relation to this Thesis

In functionality, mcelog is comparable to EDAC, although the level of detail
reported by mcelog is lower, and EDAC does not feature fault prediction . At
the time of writing this diploma thesis, a “Hardware Error Kernel Subsystem
Mini-Summit” [31] has been held, the protocol can be found at [32]. The goal of
the summit was to plan a unified strategy for fault analysis and handling within
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the Linux kernel. Although the author of mcelog was not attending the summit,
he participated in the discussion following the protocol [32]. The discussion
following the publication of the protocol made clear, that fault reporting and
handling is a very controversial subject, and that further development in this
area is to be expected.
Regarding this diploma thesis, both EDAC and mcelog are potential compo-
nents both for ECC fault detection, and as (to be) established standard entry
point into a fault management implementation.

3.3 Hardware Based

Section 1.2.1 motivated the usage of hardware based error detection and correc-
tion schemes. The following two sections introduce ChipKill, an improvement
of ECC, and recent research about virtualized ECC, i.e. modifying the memory
subsystem to allow the operating system to implement the ECC functionality
in software.

3.3.1 Chipkill

Memory subsystems equipped with ECC error correction are a great improve-
ment over memory subsystems without any detection or correction abilities –
this has already been discussed. In 1997 Timothy Dell published a whitepaper
that discusses shortcomings of SEC-DED ECC [56]. Dell argues, backed by
field research done by IBM and statistical simulation, that errors that affect
multiple bits are very likely and are not handled by SEC-DED codes. He
further argued that hard errors that affect multiple bits (multibit hard errors)
are often caused by a single memory chip that fails completely, figure 3.4 shows
an example of this.
The failure of a single of these chips affects more than one bit, a situation
that SEC-DED ECC codes cannot handle. A ChipKill protection scheme can
withstand the failure of a single memory chip. This can be accomplished by
multiple means, see for example [51, 99, 119] and [56]. On possible solution to
the problem of multi-bit correction with standard ECC modules is to expand
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A defective memory chip results 
in the loss of a 4 bit symbol.

2a) 

White boxes store the 
actual data.
Gray boxes store the ECC 
checksum.

One box resembles one 
memory chip. Each chip 
stores 4 bits. 4 bits are 
called a symbol.

1a) 

Four 4-bit check symbols provide SSC-DSD protection for 32 
4-bit data symbols, allowing the defect chip to be compensated.

2b) 

Module A Module B 

Figure 3.4: DDR memory module.
DDR modules are build from multiple memory chips. The
address width of these chips is 4, 8 or 16 bits. Depending on
the type of chips used to build a DDR memory module, the
module is called a x4, x8, or x16 module.
This figure shows two x4 modules, combined in a way used
by Sun [112] and AMD [40] to implement ChipKill. In this
example, one of the chips (2a)) is defective. In a regular
SEC-DED -setup, this would lead to undetectable memory
errors, because 4 out of 64 bits were faulty. By calculating the
checksum over the combined data path of 128 bits, the missing
symbol can be reconstructed (see [119], where this image has
been adapted from, for more details).

the granularity of the memory access. Instead of protecting each 64+8 bit word
separately, multiple words are protected together. To protect against the failure
of a x4 chip, four 64 + 8 bit words are protected together (128 + 16 = 144).
Although this lowers the access granularity and forces the memory subsystem
to read and write a minimum of 144 bits (instead of 72 bits), this scheme can
protect against the failure of a complete memory chip. Sun UltraSPARC-T1/T2
[112] and AMD Opteron [40] systems implement this strategy by accessing two
modules simultaneously.

Proactive Memory Error Detection for the Linux Kernel 71



Chapter 3 · Related Work

3.3.1.1 Relation to this Thesis

Memory protected by ChipKill is more resilient to errors that memory protected
by ECC [56]. This puts systems equipped with ChipKill technology out of the
scope of this diploma thesis. Still, ChipKill is an interesting technology that
helps to detect and prevent memory errors by using specialised hardware.
The next section presents an approach that virtualizes the ECC subsystem and
makes it accessible to the operating system. Yoon and Erez, the authors of the
research presented in the next section, implement ChipKill on their system.

3.3.2 Virtualized ECC

Although the focus of this diploma thesis is the detection of memory errors by
running software based memory tests, the gap between software based memory
tests and hardware based error detection narrows. In March 2010 Yoon and
Erez from the University of Texas at Austin presented their seminal paper
Virtualized and flexible ECC for main memory [119]. All benchmarks and
evaluations presented by the authors of said paper are based on simulating the
modified memory subsystem.
The idea behind their research was to involve the operating system in the
process of fault detection and correction. To do so, they allowed the operating
system to participate in the checksumming process by giving it influence on
if, and where the checksumming data for a memory word is to be stored.
Instead of storing the ECC checksums in the dedicated memory chips on the
modules, the operating system was free to store the checksums somewhere in
physical memory. This then, allowed the implementation of ECC and ChipKill
protection with, and without installed ECC-modules.
A further refinement of the virtualized ECC mechanism is, that the operating
system can choose the desired level of protection for memory regions, e.g. the
operating system could choose to heavily protect memory used by the kernel,
and memory used by important applications, but use a much lower level of
protection for processes of less importance.
Throughout their paper Yoon and Erez present various optimizations, for exam-
ple an optimized use of the processor cache for ECC checksums. Additionally,
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they evaluated the performance impact of their implementation, and its influ-
ence on power consumption. Summarized, their design had a negligible impact
on performance, with runaway values topping at a normalised runtime of 1.7

for the GUPS streaming benchmark.
Remarkably, the Energy Delay Product (EDP) of a system with virtualized
ChipKill protection is often lower, than the EDP for systems with native
ChipKill. They explained this with the fact, that the DDR-modules with x4

chips used in ChipKill systems are less power efficient, than modules with x8

or x16 chips.

3.3.2.1 Relation to this Thesis

Yoon’s and Erez’ research is an important step on the road towards more reliable
computer systems. It remains to be seen, if, and when the first real world
implementations of their design will be seen. Regarding this diploma thesis, the
usage of sophisticated in situ memory error detection (and correction) decreases
the chance that (undetected) errors corrupt data. Software based memory tests
increase the chance, that hardware errors that exceed the capability of the
underlying systems, are detected.
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Chapter 4

Solution: A Memory Testing
Architecture for Linux

An important step in the design and implementation of software is the gathering
of requirements. Requirements describe the properties the final product should,
or must have. A minimal requirement for an online memory tester surely is
“The software should prevent more errors than it causes” – but this requirement
is too unspecific, and leaves out many important aspects.

In this chapter the requirements for an online memory tester are gathered. The
collected requirements are the base of the implementation design, that is then
presented in section 4.2.

4.1 Requirements

The following sections investigate three functional aspects: fault detection for
different fault models, the cost-benefit ratio, and the desire to provide the
foundation for further research efforts. Further, three software engineering
related aspects are investigated. These technical aspects have their roots in
the functional requirements, as will be discussed.
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4.1.1 Detection of Errors

The most important requirement of the memory tester is, that it should be able
to detect functional faults and defects in memory. It is not required though,
that every fault (defect) must be detected, e.g. faults in memory that cannot
be accessed by the implementation, faults not covered by the selected fault
model, or faults that happen in memory locations that are currently not tested
cannot be required to be detected.

Requirement 1: Detection of Errors The implementation must be
able to detect memory errors.

Requirement 2: Isolation of Errors The implementation has to ensure,
that memory which has been detected as faulty must not be used any
more.

From the analysis of the Linux mm in section 2.4 it can be concluded, that it
is unrealistic that the implementation can test all of the physical memory. The
implementation should however, be able to test a substantial amount of the
installed physical memory.

Requirement 3: Memory Coverage The implementation should be
able to test a substantial amount of the physical memory.

This requirement can further be broken down into sub-requirements that specify
this into more detail.

Requirement 4: No Test of Kernel Memory The implementation
does not need to be able to test the physical memory that is used by the
kernel for its internal data and code.

Requirement 5: Testing Free Buddy Memory The implementation
should be able be able to test memory, that is marked as free by the buddy
allocator (see section 2.4.2.9).

Claiming memory that the kernel uses for its internal processing is very difficult,
and is probably not practical to do. Further, the Linux kernel only uses the
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first GiB of physical memory for its internal structures, so there is an upper
bound for the memory not accessible because of this requirement [62, 46, 53].
Requirements 6 and 7 explicitly exclude memory that is connected to modified
data, because it is not always possible to reliably interfere with the Linux
kernel, when it handles memory in this state [79].

Requirement 6: Testing Clean Anonymous Memory The imple-
mentation should be able be able to test memory that is used as
anonymous memory. It is not necessary, that memory that is backed by
swap space or memory mapped files can be tested.

Requirement 7: Testing Clean Page-Cache Memory The imple-
mentation should be able be able to test memory, that is used in the
Linux page cache. Memory that is marked as dirty, or memory that is
currently used by I/O does not need to be tested.

An exact quantification of the word substantial in requirement 3 cannot be
given, because this depends on the total amount of memory installed, the work
load of the system, and the dynamic behaviour of the Linux mm. Visualising
the dynamics of the mm, especially the usage patterns of each frame can help
to understand, how the mm behaves (see requirement 15), and if additional or
different strategies for frame test scheduling are necessary.

4.1.1.1 Different Fault Models

Different fault models for RAM hase been discussed in section 2.2. The fault
models presented all have their respective advantages and disadvantages. The
most notable variable of the presented fault models is the complexity of the test
that detects the faults described by the model. Re-implementing the memory
test algorithms presented by various researchers is not within the scope of
this diploma thesis. On the other hand, an evaluation of the feasibility of a
memory test requires the existence of a memory test. This leads to the following
requirements:

Requirement 8: Multiple Fault Models The implementation must
support multiple fault models. It is sufficient, if only a restricted subset of
all possible fault models can be supported by the implementation.
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Requirement 9: Emulating of Fault Models The implementation
must implement an emulation that resembles the runtime complexity of
two fault models.

Except for very reduced fault models, most fault models incorporate faults
that affect multiple memory cells, and faults where memory cells influence each
other [118, 102]. The concept of NPSFs (Neighbourhood Pattern Sensitive
Faults, see section 2.2) should, with restrictions regarding the structure of the
neighbourhoods, be supported by the implementation. Restricting the structure
of the neighbourhoods is owed to the observations made in section 2.4, and the
restrictions allowed by the requirements 4 through 7.

Requirement 10: Support Neighbourhoods The implementation
must support fault models that test for NPSFs. The implementation is
allowed to restrict size and composition of the neighbourhoods.

4.1.2 Cost-Benefit Ratio

A major goal of this diploma thesis is to determine, whether online memory
tests are feasible or not. The difficulty of defining an objective meaning of
feasible have been discussed in section 1.4. The implementation of the memory
tester should enable the researcher to answer the question of feasibility by
allowing the researcher to collect runtime metrics. This leads to the following
requirements:

Requirement 11: Cost-Benefit Estimation By benchmarking the ap-
plication it should be possible to estimate the cost of an online memory
test.

Reserving memory for a memory test could be a major bottleneck, considering
the fact, that this is a deep intervention in the inner workings of the mm, and
could seriously affect performance by bringing the fine tuned system of lock,
cache and TLB handling out of balance.

Requirement 12: Cost-Benefit Estimation: Cost of Acquisition
The implementation should provide performance metrics that indicate
how expensive the acquisition of certain memory areas has been.
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Another potential bottleneck is the actual test of a memory area, the impact
of this should be measurable as well:

Requirement 13: Cost-Benefit Estimation: The Cost of Tests
By benchmarking the application it should be possible to estimate, how
big the impact of memory testing is.

4.1.3 Base for Further Research

It is desirable, that this diploma thesis, and the accompanying implementation,
serves as the basis for further research. For this, it is preferable to allow as
many aspects of the implementation as possible to be exchangeable.

Requirement 14: Enabling Further Research The implementation
should be written in such a way, that further further research can adopt
and change it easily.

The requirement stated in number 14 is a very fuzzy requirement that is not easy
to measure. In the next section several technical, non-functional requirements
are discussed. These requirements support the functional requirements 1
through 14, and help to assess the implementation choices with regard to the
requirements.

4.1.3.1 Visualisation

To understand, what a system does, and how its behaviour changes over time, it
is often helpful to visualize dynamic processes and state changes. A meaningfull
visualization can inspire, and support additional research.

Requirement 15: Visualization of Memory The implementation
should provide the means to visualize the state of memory over time.

4.1.4 Performance

Requirements 11 – 13 emphasize the aspect of performance. As already discussed
in section 1.4, the word performance is not very clearly defined, and a concrete
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definition depends on the context it is made in. In the case of a memory tester,
performance can mean anything from number of bytes tested per second, or
accession of the EDP, up to influence on the Transactions Per Seconds metric
of the database.
Performance is an important issue, but in the context of this thesis, the focus
of attention is not on performance. As Donald Knuth said famously “We
should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil”[80]. Experience showed that this statement
still holds, and that targeted high level optimizations are far more likely to
improve the overall performance of a system.

Requirement 16: Enabling Bottleneck Detection The implementa-
tion should be written in such a way, that it is feasible to detect performance
bottlenecks.

Requirement 17: Enabling High-Level Optimizations The imple-
mentation should be written in such a way, that it is feasible to apply high
level performance optimizations.

4.1.5 Extensibility

In requirement 8 the possibility to implement multiple fault models is requested.
Requirement 3 requests, that as much as possible of the system memory
should be testable. Both requirements can be supported by designing the
implementation in such a way, that it is extensible. Adding new methods to
acquire memory from the kernel can increase the test coverage, designing the
fault models as strategy patterns [61] allows the implementation of multiple
fault models.

Requirement 18: Extensible System The implementation should be
written in such a way, that it easily extensible.

This requirement (18) can be realised by designing a modular architecture:

Requirement 19: Modular Design The implementation should be de-
signed in a modular fashion.
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4.1.6 Stability

Section 1.1 extensively discussed the problems that can be caused by mal-
functioning software. Software that closely interacts with, and even modifies
internal structures of the kernel, must be very reliable. Errors in a memory
tester implementation can lead to serious data corruption – the very same
effect, that it should prevent.
By isolating the parts of the implementation from each other, the stability of
the system can be enhanced:

Requirement 20: Fault Isolation The components of the system should
be isolated from each other, so that faults remain local to single compo-
nents.

Requirement 21: Memory Leaks The design must ensure that memory
leaks are effectively prevented.

Requirement 22: Principle of Least Privilege No component should
have more privileges, than it absolutely needs to function.

By allowing the implementation to be automatically tested, the reliability of
the implementation can be increased:

Requirement 23: Testability It should be easy to test the implementa-
tion.

Requirement 24: Maintainability The implementation should be eas-
ily maintainable, and be impervious to changes in the kernel.

Closely related to the issues of stability is the question of breaking the mm’s
encapsulation of its data structures. If at all possible, internal structures of the
kernel should not be interpreted or modified. The rapid change in the Linux-mm
– see section 2.4.3 – makes it very difficult to keep a stable implementation.

Requirement 25: Kernel reuse The implementation should not break
the encapsulation of the kernel’s internal data structures, unless absolutely
neccessary.
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4.2 Design

The design elaborated for the implementation of the accompanying online
memory tester aims to satisfy the requirements presented in section 4.1. This
section describes the components that form the implementation, how they
relate to each other, and why this design has been chosen.

4.2.1 Guiding Ideas

The guiding ideas of the design are to maximize the amount of code that runs
in user space, and to minimize the amount of code running in kernel space.
Secondly, as much of the implementation should be designed in such a way,
that it is easily replaceable.
Bugs in kernel code can lead to fatal crashes and data corruptions, this is why
kernel code should be reduced as much as possible. User space programs allow
a much finer adherence to the principle of least privilege (requirement 22), and
the isolation of processes allows a better fault isolation (requirement 20).
Developing user space programs is considered to be significantly easier than
writing and debugging kernel level code. This lowers the gateway hurdle for
modifications and extensions (requirements 8+9, 14, 15, 18+19), and greatly
eases testing (23).
Running code in user space also eases the task of profiling the implementations
performance (requirements 11–13, and 16+17), because profiling of user space
components is often easier than profiling kernel components.

4.2.2 Overview of the Design

Figure 4.1 presents the components of the implementation. A major focus had
been laid on a modularized design. Core components like test algorithms for
fault models (compare requirements 1 and 8), and the difficult task of acquiring
specific memory regions from the kernel (requirements 3–7) are implemented
as strategy patterns [61].
All code running in the kernel is designed as a kernel module. This decision
supports encapsulation and modularity (requirement 19), and increases main-
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Figure 4.1: Package Diagram of the Design
The package diagram of the implementation shows seven pack-
ages, six of them are a part of the implementation.
The TestScheduler, on the left side, determines which frames
are to be tested when, and how. Algorithms for different fault
models are implemented according to the strategy pattern.
Kernel based services are located in the middle column. At
the top is the StructPageMap package that allows user space
processes to mmap the page-flags into their address room
(see section 4.2.2.1). Below it are the Linux kernel and the
PhysMem module which implements the functionality, giving the
user space access to the frames acquired by the PageClaiming
Implementations.
On the right side, the MemoryVisualization package can col-
lect snapshots of the page-flags and generate videos that visu-
alize the behaviour of the mm.

tainability (requirement 24), but also has drawbacks. The kernel subsystems,
especially the mm, protect their internal data structures, and the routines to
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modify them by not exporting them to kernel modules [53, 87]. Routines that
manipulate these structures need to be able to access them, and this requires
the kernel to be patched to export these symbols (compare to section 5.3.1).

Memory is managed in frame granularity, the same granularity the Linux mm
uses to manage memory. On x86 systems the size of frames is 4KiB, the larger
frame sizes of 2MiB, and 4MiB are not supported by the implementation.
This fulfills the requirement for neighbourhoods, as stated in requirement 10.

4.2.2.1 Reusing Kernel Functionalities

Given the complexity and the volatility of the kernel’s behaviour and imple-
mentation, it is important to reuse as much as possible of the kernel’s existing
infrastructure. Two central needs of the implementation are good examples for
kernel-reuse.

The decision which frame should be tested when is made by the PageScheduler
(see figures 4.1 and 4.3). To determine the optimal set of frames to be scheduled
for testing, the scheduler must balance two factors: the cost of acquiring the
frame, and the criticality that the frame is tested by the next test. The later
value mainly depends on how long this frame has not been tested. The former,
the cost estimation, heavily depends on the current usage of the frame. With
the experience of how cost intensive the acquirement of similar frames had been
in the past, the future cost of acquisition can be estimated.

An important indicator of the to be expected cost are the page-flags the kernel
uses to manage frames [62]. The pagemap patches [11] allow the user space
to access the page-flags by reading the /proc/kpageflags file. Although this
access is rather slow because each read access results in a systemcall, it is
preferred over the StructPageMap module that allows the page-flags to be
mmaped into the caller’s address space. StructPageMap has been implemented
as a part of this diploma thesis, but because of the re-use requirement (25) its
usage has been replaced by /proc/kpageflags.

Requirement 2 states that frames that have been found to be faulty must not
be used again by the kernel. By leveraging the HW-Poison patches [79, 60],
the implementation can fulfill this requirement with relative ease.
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4.2.3 Design Decisions

The act of writing software often includes deliberate decisions for, or against
tools, programming languages, and design principles. Several decisions have
been made in the planning process of the implementation. Two of them,
the decision to use the scripting language Python [19] for the user space
implementation, and the decision how the user space implementation interacts
with the kernel space implementation are worth a further discussion.

4.2.3.1 Implementing the User Space in Python

Python is an object oriented scripting language available on a variety of
operating systems. It is easy to learn, allows rapid development, test driven
design, and can use the system calls used for the kernel implementation [18, 17].
Further it allows to incorporate C libraries [16] and is supported by the C
interface compiler SWIG [21].
Implementing the user space, especially the test routines of the fault models, in
a scripting language seems counterintuitive, if the goal of the implementation
is to evaluate the performance impact of a memory tester. In section 4.1.4
it has already been discussed, that the performance of the implementation is
of secondary importance. The decision for python had been made because it
seemed that the benefits of using a high level scripting language by far outweigh
the performance penalty.

4.2.3.2 Tying the Acquired Memory to the Caller Process

The kernel implementation that acquires memory for the caller ties the acquired
memory to the calling process. This has the advantage, that a process that
acquires memory will free the memory latest when it terminates, or earlier.
Although this makes an interaction between a scheduler process and a memory
tester implementation running in a different process more difficult, it prevents
memory leaks (requirement 21).
Implementation wise, this is done by associating a session to the file descriptor
the client uses to communicate with the kernel module. Memory allocated
to a session is freed as soon, as the file handle closes. Figure 4.2 shows the
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Figure 4.2: State Diagram of the Session
This state chart shows, how the users session is handled inside
the PhysMem module. The state of the session determines the
reaction to requests such as mmap/munmap, configure or
close.
By opening the /dev/phys_mem device, the client implicitly
opens the session. The next step of the client is to send
a request for frames. This causes the session to enter the
Configuring state. The frame acquisition is then handled in-
side the Configuring state. Once all frame requests have been
handled, the session moves to the Configured state, where the
client can use the file descriptor to request the result of its
request, and to mmap the acquired memory into its address
space.

states, the session can be in, and how the proper release of allocated memory
is enforced by unwinding the session state-machine of the, if the file handle is
closed.

4.2.4 Scheduler & Frame Acquisition

Figure 4.3 focuses on the test-, or frame-scheduling component. To fulfill the
requirements of flexibility, and extensibility, the scheduler is designed to make
heavy use of decoupling patterns such as Dependency Injection, and Strategy
Objects. Although not stated by the requirements, the scheduler persists its
internal state and the knowledge it gathered about individual frames, and frame
acquisition costs. This allows the scheduler to be shut down, and restarted
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1 struct phys_mem_frame_status {
2 struct phys_mem_frame_request request;
3 /* A pointer to the first byte of the frame , relative to the start of the VMA */
4 unsigned long long vma_offset_of_first_byte;
5 // ...
6 /* How long did it take to get a hold on this frame? Measured in jiffies */
7 unsigned long long allocation_cost_jiffies;
8 /* A single item of SOURCE_* (optionally ORed with one SOURCE_ERROR_ *) */
9 unsigned long actual_source;

10 };
11
12 struct phys_mem_frame_request {
13 unsigned long requested_pfn;
14 unsigned long allowed_sources; /* Bitmask of SOURCE_* */
15 };
16 // ....
17
18 struct phys_mem_frame_request frame_requests [20];
19 // ... fill the frame_requests and choose for each individial frame which claiming strategy should be

used , by assigning a bitmap of sources to the allowed_sources fields.
20 struct phys_mem_request r;
21 r.num_requests =20;
22 r.protocol_version =1;
23 r.req = &frame_requests;
24
25 ret = ioctl(dev , IOCTL_REQUEST ,&r);
26 // ...
27 // the file descriptor now allows the client
28 // to read and seek in the file.
29 // The file content is an array of r.num_requests
30 // struct phys_mem_frame_status instances
31
32 void* mem = mmap(0, num_successfully*PAGESIZE , ...,dev ,0);
33 // mem now points to the acquired memory

Listing 4.1: Requesting Memory From the Module

This listing exemplifies, how a client could acquire 20 spe-

cific frames from the kernel module. Lines 1–16 contain some

of the data types used. The actual request is conducted in

line 25. Not shown is the part where the client reads the

file dev and collects the result of the request by reading the

struct phys_mem_frame_status instances from the file.

without losing important historic data.

To give the scheduler more control over the acquisition process, it can control,
which strategies are used to acquire each frame. This allows the scheduler
to adapt to the circumstances, e.g. the scheduler can choose a slower but
more capable claiming strategy, if it finds this is needful. See listing 4.1 for
an example. In addition to choose the acquisition strategy, the scheduler can
also choose, and change, the fault model at runtime, and individually for each
frame.

Figure 4.4 focuses on the kernel side of the design. The key concepts here are
strategies for frame acquisition, strong coupling of clients to a session, and
using mmap to allow the client to access the memory.
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Figure 4.3: Package Diagram of the Design, focused on the Test Scheduler
This diagram focuses on the Test Scheduler component, and
is a focused view on figure 4.1.
The Test Scheduler component can be broken into core
basic parts: A view on the current state of frames
(PhysicalFrame), persistent historic meta-data about each
memory frame (TestHistoryRepository, FrameTestStatus),
test routines that implement the fault models (Inter-
face TestInstance, implemented by strategies in package
FaultModel Implementation), and the central scheduling im-
plemented in the PageScheduler.
The page scheduler determines the frames to be tested using
the current status of the frame, and historic information about
the frame, e.g. time since last successful test, number of errors
found in the frame, etc.
By persisting the meta-data in FrameTestStatus, the scheduler
can be shut down and restarted without losing this data.
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4.2.5 Memory Visualization

The objective of the memory visualization is to create images or videos that
visualize the usage of system memory over time. This diploma thesis implements
two visualizations: One implementation to track the mapcount of a page, that
is, how often the frame is mapped into memory. The other implementation
interprets the pageflags, and maps them into an image. By altering the
interpretation of the frame flags, different aspects of the mm can be highlighted.
E.g., by specially marking dirty (not written back to storage) pages, the
distribution of these pages can be tracked. By highlighting all frames used by
anonymous memory, the user can track the memory usage of processes. Figure
4.5 is an example for such an interpretation.
In order to decouple data gathering and image processing, both tasks are split
up into two different programs. A shell script is used to gather data, and a
python application batch processes the data into images, which then can be
stitched together to a video.
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Figure 4.4: Package Diagram of the Design, Focused on the PhysMem
Module
Despite the seemingly complex class diagram, the PhysMem
kernel module is designed in a very straight forward manner.
The client can request frames, and map the acquired frames
into their address space. In this context, the strategies for
frame acquisition are called sources. After the request has been
processed, the client reads the result of the request via the
read call of the file handle. The returned data contains metrics
about the request. The client accesses the memory by mmap.
If a client detects a faulty frame, it uses the reportBadFrame
method of the Session, the memory frame is then offlined by
utilizing the HW_POISON module.
Not shown is the design of the mapping from calls to the
file interface to the Session interface. This is designed to be
implemented by state-specific adapters from the file interface
to the Session interface.
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Figure 4.5: Example of Visualised Memory Usage
This image is a snapshot of a machine with 2GiB of RAM
while it compiles the Linux kernel. Each pixel resembles one
frame. Green pixels are anonymous memory, blue pixels are
active frames, and red frames are free frames. Black pixels are
either not available (the bottom half), or are not textured by
the used visualization algorithm.
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Chapter 5

Implementation

Chapter 5 discusses, how the implementation reflects the requirements, and
the design stated in chapter 4. Further areas, that posed difficulties – or
opportunities – are discussed. The first part discusses implementation details
of the user- and kernel-space. The second part discussed challenges and a
case, where a part of the Linux kernel that was meant to be central to the
implementation turned out to be unusable.

5.1 Kernel Space

Section 4.2 stated, that the implementation inside the kernel should be as
simple, and as safe as possible. This section highlights two parts of the
implementation. The first shows, how the state machine described in figure 4.2
is implemented. The second part reviews the implementation that handles the
actual acquisition of frames. The naming convention in the source code uses a
slightly different naming, for this discussion the terms acquisition and claim
are used synonymously.

5.1.1 Handling the Session State Machine

The contract of the kernel module states, that a client has to request a batch of
frames for testing, and that the client can mmap these frames into its address
space only after the session is configured.
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1 int phys_mem_open (struct inode *inode , struct file *filp)
2 {
3 // ...
4 sema_init (&session ->sem ,1);
5 // ...
6 session ->status.state = SESSION_STATE_INVALID;
7 SET_STATE(session , SESSION_STATE_OPEN);
8 /* and use filp ->private_data to point to the session data */
9 filp ->private_data = session;

10 // ...
11 }
12
13 int phys_mem_release (struct inode *inode , struct file *filp)
14 {
15 // ...
16 session = (struct phys_mem_session *) filp ->private_data;
17 // Depending on the state of the session we need to do several
18 // steps. This "fast’n’furious" implementation of the state
19 // machine is chosen over the ’real’ steps because
20 // this way it is much cleaner.
21 while ( GET_STATE(session) != SESSION_STATE_CLOSED) {
22 switch(GET_STATE(session)) {
23 // ...
24 case SESSION_STATE_OPEN:
25 SET_STATE(session , SESSION_STATE_CLOSED);
26 break;
27
28 case SESSION_STATE_CONFIGURING:
29 // ...
30 case SESSION_STATE_CONFIGURED:
31 // Free all claimed pages
32 free_page_stati(session);
33 SET_STATE(session , SESSION_STATE_OPEN);
34 break;
35
36 case SESSION_STATE_MAPPED: break;
37 // ...
38 SET_STATE(session , SESSION_STATE_CONFIGURED);
39 break;
40 }
41 }
42 // ...
43 }
44
45 //
46 /**
47 * The file operations indexed by the session state. Dispatcher functions
48 * extract the sessionstate from the file* and call the matching implementation
49 * fops_by_session_state[status ].op
50 *
51 */
52 struct file_operations fops_by_session_state [] = {
53 {
54 /* CLOSED */
55 .llseek = NULLi , .read = NULL , .ioctl = NULL , .mmap = NULL ,
56 },
57 {
58 /* OPEN */
59 .llseek = NULL , .read = NULL , .ioctl = file_ioctl_open , .mmap = NULL ,
60 },
61 {
62 /* CONFIGURING */
63 .llseek = NULL , .read = NULL , .ioctl = NULL , .mmap = NULL ,
64 },
65 {
66 /* CONFIGURED */
67 .llseek = file_llseek_configured , .read = file_read_configured , .ioctl = file_ioctl_open , .mmap =

file_mmap_configured ,
68 },
69 {
70 /* MAPPED */
71 .llseek = file_llseek_configured , .read = file_read_configured , .ioctl = NULL , .mmap =

file_mmap_configured ,
72 },
73 };

Listing 5.1: Session State Handling

This listing shows, how the file-operations are handled by the

state machine, and how the proper termination of the session is

enforced in phys_mem_release.
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To allow a clean structure and assertable preconditions in the handler routines,
an automaton has been implemented (listing 5.1). Systemcalls on the file-handle
are dispatched via tables of virtual methods, similar to how vtables are used
in many C++ compilers to implement virtual methods. The most interesting
method is phys_mem_release, as it unwinds the state machine from any state
to the closed state.

5.1.2 Handling the Frame Acquisition

Listing 5.2 shows the method that moves the statemachine from Open through
Configuring to Configured. The method is implemented in a loop that
iterates over each frame requested by the client to acquire (claim) the frame.
The actual frame acquisition is implemented by the strategy objects. See line 6
for the strategy objects configured for the depicted build.

Each strategy implementation verifies the allowed_sources bitmask passed
by the client. A strategy those id is not included in the allowed sources simply
returns CLAIMED_TRY_NEXT.

The whole implementation is very simple and modular, allowing the developer
to extend and modify the implementation with relative ease.

5.1.3 Reflection on the Kernel Implementations Design

It turned out, that the design allowed the kernel module, and the frame
acquisition strategies, to be tested from the user space. This greatly helped
the development and is a contribution to requirement 23.

Further, the design lends itself to an explorative implementation of a kernel
based implementation of a fault model. This implementation has not been
incorporated into the final version because its performance did not differ from a
likewise explorative user space implementation of the same fault model. Having
seen, that a fault-detection routine running in user space is not significantly
slower than a routine running in kernel mode backs up the decision to locate
the actual test in user space.
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1 /**
2 * These are the methods that the module uses to claim a page.
3 */
4 // try_claim_method try_claim_methods [] = {try_claim_free_page ,try_claim_free_buddy_page ,

try_claim_page_in_page_cache ,try_claim_page_from_user_process , NULL};
5 // try_claim_method try_claim_methods [] = {try_claim_free_buddy_page ,NULL};
6 try_claim_method try_claim_methods [] = {try_claim_free_buddy_page , try_claim_page_via_hwpoison , NULL};
7
8 int handle_request_pages(struct phys_mem_session* session , const struct phys_mem_request* request)
9 {

10 // ...
11 {
12 /* The VMA maps all successfully mapped pages in the same order as they appear here.
13 * To make the users live easier , the relative offset of the frames gets returned in

vma_offset_of_first_byte.
14 */
15 // ...
16 for (i = 0; i < request ->num_requests; i++) {
17 struct phys_mem_frame_request __user * current_pfn_request = &request ->req[i];
18 struct phys_mem_frame_status __kernel * current_pfn_status = &session ->frame_stati[i];
19
20 if (copy_from_user (& current_pfn_status ->request , current_pfn_request , sizeof(struct

phys_mem_frame_request))){
21 // .. FAIL
22 }
23
24 /* current_pfn_status now points to a blank page status
25 */
26 jiffies_start = get_jiffies_64 ();
27
28 if (unlikely (! pfn_valid(current_pfn_status ->request.requested_pfn))) {
29 // .. FAIL
30 }else{
31 struct page* requested_page = pfn_to_page(current_pfn_status ->request.requested_pfn);
32
33 if (unlikely(NULL == requested_page)){
34 // .. FAIL
35 }
36 try_claim_method claim_method = NULL;
37 // ...
38 /* Iterate each method until a) success or b) failure or c) no more methods */
39 while (CLAIMED_TRY_NEXT == claim_method_result) {
40 claim_method = try_claim_methods[claim_method_idx ];
41
42 if (claim_method)
43 claim_method_result = claim_method( requested_page , current_pfn_status ->request.

allowed_sources , &allocated_page , &current_pfn_status ->actual_source);
44 else
45 claim_method_result = CLAIMED_ABORT;
46
47 claim_method_idx ++;
48 }
49 if (CLAIMED_SUCCESSFULLY == claim_method_result){
50 current_pfn_status ->pfn = page_to_pfn(allocated_page);
51 current_pfn_status ->page = allocated_page;
52 current_pfn_status ->vma_offset_of_first_byte = current_offset_in_vma;
53 current_offset_in_vma += PAGE_SIZE;
54 } else {
55 /* Nothing to do , reset object */
56 // ...
57 }
58 }
59 // Record the time it took to acquire this frame
60 current_pfn_status ->allocation_cost_jiffies = jiffies_used;
61 }
62 }
63 SET_STATE(session , SESSION_STATE_CONFIGURED);
64 // ...

Listing 5.2: Handling Frame Acquisition

This listing shows, how a clients request is handled. The loop

from line 16–61 iterates over each requested frame and tries to

acquire the frame in line 43.
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1 $ # start the memory test
2 $ ./main.py
3
4 0x230000 frames (2293760 decimal), of which are 945815 tested (41.2 %) and 1347945 untested (58.8 %),

0 have seen errors.
5 For tested frames , the following statistics have been calculated:
6 Time it took to claim a frame (in jiffies) (min ,max ,avg) : 0, 1, 0
7 Timestamp of last test (min ,max ,avg) : 2010 -06 -03 22:30:22 , 2010 -06 -04 11:23:32 , 2010 -06 -04 05:03:00
8 ...
9 ^C

10 KeyboardInterrupt
11 $ ./main.py
12
13 0x230000 frames (2293760 decimal), of which are 945899 tested (41.2 %) and 1347861 untested (58.8 %),

0 have seen errors.
14 For tested frames , the following statistics have been calculated:
15 Time it took to claim a frame (in jiffies) (min ,max ,avg) : 0, 1, 0
16 Timestamp of last test (min ,max ,avg) : 2010 -06 -03 22:46:30 , 2010 -06 -13 12:34:09 , 2010 -06 -04 05:42:36

Listing 5.3: Output Of the Scheduler
This listing shows the output of the scheduler when it runs on a
machine with 8 GiB of memory (2293760 frames of 4 KiB).
Lines 4–7, and 13–16 show statistics about the testing process.
Remarkably is the nearly non-existent cost of frame acquisition
(this test scheduler only tested free buddy pages).

In line 9 the test has been canceled by the user. Lines 12–16

show, that the scheduler implementation can transparently cope

with restarts.

5.2 User Space

The user space contains both the frame scheduler, and the fault model-
implementations. The implementation contains two different fault models
(requirements 8+9), and two different scheduling strategies. The scheduling
strategies mainly differ in the amount of frames to request from the kernel
module.

Listing 5.4 shows a shortened implementation of a scheduler. The design
presented in chapter 4 proved itself again by allowing a very easy and straight-
forward implementation. Extensive unit tests, and the creation of libraries
supported this as well.

In fact, most of the implementation complexity has been moved into libraries,
easing the implementation of new scheduling strategies. All in all, the python
implementation consists of ca. 3000 lines of code, including ca. 800 lines of
unit tests.
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1 from scheduling.helpers import is_free_buddy
2 from scheduling.helpers import is_anon_page
3
4 class SimpleBlockwiseScheduler(object):
5 # ...
6
7 # Main loop
8 def run(self , first_frame ,last_frame , allowed_sources):
9

10 max_blocksize = 100
11 max_non_matching = 100
12
13 cur_non_matching = 0
14
15 block = []
16
17 for pfn in xrange(first_frame , last_frame):
18 frame_status = self._pfn_status(pfn)
19
20 if ( self.should_test(frame_status)):
21 block.append(frame_status)
22 cur_non_matching = 0
23 else:
24 cur_non_matching += 1
25
26 if (len(block) > 0 ):
27 self.test_frames_and_record_result(block , allowed_sources)
28
29
30
31 # evaluate , if the frame should be tested now
32 def should_test(self ,frame_status):
33 now = self.timestamping.timestamp ()
34 time_untested = now - frame_status.last_successfull_test
35 return (time_untested > self.max_untested_age )
36
37 def test_frames_and_record_result(self ,frame_stati , allowed_sources):
38 # ...
39 # Claim the memory
40 results = self._claim_pfns(pfns , allowed_sources)
41
42 for frame in results:
43 if frame.pfn in status_by_pfn:
44 # ...
45 if frame.is_claimed ():
46 # ...
47 is_ok = False
48
49 with self.physmem_device.mmap(physmem.PAGE_SIZE * num_frames_claimed) as map:
50 # It is better to handle bad frames after they are unmapped
51 is_ok = self.frame_test.test(map ,frame.vma_offset_of_first_byte ,physmem.

PAGE_SIZE)
52
53 if is_ok:
54 # ...
55 self._report_good_frame(frame.pfn)
56 else:
57 # ...
58 self.physmem_device.mark_pfn_bad(frame.pfn)
59 self._report_bad_frame(frame.pfn)
60 # ...

Listing 5.4: Implementation of a Scheduler

This listing shows the core functionality of a frame scheduler.

The implementation presented here gathers batches of frames

to be tested (lines 10–24) based on an evaluation function that

determines, whether the frame should be tested or not (lines

32–35). Starting with line 37, the actual test is implemented.

Line 51 shows the call to the strategy that implements the fault

model, and line 58 shows how the scheduler reports a bad frame

to the kernel module.
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5.3 Implementing a Memory Tester for Linux

In section 2.4 it had been discussed, whether or not Linux is a suitable operating
system to implement an online memory test. On the plus side for Linux are
a sophisticated operating system with a broad user base, wide spread usage,
and an open source license suitable for scientific publication. The lack of
coherent documentation – especially for 64 bit kernels, where documentation is
nearly non existent –, the lack of stable kernel interfaces, and the rapid and
far-reaching changes made in the memory subsystem make development for the
mm very difficult.

5.3.1 Difficulties

Matters are complicated further by the fact that the existing implementation
and documentation cover the regular way of memory allocation: The client
requests memory of a certain size and with certain properties, e.g. “allocate
x-frames of memory in the DMA zone, and do not sleep”. The mm allocates
memory suitable for the clients request in a highly optimized way.
The requirements of a memory tester are very different: A memory tester needs
to access each physical frame available in the system. To do so, the memory
test needs to allocate memory not by size, but by frame.
Using the example of the simplified mm architecture in figure 2.6, the difference
between the two needs can be visualised as top down versus bottom up. A
regular memory allocation, e.g. by a process that needs more memory, traverses
the software stack top-to-down.
Each layer uses the service of the layer below. In doing so, the ownership of
memory, concretely the ownership of struct page instances, is changed. As
soon, as the ownership of objects passed from the callee to the caller, the caller
can use these objects as it needs. The caller can store references to the objects
in the callers internal data structures, the caller can appoint specific contracts
about handling these objects – without regard to the previous owner. In short,
the lower layers of the software stack should not, and in most cases cannot,
reclaim a specific frame because it often is not even clear, who currently owns a
frame, let alone how the frame is used in the current owners internal structures.
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A memory tester that needs to claim a specific frame needs to solve exactly
these problems, it needs to traverse the software stack bottom-up. For example,
if the memory tester wants to claim a specific frame that is known to be free
via the Buddy Allocator, it needs to directly manipulate the internal data
structures of the Buddy Allocator. In doing that, it has to account for the
data structures themselves, and the dynamic behaviour of the Buddy Allocator,
including threading and locking. Being thoroughly optimized for performance,
especially the dynamic behaviour of the whole Linux kernel is very difficult to
understand.
If the pace of changes to the Linux kernel, and the other aspects discussed in
section 2.4.3 are taken into account, the only viable solution seems to be to
rely on existing structures in the kernel, that – sometimes only partially – solve
similar problems.

5.3.1.1 Stability of the HW-Poison Component

The HW-Poison component [79] within the Linux kernel handles memory
hardware detected memory errors. It is sponsored by Intel [72], and a part of
the Linux kernel since June 2009 [60].
A central part of its functionality is the ability to free frames currently used by
various parts of the system. In accordance with requirement 25, the original
concept based on the idea to utilize the HW-Posion component as a cen-
tral acquisition strategy for the kernel module. Further strategies would be
implemented to provide extensibility, and modularity (requirements 18+19).
They would handle performance, and other issues found with the HW-Poison
component.
Unfortunately, the HW-Poison component turned out to be unusable for the
implementation. Despite being stated by its implementation documentation
[79], it was impossible to return frames acquired by the HW-Poison component
back to the system. In effect that meant, that using the HW-Poison component
as strategy implementation would deplete the system of all usable memory.
Additionally, using the HW-Poison strategy caused very frequent system lockups,
and “mm-OOPS”.
In private communication, one of the authors of HW-Poison said, that it should
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work for a “standard user space page, no race (no ptrace, direct IO, fork, hard
offline in parallel etc.)”, but unfortunately this did not work as of kernel 2.6.34.

Proactive Memory Error Detection for the Linux Kernel 101





Chapter 6 · Evaluation

Chapter 6

Evaluation

This chapter evaluates the implementation with respect to performance, and
fulfillment of the requirements.

6.1 Performance

Evaluating the performance of a complex system is a complex endeavour in itself,
and meaningless, if it is not clear what should be measured. The performance
goals of the implementation are stated in the first chapter: To be able to
estimate, if running memory tests on a production low-end server is feasible.

The performance metrics chosen for this diploma thesis are closely related to the
applications most often found on the targeted class of machines. For this reason,
the choice fell to measuring the performance of a complete application stack
consisting of MySql [15], apache2 [2], and the content management platform
Drupal [3]. The application stack is tested by using ab, the apache HTTP
server benchmarking tool [1].

Compiling the Linux kernel puts a heavy load on a system. Measuring the
time it takes to compile the Linux kernel while the memory tester runs in the
background is another benchmark measured for this diploma thesis.
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6.1.1 Hardware

The system used for benchmarking had a AMD Athlon(tm) 64 X2 Dual Core
Processor 4600+ with 2.4 Ghz installed. Memory wise the system had 8 GiB
of DDR2 memory (800MHZ) installed.

6.1.2 Evaluating the Impact on a Web-Application Stack

The following test setup has been chosen: The Drupal installation uses a local
MySql database for storage. The Drupal installation is filled with example
data1. A remote hosts conducts load tests by running the ab benchmarking
tool over gigabit ethernet.
The assumption is that the memory test reduces the performance of the
application. To test this, the performance benchmark is run under three
conditions.
The following variations were chosen for measurement:

No Test The benchmark is run without the memory tester running.

Low Priority The benchmark is run with the memory tester running with
low priority (by running it with nice 20).

Normal Priority The benchmark is run with the memory tester running with
normal priority.

The following performance metrics were chosen for measurement:

Requests/Second The number of requests served by the web-application per
second.

Frames/Second The number of frames tested by the memory tester using
the linear time complexity algorithm. Measured in frames per second.

The results of these tests can be seen in figure 6.1. It seems, that the running
memory tester did have no impact on the performance of the web application.

1An archive with the used example data and application can be downloaded here:
http://drupal.org/node/664000
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Further investigation showed, that the application cached the result pages in
memory, and this made it very resilient to the CPU-bound load of the memory
test. To verify this theory, the test has been redone by replacing ab with the
vulnerability scanner skipfish [34]. As a vulnerability scanner with a brute
force approach, skipfish puts a much higher load on the system, and – more
important – uses HTTP POST operations that are not cached by the application.
The results ascertained by running skipfish were partly difficult to interpret.
Due to the probabilistic nature of the skipfish tests, the performance metrics
gained from the client side were not conclusive: The requests per second metric
varied between 2417 and 3243, independently whether an instance of the test
application ran or not. It could be measured though, that lowering the priority
of the testing process has an affect on the number of frames scanned per second,
while the scan ran: 4 frames/s for a process with normal priority, 0 frames/s
for a process that has been “niced” by 20.

6.1.3 Evaluating the Impact on Kernel Compile Time

The following test setup has been chosen: The Linux kernel is compiled with
the −j2 flag, instructing the compile chain to use both of available processor
cores.
The assumption is that the memory test increases the time it takes to compile
the Linux kernel.
The same variations as in the web application-case were chosen for measurement.
The following performance metrics were chosen for measurement:

Seconds to Compile the Kernel The number of seconds it took to compile
the kernel.

Frames/Second The number of frames tested by the memory tester using
the linear time complexity algorithm. Measured in frames per second.

The results of these tests can be seen in figure 6.2. Running the memory test
does have an impact on the kernel compile time. When the memory test is
run with reduced priority, the kernel compile time is not affected to the same
extend. The influence of the reduced process priority posed the question, what
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caused the kernel compile time to be increased in the first place. Two possible
factors were identified: Processor utilisation, and memory bandwidth.
To determine the influence of these two factors, two micro benchmarks were
realised. The first benchmark compiled the kernel while a task put significant
strain on the CPU by running in a tight loop. The second benchmark stressed
the memory bus by continuously writing in a 16 MiB memory area.
The results of this benchmark can be seen in figure 6.3. Again, the priority of
the stress test had a very significant influence on the performance of the kernel
compilation. This can be explained by assuming that in this benchmark the
CPU cycles are more scarce than memory bandwidth.

6.2 Requirements

The following sections discuss, in how far the implementation has met the
stated requirements, and were is room for improvement.

6.2.1 Stability

Manipulating the memory management of a running kernel is a very risky
thing to do, and for that reasons, system stability is an important topic to
discuss. The implementation presented in this thesis has proven to run very
stable by letting the memory tester run on a live webserver for more than
three days without any stability problems. Said experiment ran solely with the
Buddy-allocation strategy enabled. This strategy aims to fulfil requirement 5,
and allows to acquire free buddy pages by manipulating the buddy allocators
internal structures. The free page cache strategy, and the anonymous memory
strategy lead to reproducible crashes an corruptions. Using the HW-Poison
strategy lead to the same results.
On one hand, the overall stability of the system is to be judged positively,
because the implementation ran for several days, and was only stopped for a
scheduled downtime. On the other hand, the stability the important strategy
components is imperfect. Despite this restriction, the implementation can be
said to be very stable – among other things this can be attributed to strict
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adherence to the principle of least privilege, and the schedulers ability to select
the acquisition strategies.

Regarding the requirements stated in section 4.1 it can be said, that all stability
related requirements (20–25) are met.

6.2.2 Memory Coverage

It is required, that the implementation should be able to test a substantial
amount of the installed memory (requirement 3). The long term test mentioned
in the previous section ran on a machine with 8 GiB of memory. At the end of
the three days, the implementation had been able to test 68% (5.44 GiB) of all
memory frames.

Regarding the requirements stated in section 4.1 it can be said, that not all
memory coverage related requirements (3–7) are met. This can be explained by
the extreme complexity and difficulty of interfering with the Linux mm. The
stability issues that prevented the HW-poison patches from being used are an
evidence for this complexity.

6.2.3 Error Detection

A core requirement is that the implementation must be able to detect memory
errors. To reliably verify the detection capabilities of a memory tester it needs to
run in an environment with known errors. This task can be greatly simplified by
running the detection software in a simulated environment with fault injection
capabilities. One such environment is the FAUmachine [100] developed at the
Friedrich-Alexander-Universität Erlangen-Nürnberg. Using the FAUmachine
all of the injected stuck-at faults have been found. The faults were carefully
injected into locations known to be free, and testable by the implementation.
This proved w.l.o.g. that the requirement of fault detection (requirement 1) is
fulfilled. An inspection of the page-flags of the identified frame showed, that
the HW_POISON flag had been set. This flag prevents the Linux mm to use this
frame for further allocations, thus fulfilling the requirement of page isolation
(2).
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6.2.4 Visualisation

The implementations ability to visualize the memory usage has already been
presented in section 4.2.5, thus the requirement of visualising the memory usage
(requirement 15) is fulfilled.

6.2.5 Fulfilment of Requirements

Nearly all the 25 stated requirements have been fulfilled, only two requirements
– reliably testing anonymous memory and frames in the page cache – are still
too unstable to consider them fulfilled.
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Figure 6.1: Performance Evaluation: Web Application
This figure show the results of a benchmark that simulates a
webserver with mostly read-only accesses, which can be served
mostly from a cache.

The chart shows how the performance of the memory tester
(bars 1 a-c), blue) and the performance of the web-application
(bars 2 b-d), green) varies under the four test scenarios.
The following test cases are depicted:

a) Running the memory test without accessing the web
application.
b) Running the memory test with low priority while accessing
the web application with ab.
c) Running the memory test with normal priority while
accessing the web application with ab.
d) Accessing the web application with ab, without a running
memory tester.

The ab tests where conducted with 5 concurrent sessions re-
questing a total of 20000 requests. Each test case was conducted
five times. The numbers shown in the chart are the medians of
the five measurements.
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Figure 6.2: Performance Evaluation: Kernel Compilation
This figure shows how running a memory tester and compiling
the Linux kernel affect each other.

The chart shows how the performance of the memory tester
(bars 1 a-b), blue) and the time it took to compile the kernel
(bars 2 a-c), green) vary under the three test scenarios.
The following test cases are depicted:

a) Running the memory test with low priority while compiling
the kernel.
b) Running the memory test with normal priority while
compiling the kernel.
c) Compiling the kernel without running a memory tester

Each test case was conducted five times. The numbers shown
in the chart are the medians of the five measurements.
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Figure 6.3: Performance Evaluation: Kernel Compilation Micro Bench-
mark
This figure shows how stressing the memory bus/the CPU
affects the time it takes to compile the Linux kernel.

The chart shows kernel compilation time, while the system was
put under stress at the same time.
The following test cases are depicted:

a) Running memory stress test with normal priority while
compiling the kernel.
b) Running CPU stress test with normal priority while
compiling the kernel.
c) Running memory stress test with low priority while
compiling the kernel.
d) Running CPU stress test with low priority while compiling
the kernel.

Each test case was conducted two times. The numbers shown
in the chart are the average of the two measurements.
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Chapter 7

Conclusion

This chapter concludes this diploma thesis, and answers the question, whether
the author deems online memory tests for low- to mid-range servers to be
feasible. The question will be answered by examining three aspects of the
question: The technical feasibility, the impact on the systems performance, and
the question, whether hardware based mechanisms would be better suited than
a software implementation, or not.
This diploma thesis has proven that, technically, a software based memory
scrubber is possible to implement. The immense amount of work and trial and
error necessary to interfere with the internals of the Linux mm put this technical
possibility into another light. Without a coordinated effort from the Linux
kernel developer community it would be very difficult to extend the existing
acquisition strategies, and – more important – keep them working correctly
with the next kernel release. The current interest of the mm maintainers in
memory fault handling (see section 3.2.3.1) could inspire further research in
this area, and turn a technical possibility into a feasible endeavour.
Chapter 6 showed, that the performance impact of an online memory test
depends on the workload of the system. For the targeted range of servers,
especially those that mainly host non high-performance websites, the impact of
an online memory test is tolerable to negligible.
This is an surprising result, because discussions privately held with kernel
developers showed, that they thought that this kind of test would have a
significant impact on the system performance.
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The question, if a software based memory test is better than hardware based
ECC cannot be answered with a single yes or no. Memory subsystems equipped
with ECC provide a basic level of protection that greatly increases system
reliability. Further, ECC subsystems can actively correct detected errors,
something that cannot easily be done by a software based memory test. Despite
these advantages of hardware based mechanisms, a software based mechanism
has its own advantages. Software based mechanisms are far less restricted in
the fault models they support. Standard SEC-DED ECC simply cannot detect
a three bit error, a software based test can detect three bit errors, and many
more. In theory, a software based test can implement complex fault models
like the one proposed by Hayes (section 2.2).

Hybrid systems like virtualized ECC (section 3.3.2) can unify both worlds. But
until these techniques reach the mainstream market, a software based memory
test can still increase the reliability of RAM by detecting (complex) errors as
soon as possible.

7.1 On the Feasibility of Modifying the Linux

mm

A lesson learned from the experience of working with the Linux mm is, that the
mm is a complex system with a lot of global state, fine grained synchronization,
and very little coherent documentation. This can partially be attributed to
the small group of people responsible for crafting the mm. Highly specialised
developers and researchers working in an area of the kernel that was known
for its difficulty even in the kernel 2.4 days [62] lead to an environment, where
one just knows, which lock relates to which tasks, and who modifies what data
structure under which circumstances. The stark focus on tuning caching, TLBs,
and performance in general further complicates the comprehension of the static
and dynamic behaviour of the mm.

The author of this diploma thesis has the notion that the mm would be
much more accessible and malleable, if these implicit dynamic and locking
dependencies would be reified as comprehensible aspects.
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7.1.1 Adapting the System to Other Architectures

The memory problems described in this thesis are not restricted to systems
running Linux. It would be interesting to compare the effort of implementing a
memory test on a micro kernel architecture, e.g. L4, to the effort of implementing
the Linux pendant. The greatly reduced memory footprint of a micro kernel
would allow a much greater test coverage of testable memory. Additionally the
test overhead is probably reduced, because micro kernels generally define much
cleaner and stricter interfaces, than conventional monolithic kernels.
Following the concept of micro kernels to kernels with a small core, and very
stringent boundaries leads to hypervisors. Memory reliability, and testing gets
more important, when more services are provided by single hardware systems.
Hypervisors like VMWare, Xen, or KVM are used to consolidate many physical
machines into virtualized machines. This concentration leads to single points
of failure that potentially affect a large number of services.
Contrary to consolidation servers are the myriad embedded systems used in
modern society. Verifying the functional behaviour of a devices memory can –
depending on the operating range of the devices – be of even more importance,
than verifying the memory of a server in a controlled environment. Implementing
software based memory tests in embedded devices could eventually lead to
improved reliability, and safety. By implementing test algorithms in software,
the hardware complexity of programmable devices can be reduced, and more
flexible and more complex algorithms can be implemented.
By separating most of the concerns into dedicated modules, and by adhering to
the principle of least privilege, the design presented in this thesis perfectly fits
the micro-kernel idea. Merging layers together, as it may be needed to apply
the design to embedded systems, is always easier than splitting up a layer, thus
the design should be equally feasible for more complex embedded systems.

7.1.2 Design Improvements

Although the design proved itself, a few modifications and extensions could
improve the design. The biggest drawback of the current design is, that
the strategies used to acquire memory work on a frame-by-frame base. By
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allowing the strategies to allocate more frames in one step, the amount of lock
acquisitions could be reduced.
Another improvement could be a strategy that allocates frames by directly
calling into the memory management. Taking Linux as an example, a strategy
that acquires 2n frames from the buddy allocator does not need to dangerously
manipulate kernel data structures.
Implementing adaptive test strategies is another possible direction for future
research. Adaptive strategies would choose more complex fault models, and
more aggressive acquisition strategies, for memory modules where memory
errors are suspected.
Fortunately, none of these improvements invalidates the general design. Espe-
cially the stringent split between complex algorithms running in user space,
and (mostly) simple algorithms running in kernel space is not threatened by
these improvements.

7.1.3 Closing Remarks

This diploma thesis is concluded by citing an announcement from NASA. The
announcement is a very vivid example for the fallibility of RAM – even, when
it is high quality material fit for leaving our solar system.
From the NASA website, updated May 17, 2010 at 5:00 PT:

One flip of a bit in the memory of an onboard computer appears
to have caused the change in the science data pattern returning
from Voyager 2, engineers at NASA’s Jet Propulsion Laboratory
said Monday, May 17. A value in a single memory location was
changed from a 0 to a 1. [52]
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Requirement 1 Detection of Errors . . . . . . . . . . . . . . . . . . . 76
Requirement 2 Isolation of Errors . . . . . . . . . . . . . . . . . . . . 76
Requirement 3 Memory Coverage . . . . . . . . . . . . . . . . . . . . 76
Requirement 4 No Test of Kernel Memory . . . . . . . . . . . . . . . 76
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Requirement 9 Emulating of Fault Models . . . . . . . . . . . . . . . 78
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Requirement 14 Enabling Further Research . . . . . . . . . . . . . . . 79
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Requirement 16 Enabling Bottleneck Detection . . . . . . . . . . . . . 80
Requirement 17 Enabling High-Level Optimizations . . . . . . . . . . . 80
Requirement 18 Extensible System . . . . . . . . . . . . . . . . . . . . 80
Requirement 19 Modular Design . . . . . . . . . . . . . . . . . . . . . 80
Requirement 20 Fault Isolation . . . . . . . . . . . . . . . . . . . . . . 81
Requirement 21 Memory Leaks . . . . . . . . . . . . . . . . . . . . . . 81
Requirement 22 Principle of Least Privilege . . . . . . . . . . . . . . . 81
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Requirement 23 Testability . . . . . . . . . . . . . . . . . . . . . . . . 81
Requirement 24 Maintainability . . . . . . . . . . . . . . . . . . . . . . 81
Requirement 25 Kernel reuse . . . . . . . . . . . . . . . . . . . . . . . 81
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Glossary

address decoding fault [i, 18]
Instead of cell Ci another cell Cj is addressed [95]. See section 2.2.3.

address space [i, 37, 44]
An address space is a range of addresses that have a specific meaning. In
this thesis the term address space is used to describe the mapping of (virtual)
addresses to physical addresses. See section 2.4.2.2.

buddy allocator [i, 37, 76]
The Buddy Allocator is the low level memory allocator of Linux kernel . See
section 2.4.2 and [108].

Correctable Error (CE) [i, 5, 32, 33, 62, 69, 126]
An error that can be detected and corrected, see also UE and ECC.

checking sequence [i, 20, 21, 123]
“An input sequence that distinguishes a given n-state machine M from all other
machines with the same input and output alphabets and at most n-states is
called a checking sequence for M ” [65]. Checking sequences are used to detect
misbehaving memory.
See section 2.2.1 for a discussion.
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ChipKill [i, 70–73]
An extension to ECC that allows the correction and detection of defect symbols
(multiple bits). See section 3.3.1 for a discussion.

closed neighbourhood [i, 20]
A neighbourhood N is said to be closed, when it is a partition of Mr:
∀Ni, Nj ∈ N : ∀Ci ∈ Ni : Ci ∈ Nj ⇔ Nj = Ni [65].
See section 2.2.1 for a discussion.

compound page [i]
A compound page consists of several – 2n, where valid numbers for n depend
on the processor – consecutive frames. This grouping allows an optimisation
where one compound page needs only one instead of 2n entries in the TLB. This
improvement allows more pages to be covered by TLB entries, thus lowering
the chance for expensive TLB-misses.
The Linux kernel uses large pages for memory reserved for the kernel. Talluri and
Hill discussed the benefits of compound pages – they use the name “superpages”
– in their 1994 work [116].

coupling fault [i, 18, 22, 122, 127]
A type of fault, where the change of one memory cell incorrectly changes
another memory cell. This is the same as a 2-coupled fault [95]. See k-coupled
fault, section 2.2.3.

Dual Inline Memory Module (DIMM) [i, 10, 42, 69]
Computer memory is typically installed as separate modules. A widespread
type of modules are DIMM modules, because they are used for DDR-SDRAM
memory.

Desktop Management Interface (DMI) [i, 49]
“DMI generates a standard framework for managing and tracking components
in a desktop pc, notebook or server. DMI was the first desktop management
standard. The DMI Home Page is a repository of all DMI-related information
from the specification to tools to support to the Product Registry of DMI-
certified products. Due to the rapid advancement of DMTF technologies,
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such as CIM, the DMTF defined an "End of Life" process for its Desktop
Management Interface (DMI), which ended March 31, 2005.” [25] DMI is still
used by Linux, for example by the mcelog package. See also mcelog.

e820 map [i, 44]
The e820 map can be queried from the BIOS of x86-based computers and
contains the memory map for this system [54].

Error Correction Codes (ECC)[i, 5, 6, 8–10, 29, 31, 32, 54, 58, 68, 70, 72,
114, 119, 121, 126]
A hardware extension, where additional data is used to provide error detection
and correction for memory devices. Usually 64 bit words are protected by an
SEC-DED -scheme [83]. For more details be referenced to [64, 85, 50, 88]

Error Detection And Correction (EDAC) [i, 8, 60, 68, 121]
The EDAC project is an extension of the Linux kernel and contributes a set of
Linux kernel modules for handling hardware-related errors. Its major focus has
been ECC memory error handling, however the modules also detect and report
PCI bus parity errors. [4]

Eversholt [i, 66, 67]
A language designed to describe fault trees. See section 3.2.1.3 and the Eversholt
manual [114].

fault model [i, 11, 13, 15, 20–23, 26, 59, 75–78, 80, 82, 83, 85, 87, 88, 95, 97,
98, 114]
A fault model describes types of faults. Specifying a fault model allows the
prediction of the consequences of faults, and the design and verification of fault
detection and prevention measures. See section 2.2.1 for a discussion.

fault tree [i, 66, 121]
Fault trees graphically represent how faults and other events interact within a
system. See sections 2.3.2, section 3.2.1.3, and the Eversholt manual [114]. A
basic introduction into fault tree analysis can be found in [63]. Ramamoorthy
et al. published a paper that presents how Fault Tree Analysis can be applied
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to faults in computer systems [101].

Failures In Time per billion device hours (FIT) [i, 14, 15, 122]

The FIT-rate is used to describe the reliability of (semiconductor) elements
and is defined as FITrate = Pn

DeviceHours∗AF ∗ 10−9, where Pn and AF are used
for accelerated stress testing. AF is the acceleration factor between stress
environment and typical operating conditions, and Pn = Poisson statistic at
60% confidence [86].

Fault Management Resource Identifier (FMRI) [i]

A unique identifier for an entity that is managed or observed by the Solaris
Fault Management, see also SMF.

frame [i, 14, 37–40, 47, 59, 84, 99, 136]

Most processors and operating systems manage memory in fixed units called
frames. The commonly used x86 architecture supports frame sizes of 4 KiB
and 2 or 4 MiB. The usage of the word frame generally means that physical
memory is addressed without address translation via the TLB.

hard error [i, 14, 70]

Errors that are caused by physical defects are called hard errors [64, 86].

k-coupled fault [i, 23, 120, 122]

A k-coupling fault is a fault, where the change of one cell Ci in a set of k cells
Ck causes a change in Cj ∈ Ck when the other k − 2 cells in Ck have some
fixed values. See coupling fault, and section 2.2.3.

k-coupled fault, restricted [i, 23]

A restricted k-coupled fault is a k−coupled fault with non-overlapping k-sets
[95].

Linux [i, 1, 2, 8–11, 13, 14, 16, 33–36, 38–40, 43–45, 47–51, 53,
54, 57–60, 67–70, 76, 77, 81, 83, 84, 91, 93, 99, 100, 103, 105, 107, 110, 111,
113–116, 119–121, 126, 127, 136]

“Linux is a clone of the operating system Unix, written from scratch by Linus
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Torvalds with assistance from a loosely-knit team of hackers across the Net.
It aims towards POSIX and Single UNIX Specification compliance. It has
all the features you would expect in a modern fully-fledged Unix, including
true multitasking, virtual memory, [. . . ], proper memory management, [. . . ].
Although originally developed first for 32-bit x86-based PCs (386 or higher),
today Linux also runs on (at least) [. . . ] AMD x86-64, [and many more]
architectures; for many of these architectures in both 32- and 64-bit variants.
Linux is easily portable to most general-purpose 32- or 64-bit architectures as
long as they have a paged memory management unit (PMMU) [. . . ]” [12]

local access [i, 42]

In NUMA systems, if a processor accesses memory on its own node, this is
called a local access (compare to [? ]).

Local Pattern Sensitive Fault (LPSF) [i, 20]

Another name for NPSF.

Machine Check Exception (MCE) [i, 29, 36, 53, 69]

Intel x86 processors signal certain error conditions by raising so called Machine
Check Exceptions as interrupts [9].

mcelog [i, 8, 60, 121]

“mcelog decodes machine check events (hardware errors) on x86-64 machines
running a 64-bit Linux kernel.” [30]

memory tester [i, 1, 6, 7]

A memory tester aims to verify the correct behaviour of RAM by writing and
verifying checking sequences to the memory.

misbehaving [i]

The word misbehaving is used to describe a service or component that violates
the contract with its clients.
See section 1.1 for a discussion.

neighbourhood [i, 20, 124]
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A neighbourhood is a set N of sets Nk, where Nk consists of memory cells. The
neighbourhood of a memory cell Ci is called Ni. Ni contains Ci [65].
See section 2.2.1 for a discussion.

Neighbourhood Pattern Sensitive Fault (NPSF) [i, 78, 123, 124, 126]

A NPSF is a restriction of the PSF, where a fault is local to a given neighbour-
hood Ni.
See also SPSF and PSF, also see section 2.2.1 for a discussion.

Non Uniform Memory Access (NUMA) [i, 10, 37, 38, 42, 43, 45, 48, 57,
123]

NUMA is a computer memory design used in multiprocessor systems. The
memory access time in NUMA systems depends on the memory location
relative to a processor – a processor can access its own local memory faster
than non-local memory [23].

open neighbourhood [i, 20, 21]

A neighbourhood N is said to be open, when it is no partition of Mr.
See section 2.2.1 for a discussion.

page [i, 39, 40, 59]

A page is a frame that is mapped into user or kernel space.

page fault [i, 40]

A page fault happens, when a process accesses a page that is either not connected
to a physical frame, or if the process accessed the page with an invalid operation,
e.g. writing to a read-only page. See section 2.4.2.2.

physical address [i, 44, 59, 126]

The physical address is the adddress send to the memory bus in order to access
a particular storage cell in the RAM.
Compare to virtual address.

Pattern Sensitive Fault (PSF) [i, 13, 18, 20, 21, 124, 126]

A very general fault type that, for an r-bit memory, can be detected by an
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O ((3r2 + 2r) 2r) algorithm [65].
See also NPSF, SPSF, and section 2.2.1 for a discussion.

Random Access Memory (RAM) [i, 13, 15, 16, 19, 23, 38, 40, 42, 44, 46,
53, 54, 57, 68, 77, 114, 116, 123, 124]

Hayes defined memory as a set of r addressable binary storage cells
Mr := {C0, C1, . . . , Cr−1}, where i denotes the address of Ci and where each
storage cell Ci can store exactly one bit. Operations READ and WRITE can
be performed on Mr, each cell can be written to or read from independently
of previous READ or WRITE operations [65]. Modern forms of RAM, like
DDR-SDRAM are no longer bit-addressable but word-addressable. RAM is
also called system memory or just memory.
See section 2.2.1 for a discussion.

Single Error Correction – Doubble Error Detection (SECDED) [i, 5,
70, 71, 114, 121]

An error detection and correction scheme that allows the detection of two bit
errors and the correction of one bit errors per memory word [83, 50, 67].

slab allocator [i, 37]

The Slab-Allocator manages finer grained memory allocations. See section 2.4.2
and [46, 62].

Service Management Facility (SMF) [i, 33, 62–64, 67, 122]

“SMF is designed to simplify the management of system and application services.
It delivers new and improved ways to control services, and tries to restart failed
services automatically. In addition, SMF allows administrators to define the
relationships between services. It is now possible to define a service that is
dependent on other services – a dependent service will not run unless the
other services that it requires are already running. Through a set of new
administrative interfaces, SMF allows services to be easily and consistently
configured, enabled, and controlled, at the same time providing better visibility
of errors and improved debugging capabilities to resolve service-related problems
quickly when they occur.” [104]
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See section 3.2.1 for a discussion.

soft error [i, 14]
Errors that are caused by external factors like α-radiation or temperature are
called soft errors [115, 71].

Solaris [i, 6, 11]
Initially developed by Sun, Solaris is a UNIX operating system. Solaris 10
implements a FMA that is discussed in section 2.3.

Single Pattern Sensitive Fault (SPSF) [i, 21, 124]
A restricted PSF where only one memory cell misbehaves and the errnous
interaction between memory cells is restricted to α distinct neighbourhoods,
each with the length q. All SPSFs for an r-bit memory can be detected by an
O ((4q + 3) 2q ∗ r) algorithm [65].
See also NPSF, and PSF, also see section 2.2.1 for a discussion.

struct page [i, 47]
A frame is a hardware supported construct. A page is a software construct.
The Linux kernel manages physical memory by keeping an instance of struct
page for each physical frame.

stuck-at fault [i, 18, 22, 107, 127]
A cell Ci is said to suffer from a stuck-at 0 or stuck-at 1 fault, when the content
of Ci cannot be changed: Ci is stuck at x when WiRi = W̄iRi = x [95]. See
section 2.2.3.

Translation Lookaside Buffers (TLB) [i, 46, 78, 114, 120, 122, 126]
The TLB is used on the x86 architecture to translate virtual addresss into
physical addresss [72].

Uncorrectable Error (UE) [i, 5, 32, 58, 69, 119]
An error that can be detected, but not corrected, see also CE and ECC.

virtual address [i, 44, 59, 124, 126]
Virtual addresses are used to abstract from physical addresss. The mapping
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from virtual address to physical address is done by the MMU. Most operating
system, including Linux, use virtual addressing for kernel- and user-space
processes.

writer logic [i]
According to Nair et al., the Reader/Writer logic consists of the sense amplifiers,
the write drivers and other supporting logic. They visualize stuck output lines of
the sense amplifiers or writer drivers as stuck-at faults and shorts, or capacitive
coupling between data input or output lines as coupling faults [95]. See section
2.2.3.

xVM [i, 64]
xVM is a port of the Xen hypervisor to the Solaris operating system [36].

zone [i, 44, 48]
Not all physical memory can be used for all purposes. Restriction apply for
example to memory used for DMA, or for memory addressable by 32-bit kernels.
Section 2.4 gives an overview of memory handling in Linux, and [62, 89, 53]
cover the topic in more depth.

Proactive Memory Error Detection for the Linux Kernel 127



Glossary

128 Proactive Memory Error Detection for the Linux Kernel



Symbols

Symbols

Ci The binary memory cell Ci. i, 17, 19, 20, 22,
126

Mr A random access memory of r binary cells
C0···r−1.

i, 17–21, 129

MF
r A faulty random access memory of r binary

cells C0···r−1.
i, 18–20

Ri Read the content of cell Ci. Definition in
2.3.

i, 17–19, 22,
126

Xi Xi := Either Ri, or Wi, or W̄i}. i, 17, 20, 22

W̃i W̃ := Either Wi, or W̄i. i, 17, 18
W̄i Write a 0 into cell Ci. Definition in 2.2. i, 17–19, 22,

126
Wi Write a 1 into cell Ci. Definition in 2.1. i, 17–19, 22,

126

z∗ z∗(S, Yj) is the output of the Mealy automa-
ton, when the input series S is applied to
Mr in state Yj . The output is pruned of “—
”s, so it contains only the output of READs,
i.e. z∗(W0R0W̄1R1R0) = 101.

i, 18, 22
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BIOS Basic Input Output System i, 43,
49, 57

CE Correctable Error i, 119
CS Chip Select i, 68

DDR-SDRAM Double Data Rate Synchronous Dynamic Ran-
dom Access Memory

i, 40,
120,
125

DFG Deutsche Forschungsgemeinschaft i, 9
DIMM Dual Inline Memory Module i, 120
DMA Direct Memory Access i, 44,

45, 56,
99, 127

DMI Desktop Management Interface i, 120

ECC Error Correction Codes i, 121
EDAC Error Detection And Correction i, 121
EDP Energy Delay Product i, 73, 80

FIT Failures In Time per billion device hours i, 14,
15, 122

FMA Fault Management Architecture i, 13,
25, 29,
32, 33,
61, 62,
67, 68,
126

FMRI Fault Management Resource Identifier i, 62,
122
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GART Graphics Address Remapping Table i, 46
GPL GNU Public License i, 35, 54

ISA Industry Standard Architecture i, 43
ITRS International Technology Roadmap for Semi-

conductors
i, 9

KVM Kernel Virtual Machine i, 40

LPSF Local Pattern Sensitive Fault i, 123

MCE Machine Check Exception i, 123
mm memory management i, 11,

33,
34, 36,
45–48,
50–52,
76–78,
81, 83,
84, 89,
99, 100,
107,
113,
114

MMU Memory Management Unit i, 39,
126

NPSF Neighbourhood Pattern Sensitive Fault i, 124
NSA National Security Agency i, 34
NUMA Non Uniform Memory Access i, 42,

124

PCI Peripheral Component Interconnect i, 43
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PFN Page Frame Number i, 14, 45
PSF Pattern Sensitive Fault i, 124

RAM Random Access Memory i, 125

SECDED Single Error Correction – Doubble Error De-
tection

i, 125

SERD Soft Error Rate Discrimination i, 67
SMF Service Management Facility i, 125
SMP Symmetric Multi-Processing i, 40
SPSF Single Pattern Sensitive Fault i, 126

TLB Translation Lookaside Buffers i, 126

UE Uncorrectable Error i, 126
UMA Uniform Memory Access i, 38,

40, 42,
43
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Appendix C

Extended listings

Some listings are too long to be placed embedded in the text. These listings
follow on the next pages.

C.1 Listings for Chapter 2
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1 /*
2 * Each physical page in the system has a struct page associated with
3 * it to keep track of whatever it is we are using the page for at the
4 * moment. Note that we have no way to track which tasks are using
5 * a page , though if it is a pagecache page , rmap structures can tell us
6 * who is mapping it.
7 */
8 struct page {
9 unsigned long flags; /* Atomic flags , some possibly

10 * updated asynchronously */
11 atomic_t _count; /* Usage count , see below. */
12 union {
13 atomic_t _mapcount; /* Count of ptes mapped in mms ,
14 * to show when page is mapped
15 * & limit reverse map searches.
16 */
17 struct { /* SLUB */
18 u16 inuse;
19 u16 objects;
20 };
21 };
22 union {
23 struct {
24 unsigned long private; /* Mapping -private opaque data:
25 * usually used for buffer_heads
26 * if PagePrivate set; used for
27 * swp_entry_t if PageSwapCache;
28 * indicates order in the buddy
29 * system if PG_buddy is set.
30 */
31 struct address_space *mapping; /* If low bit clear , points to
32 * inode address_space , or NULL.
33 * If page mapped as anonymous
34 * memory , low bit is set , and
35 * it points to anon_vma object:
36 * see PAGE_MAPPING_ANON below.
37 */
38 };
39 #if USE_SPLIT_PTLOCKS
40 spinlock_t ptl;
41 #endif
42 struct kmem_cache *slab; /* SLUB: Pointer to slab */
43 struct page *first_page; /* Compound tail pages */
44 };
45 union {
46 pgoff_t index; /* Our offset within mapping. */
47 void *freelist; /* SLUB: freelist req. slab lock */
48 };
49 struct list_head lru; /* Pageout list , eg. active_list
50 * protected by zone ->lru_lock !
51 */
52 // [ ... lines removed for brevity ... ]
53 #if defined(WANT_PAGE_VIRTUAL)
54 void *virtual; /* Kernel virtual address (NULL if
55 not kmapped , ie. highmem) */
56 #endif /* WANT_PAGE_VIRTUAL */
57 #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
58 unsigned long debug_flags; /* Use atomic bitops on this */
59 #endif
60
61 #ifdef CONFIG_KMEMCHECK
62 /*
63 * kmemcheck wants to track the status of each byte in a page; this
64 * is a pointer to such a status block. NULL if not tracked.
65 */
66 void *shadow;
67 #endif
68 };

Listing C.1: struct page

This is an excerpt from linux/mm_types.h and contains the def-

inition of struct page, a structure central to frame-management

in the Linux kernel. The extensive use of defines and unions

make the binary representation of a struct page instance found

in memory difficult to analyze. See section 2.4 for details, and

listing C.2 for a valid values for flags.
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1 /*
2 * Various page ->flags bits:
3 *
4 * PG_reserved is set for special pages , which can never be swapped out. Some
5 * of them might not even exist (eg empty_bad_page)...
6 [ ... lines removed for brevity ... ]
7 *
8 * PG_highmem pages are not permanently mapped into the kernel virtual address
9 * space , they need to be kmapped separately for doing IO on the pages. The

10 * struct page (these bits with information) are always mapped into kernel
11 * address space ...
12 *
13 * PG_buddy is set to indicate that the page is free and in the buddy system
14 * (see mm/page_alloc.c).
15 *
16 * PG_hwpoison indicates that a page got corrupted in hardware and contains
17 * data with incorrect ECC bits that triggered a machine check. Accessing is
18 * not safe since it may cause another machine check. Don’t touch!
19 *
20 [ ... lines removed for brevity ... ]
21 * The page flags field is split into two parts , the main flags area
22 * which extends from the low bits upwards , and the fields area which
23 * extends from the high bits downwards.
24 [ ... lines removed for brevity ... ]
25 *
26 * The fields area is reserved for fields mapping zone , node (for NUMA) and
27 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
28 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
29 */
30 enum pageflags {
31 PG_locked , /* Page is locked. Don’t touch. */
32 PG_error ,
33 PG_referenced ,
34 PG_uptodate ,
35 PG_dirty ,
36 PG_lru ,
37 PG_active ,
38 PG_slab ,
39 PG_owner_priv_1 , /* Owner use. If pagecache , fs may use*/
40 PG_arch_1 ,
41 PG_reserved ,
42 PG_private , /* If pagecache , has fs -private data */
43 PG_private_2 , /* If pagecache , has fs aux data */
44 PG_writeback , /* Page is under writeback */
45 #ifdef CONFIG_PAGEFLAGS_EXTENDED
46 PG_head , /* A head page */
47 PG_tail , /* A tail page */
48 #else
49 PG_compound , /* A compound page */
50 #endif
51 PG_swapcache , /* Swap page: swp_entry_t in private */
52 PG_mappedtodisk , /* Has blocks allocated on -disk */
53 PG_reclaim , /* To be reclaimed asap */
54 PG_buddy , /* Page is free , on buddy lists */
55 PG_swapbacked , /* Page is backed by RAM/swap */
56 PG_unevictable , /* Page is "unevictable" */
57 #ifdef CONFIG_MMU
58 PG_mlocked , /* Page is vma mlocked */
59 #endif
60 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
61 PG_uncached , /* Page has been mapped as uncached */
62 #endif
63 #ifdef CONFIG_MEMORY_FAILURE
64 PG_hwpoison , /* hardware poisoned page. Don’t touch */
65 #endif
66 //
67 // [ ... lines removed for brevity ... ]
68 /* SLUB */
69 PG_slub_frozen = PG_active ,
70 PG_slub_debug = PG_error ,
71 };

Listing C.2: Flags for struct page

This is an excerpt from linux/page-flags.h and contains the

definition of the flags for struct page.flags. Noteable is, that

some flags have a different meaning, depending on which sub-

system the frame is allocated to. See section 2.4.
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