
Diploma Thesis

Metadata Annotations
for Explicit Joinpoints

in AspectC++

Sven Radetzky
September 29, 2011

Adviser:
Prof. Dr.-Ing. Olaf Spinczyk
Dipl.-Inf. Christoph Borchert

Technische Universität Dortmund
Computer Science 12
Embedded System Software Group
http://ess.cs.tu-dortmund.de

http://ess.cs.tu-dortmund.de

0.0

2

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst, keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich
gemacht habe.

Dortmund, den September 29, 2011

Sven Radetzky

Abstract

Aspect-Oriented Software Development (AOSD) intends to improve the separation of
concerns in a program by quantification of cross-cutting concerns oblivious to the un-
derlying base code. Aspect-Oriented Programming (AOP) languages, such as AspectJ
and AspectC++, provide numerous means to quantify and identify sections in a pro-
grams base code to advice with the code of cross-cutting concerns. These so called join-
points are identified by pointcuts, which have their own potent description language.
Recently the addition of new types of more fine-grained joinpoints into AOP languages
have become an active area of interest for researchers. In combination with an annota-
tion mechanism which allows the addition of metadata on the elements of a program,
possibilities for far more fine-grained advice mechanisms in mainstream AOP languages
were realized. The goal of this thesis is to provide AspectC++, an AOP language based
on the C++ programming language, with a metadata annotations mechanism. Which
in turn provides, in combination with an extended pointcut language, the means for a
more fine-grained joinpoint model. This is an interesting concept especially in regards to
the unique language features present in the C++ language, like templates and template
metaprogramming. This thesis describes the design, implementation and evaluation of
the described mechanism and related features in AspectC++.

Contents

1 Introduction 1
1.1 Goals and Relevance . 2
1.2 Structure of this Thesis . 2

2 Metadata Annotations 3
2.1 Introduction . 3
2.2 Java . 3

2.2.1 Predefined Annotations . 4
2.2.2 Custom Annotations . 5
2.2.3 Type Annotations . 6

2.3 C# . 7

3 Aspect-Oriented Software Development 9
3.1 Introduction . 9
3.2 Traditional Approach . 10
3.3 AOP Approach . 11
3.4 AOP Solutions . 13

3.4.1 Aspect Weaving . 13
3.4.2 AspectJ . 14
3.4.3 AspectC# . 18
3.4.4 AspectC++ . 20
3.4.5 Other . 20

4 Joinpoint Model Extension 23
4.1 Analysis of the AspectC++ Joinpoint Model 23

4.1.1 Joinpoints Types . 23
4.1.2 Pointcut Language Expressiveness 24

4.2 Joinpoint Model Limitations . 26
4.2.1 Limits for Advice of Specific Joinpoints 27
4.2.2 Limits for Advice Execution . 28

4.3 Requirements for Joinpoint Model Extensions 28
4.4 Extending the Joinpoint Model . 30

4.4.1 Statement Level Advice . 30
4.4.2 Compound Statement Joinpoints 31
4.4.3 Type Annotations in AspectC++ 36
4.4.4 Expression Level Advice . 37

i

Contents

5 Metadata Annotations in AspectC++ 39
5.1 Design Goals . 39

5.1.1 Metadata Annotations and Obliviousness 39
5.2 Design Rules for Metadata Annotations 40
5.3 Syntax and Semantic of Metadata Annotations 41

5.3.1 Metadata Annotations as Language Elements 41
5.3.2 Metadata Annotations for Existing Joinpoints 43
5.3.3 Metadata Annotations for Explicit Joinpoints 47

5.4 Metadata Annotations for Pointcut Expressions 49
5.4.1 Additional Design Goals . 49
5.4.2 Basic Integration . 50
5.4.3 Pointcut Expressions for Explicit Joinpoints 52

5.5 Improved Expressiveness . 52
5.5.1 Identifying Specific Calls . 52
5.5.2 Fine-Grained Execution Advice 53

6 Implementation 55
6.1 AspectC++ Compiler Basics . 55

6.1.1 PUMA Framework . 56
6.2 PUMA Framework Extension . 57
6.3 Joinpoint Model Extension . 58
6.4 Pointcut Language Extension . 59

6.4.1 Metadata Annotation Parameters 60
6.5 Weaver extension . 61

6.5.1 Block joinpoint weaving . 61
6.5.2 Conclusion . 63

7 Evaluation 65
7.1 Refactoring Aspects in CiAO . 65

7.1.1 Named Pointcuts in CiAO . 66
7.1.2 Refactoring Aspects with Metadata Annotations 67
7.1.3 Results . 67

7.2 Comparing Related Works . 67
7.2.1 Closure Joinpoints . 68
7.2.2 Statement Annotations . 68

7.3 Discussion . 69

8 Conclusion and Future Work 71
8.1 Future Work . 71

Bibliography 76

List of Figures 78

ii

1 Introduction

Aspect-Oriented Software Development (AOSD) intends to improve the separation of
concerns in a program by quantification of cross-cutting concerns oblivious to the under-
lying base code. Aspect-Oriented Programming (AOP) languages, such as AspectJ and
AspectC++, provide numerous means to quantify and identify sections in a programs
base code to advice with the code of cross-cutting concerns. These so called joinpoints
are identified by pointcuts, which have their own potent description language. Recently
the addition of new types of more fine-grained joinpoints into AOP languages have be-
come an active area of interest for researchers.

After positive results concerning the usefulness of extending the AspectJ joinpoint model
it has become of interest if such an extension in the context of AspectC++ would lead
to an improvement in the languages usage, maintainability of source code and support
of evolving code bases.

Furthermore the unique language features present in C++, like templates and tem-
plate metaprogramming, make AspectC++ a very interesting target language for this
thesis.

The problem both AOP languages face in that regard is how to extend the pointcut lan-
guage without letting pointcuts become too complex. An example of that phenomenon
can be found in LoopAJ [1] which extensions of the pointcut language are all restricted
by severe limitations on source code structure. This thesis will extend the joinpoint
model as generic as possible so that the usage of the new joinpoints is not artificially
limited by factors from outside the scope of the programming language itself. This the-
sis uses the approach of using metadata annotations to allow the explicit declaration of
joinpoints in a programs base code, which has been used to a small degree in similar
works done on the AOP language AspectJ.

The goal of this thesis is to provide AspectC++ with a metadata annotations mech-
anism, which in turn provides, in combination with an extended pointcut language, the
means for a more fine-grained joinpoint model.

This thesis describes the design of the metadata annotations feature in AspectC++
as well as examines the possible extensions that can be made to the joinpoint model
with such a feature. In addition a rudimentary implementation into the AspectC++
compiler is provided and evaluated.

1

Introduction 1.2

1.1 Goals and Relevance
This thesis analyzes the joinpoint model of AspectC++ and examines possibilities to ex-
tend the ability of AspectC++ to address cross-cutting concerns beyond the limitations
of the current joinpoint model. Furthermore it will be shown that metadata annotations
are a key concept that can be used to address joinpoints based on generic language
elements in the C++ base language AspectC++ is based upon. These metadata an-
notations will be well-defined in the scope of this thesis. For those purposes the three
main goals of this thesis are:

Design new joinpoint types

Based on an extensive analysis of the current model and an analysis of limi-
tations found in the current model.

Reflection and Refinement

Allow the annotation of language elements that are used to create joinpoints.
Show how metadata annotations remove limitations concerning the design of
additional joinpoint types in the AspectC++ joinpoint model.

Evaluation

Evaluate the combination of metadata annotations and an extended joinpoint
model in terms of improvements concerning AOP implementation mechanisms
and the level of expressiveness of the AspectC++ language.

1.2 Structure of this Thesis
Following the introduction in this chapter, chapter 2 describes the basics of metadata
annotations. Chapter 3 provides an introduction to AOSD as well as a number of
AOP solutions. Then chapter 4 is used to analyze the existing AspectC++ joinpoint
model and defines the requirements that apply for the rest of this thesis. Chapter 5
then provides a complete definition of metadata annotations in AspectC++ as well as
a summary of possibilities with regards to the conclusions from chapter 4. Chapter 6
provides a summary of the practical implementation of that solution. Whereas Chapter
7 describes the evaluation process and the collected results as well as allows comparisons
with similar approaches done for different AOP languages. At the end, chapter 8 provides
a summary of the conclusions drawn from this thesis as well as suggestions for future
work which would be interesting in regards to further research concerning AspectC++.

2

2 Metadata Annotations
Metadata, literally means “data about data“ [2, 3] and can in general be separated into
two types, descriptive and structural metadata. Where descriptive metadata refers to
additional information a data set and structural metadata refers to additional informa-
tion on the structure of data. It has become a widely used term especially, but not
exclusively, in regards to web-based information systems.

metadata is present in many aspects of everyday computing. Adding information about
the persons shown in a photograph on Facebook is descriptive metadata. Using ”hash-
tags” on Twitter is applying descriptive metadata to once “tweets“. Software to manage
photo-collections supports the use of ”tags“, which are also a form of descriptive meta-
data, to provide additionally information to sort and group pictures. The popular XML
format [4] is also often used to apply metadata to information where a XML file is used
as descriptive metadata and a XML schema is used for the corresponding structural
metadata.

Those are only examples of the myriad of ways metadata is used today. It has also
found its way into many disciplines of computer science, including a number of pro-
gramming languages which support its use in different ways.

2.1 Introduction
Today there are a number of programming languages, which support the use of struc-
tural metadata. Nonetheless this thesis focuses on the use of descriptive metadata, to
inscribe additional information on elements of a programs source code, only. The rest
of this chapter aims to provide an introduction into the usage of metadata in modern
programming languages, with a focus on descriptive metadata. For clarity purposes
descriptive metadata that is used in a programming language to add additional data to
an object is from now on referred to as a metadata annotation.

2.2 Java

The Java programming language has an integrated Metadata Facility [5] since version
5.0 which supports the use of structural as well as descriptive metadata. In addition
there exists an API interface for the dynamic runtime processing of metadata [6].

3

Metadata Annotations 2.2

2.2.1 Predefined Annotations
Metadata annotations in Java can be applied to a number of Java language elements, like
classes and methods but can also be used on a statement level or on arguments. For ex-
ample Java version 5.0 has three predefined standard annotations, namely ”@Override“,
”@Deprecated“ and “@SuppressWarnings”. The first two will now be used to
demonstrate how annotations in Java can be applied.

2.2.1.1 @Override

“Override should be used only on methods (not on classes, package declarations, or
other constructs). It indicates that the annotated method is overriding a method in a
superclass.” [7].

1 public class OverrideTester {
2 public OverrideTester() { }
3
4 @Override
5 public String toString() {
6 return super.toString () + " [Override Tester Implementation]";
7 }
8
9 @Override

10 public int hasCode() {
11 return toString.hashCode();
12 }
13 }

Figure 2.1: Example of using the Override annotation [7]

The example in Figure 2.1 shows the use of the Override annotation, the function
name in line 10 contains a typo. The correct function name should read “hashCode”.
When compiling this code the compiler checks the superclass for a function with the
same name. If such a function is not present the compiler issues a warning.

2.2.1.2 @Deprecated

“As you might expect, you use Deprecated to annotate a method that shouldn’t be
used anymore. Unlike Override, Deprecated should be placed on the same line as
the method being deprecated (why? I’m honestly not sure).” [7].
Figure 2.2 shows how to use the Deprecated annotation this time the compiler won’t
issue a warning when compiling this code yet, the compiler should issue warnings for any
other location in the source code, at which the deprecated method be used or overridden.

2.2.1.3 @SuppressWarnings

This annotation suppresses warnings issued by the compiler at compile time. It can
be used by a programmer to suppress warnings that are not relevant to the current

4

2.2 Metadata Annotations

1 public class DeprecatedClass {
2 @Deprecated public void doSomething() {
3 // some code
4 }
5
6 public void doSomethingElse() {
7 // This method presumably does what doSomething() does, but better
8 }
9 }

Figure 2.2: Example of using the Deprecated annotation [7]

debugging process and can therefore improve readability of compiler output in some
circumstances.

2.2.2 Custom Annotations
Java not only supports predefined annotations it also offers a programmer the ability
to define his own custom annotations as well as mechanisms for the processing of such
annotations dynamically at runtime [6]. Those custom annotations in turn are again
standard Java classes which support all the expressiveness of the Java programming
language.

(a) Defining a custom annotation

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target(ElementType.TYPE)
3
4 public @interface customAnnotation {
5 public String name();
6 public String value();
7 }

(b) Annotating an element with a custom annotation

1 @customAnnotation(name="someName", value = "Hello World")
2 public class TheClass {
3
4 }

Figure 2.3: Custom Java annotations part 1

An example of a custom annotation can be seen in figure 2.3 (a). The @ in front of the
interface marks it as an annotation. Once the annotation is defined it can be used in
the programs code, as shown earlier. The two directives in the annotation definition,
@Retention(RetentionPolicy.RUNTIME) and @Target(ElementType.TYPE),
specify how the annotation is to be used. @Retention(RetentionPolicy.RUNTIME)
means that the annotation can be accessed via reflection at runtime. If this directive
is not set, the annotation will not be preserved at runtime, and thus not available via

5

Metadata Annotations 2.2

reflection. @Target(ElementType.TYPE) means that the annotation can only be
used to annotate types (classes and interfaces typically). It also possible to specify Ele-
mentType.METHOD or ElementType.FIELD as the target types, or the target can be
left out so the annotation can be used for classes, methods and fields.

In part (b) of the figure an example is given on how such an annotation is applied
to an object and figure 2.4 part (c) demonstrates two ways to access the information
present in such an annotation at runtime using the Java reflection mechanism. One
way is to retrieve an array holding all annotations of an object and then processing
each annotation through a loop for example. The other way is to retrieve only specific
annotations from an object and access the information directly afterwards.

The reflection example described above focuses on classes, the methods used for re-
trieving annotations of methods, parameters or fields is quite similar.

(c) Accessing information of custom annotations

1 /* Accesing every annotation on an object */
2 Class aClass = TheClass.class;
3 Annotation[] annotations = aClass.getAnnotations();
4
5 for(Annotation annotation : annotations){
6 if(annotation instanceof customAnnotation){
7 customAnnotation myAnnotation = (customAnnotation) annotation;
8 System.out.println("name: " + myAnnotation.name());
9 System.out.println("value: " + myAnnotation.value());

10 }
11 }

1 /* Accessing only a specific annotation on an object */
2 Class aClass = TheClass.class;
3 Annotation annotation = aClass.getAnnotation(customAnnotation.class);
4
5 if(annotation instanceof customAnnotation){
6 customAnnotation myAnnotation = (customAnnotation) annotation;
7 System.out.println("name: " + myAnnotation.name());
8 System.out.println("value: " + myAnnotation.value());
9 }

Figure 2.4: Custom Java annotations part 2

2.2.3 Type Annotations
In Java version 7.0 the metadata syntax is extended to allow the annotation of types
[8]. Although those annotations are not yet completely integrated into the Java com-
piler, they can be used with the use of a special Type annotations compiler. This type
annotation compiler is completely backward compatible to the standard Java compiler
and allows type checking based on those type annotations.

For example consider the example in figure 2.5, the type annotation compiler would

6

2.3 Metadata Annotations

check that no object inside the list would ever equal null, therefore removing the need
for the programmer to check against such behavior at multiple places in the source code
as is usual. Type annotations can be applied to any place a type is used, that means
variable definitions, function argument definition and also where the return type of a
function is defined.

1 /* prevent any list element becoming == null */
2 List<@NonNull Object> list;
3
4 /* type annotation in a function definition */
5 public static @NonZero int calculate_something(@Nullable int i) {
6 ...
7 }

Figure 2.5: Example of a type annotation in Java 7.0

2.3 C#
The programming language C# also supports metadata on a source code level. A
programmer can define so called attributes which are used to store additional data in
context to many elements in a program similar to Java although the syntax is quite
different. In addition like Java, it allows for the definition of custom attributes which
can be accessed through a reflection mechanism to access the metadata at runtime.
Figure 2.6 (a) shows how to assign metadata in C# and part (b) shows an example of
how the reflection mechanism can be used.

(a) Assigning metadata to objects

1 [BugFixAttribute(766,"Max Mustermann","30/7/2011") Comment="Description of bug"]
2 public class MyClass {
3 ...
4 }

(b) Reflection on metadata

1 System.Reflection.MemberInfo inf = MyClass;
2 object[] attributes;
3 attributes = inf.GetCustomAttributes(typeof(BugFixAttribute), false);
4
5 // iterate through the attributes, retrieving the properties
6 foreach(Object attribute in attributes) {
7 BugFixAttribute bfa = (BugFixAttribute) attribute;
8 Console.WriteLine("\nBugID: {0}", bfa.BugID);
9 Console.WriteLine("Programmer: {0}", bfa.Programmer);

10 Console.WriteLine("Date: {0}", bfa.Date);
11 Console.WriteLine("Comment: {0}", bfa.Comment);
12 }

Figure 2.6: Example of metadata annotations in C#

7

Metadata Annotations 2.3

Furthermore Walter Cazzola has extended the annotation mechanisms used in C# for
his own research in [9]. A number of examples based on this example can be seen in
figure 2.7.

(c) Extensions on annotations

1 public void function () {
2 [MyAnnotation] {
3 // allows for block statement code to be annotated
4 [anotherAnnotation] {
5 // also allows nested annotations now
6 }
7 }
8 }

Figure 2.7: Example of extended metadata annotations in C#

8

3 Aspect-Oriented Software
Development

This chapter provides an introduction intoAspect-Oriented Software Development (AOSD).
Additionally this chapter gives an overview on metadata annotations used in Aspect-
Oriented Programming (AOP) languages and introduces works related to this thesis
concerning the extension of joinpoint models in AOP languages.

3.1 Introduction

The Object-Oriented Programming (OOP) paradigm improves modularity by encapsu-
lating data with methods inside objects. Most often the data can only be accessed
indirectly through the associated functions. Although the concept appeared in the sev-
enties, it took twenty years to become popular [10].

The difficult aspect concerning object-oriented design is how to decompose a system
into objects, because many factors have to be considered: encapsulation, granularity,
dependency, adaptability, reusability, and others. They all influence the decomposition,
often in conflicting ways [11].

Existing modularization mechanisms typically support only a small set of decompo-
sitions and usually only single dominant decomposition at a time. This is known as the
tyranny of the dominant decomposition [12]. This limits the ability to implement other
concerns in a modular way. For example, OOP modularizes concerns in clases and only
fixed relations are possible. Implementing a conern in a class might prevent another
concern from being implemented as a class [13].

Aspect-Oriented Programming (AOP) is a paradigm that intends to solve this prob-
lem.

AOP is most often used in combination with OOP but can also be applied to differ-
ent paradigms, for example some event-based systems can be considered aspect-oriented
[14]. The following two sections introduce an example to demonstrate the problems with
a pure OOP approach as well as ways AOP resolves those. Afterward a number of AOP
methodologies relevant to the rest of this thesis are introduced.

9

Aspect-Oriented Software Development 3.2

(a) Addition

1 class Add : public Calculation {
2 private:
3 int result;
4 CalcDisplay *calcDisplay;
5 Tracer *tracer;
6 public:
7 Add () {
8 result = 0;
9 calcDisplay = new CalcDisplay ();

10 trace = new Tracer ();
11 }
12
13 void execute (int a, int b) {
14 tracer->write ("void Add.execute(int, int)");
15 result = a + b;
16 calcDisplay->update (result);
17 }
18
19 int getLastResult () {
20 tracer->write ("int Add.getLastResult()");
21 return result;
22 }
23 };

(b) CalcDisplay

1 class CalcDisplay {
2 private:
3 Tracer *tracer;
4 public:
5 CalcDisplay () {
6 tracer = new Tracer ();
7 }
8
9 void update (int value) {

10 tracer->write ("void CalcDisplay.update(int)");
11 cout << "Printing new value of calculation: " << value << endl;
12 }
13 };

Figure 3.1: Modeling addition, display and logging without aspects [13]

3.2 Traditional Approach

For our example lets consider an application that contains an object Add and an object
CalcDisplay. Add inherits from the purely virtual class Calculation and imple-
ments the method execute(a, b). It adds two integer variables, stores the result
value and then tells CalcDisplay to print the result to the standard output. In this
example our cross-cutting concern is tracing. All methods have to be traced, for this
purpose exists another class Tracer which is used to write tracing messages using the
method write. Figure 3.1 shows a possible implementation.

In this example we have two forms of cross-cutting: code tangling and code scatter-

10

3.3 Aspect-Oriented Software Development

ing. The tracing concern is scattered across the classes Add and CalcDisplay (lines
5, 10, 14 and 20 in (a) as well as 3, 6 and 10 in (b)). A concern, like tracing in our
example, that is implemented across several classes is called scattered.

Most of the time a scattered concern involves code replication. Which means that the
same code is implemented at a number of different places. In Figure 3.1 all calls to the
tracing object are significantly similar.

Code tangling is the implementation of different concerns inside the same class. The
tracing concern in Figure 3.1 is tangled with both the addition as well as the display
concern. Code tangling and code scattering have the following consequences [13]:

Code is difficult to change

Changing a scattered concern requires modification at different places. Mak-
ing modifications to a tangled concern class requires checking for side-effects
against the other cross-cutting concerns.

Code is harder to reuse

Reusing an object in another software project, requires to either remove or
reuse the tangled concerns as well.

Code is harder to understand

Without separation of concerns it becomes difficult to understand which code
belongs to which concern.

3.3 AOP Approach

To solve cross-cutting problems, several techniques are being researched to increase the
expressiveness of Object-Oriented paradigms. AOP is one of those techniques. AOP in-
troduces a new structure, the aspect, to encapsulate the cross-cutting concerns behavior.

The fundamental goals of AOP are twofold [15]: first, to provide mechanisms to ex-
press cross-cutting concerns applied to other components. Second, to allow improved
separation of concerns with those mechanisms.

Aspects are used to describe advice which is behavior which can be executed at a
joinpoint. Joinpoints are well-defined elements in the structure of code or points in
a programs execution flow where additional behavior is applied. Most commonly class
and method names as well as method calls are used as joinpoints in an AOP language.
Furthermore pointcuts are used to describe a set of joinpoints. Combining advice with
pointcuts allow to execute advice behavior at several places in a program at once.

11

Aspect-Oriented Software Development 3.3

(a) Addition concern

1 class Add : public Calculation {
2 private:
3 int result;
4 CalcDisplay *calcDisplay;
5 public:
6 Add () {
7 result = 0;
8 calcDisplay = new CalcDisplay ();
9 }

10
11 void execute (int a, int b) {
12 result = a + b;
13 calcDisplay->update (result);
14 }
15
16 int getLastResult () {
17 return result;
18 }
19 };

(b) Tracing concern

1 aspect Tracing {
2 Tracer *tracer = new Tracer ();
3 advice call("% Calculation::%(...)") || call("% CalcDisplay::%(...)") : before () {
4 tracer->write (tjp->signature ());
5 }
6 };

Figure 3.2: Modeling addition, display and logging with aspects [13]

Figure 3.2 shows an AOP implementation of the example used in the previous sec-
tion. The tracing concern is encapsulated in an aspect called Tracing which advises
every function call to the classes Calculation and CalcDisplay with tracing code
to print out the necessary tracing information. The code tangling and code scattering
has been removed from the class Add allowing an easier understanding of the addressed
concern.

The code handling the cross-cutting concern is completely encapsulated in the aspect
instead of being embedded within other objects. This has several advantages [13]:

Aspect code can be changed

Changing aspect code does not influence other concerns in a software project.

Aspect code can be reused

Aspects are coupled with other objects by defining pointcuts. In theory, this
low coupling allows reuse. In practice reuse is still difficult.

12

3.4 Aspect-Oriented Software Development

Aspect code is easier to understand

Understanding a concern is independent from other concerns.

Aspect pluggability

It is possible to enable and disable aspects and therefore concerns.

The ability to enable and disable aspects depending on circumstances makes AOP an
interesting paradigm for developing Software Product Lines (SPL) [16, 17].

3.4 AOP Solutions

There are numerous different AOP solutions, but for the purpose of this thesis not all
are interesting, therefore the focus is going to be on AspectJ and related AOP imple-
mentations. All those implementations have a couple of things in common.

They all utilize asymmetric AOP composition, which means the base program and as-
pects are distinguished and the base program is composed with the aspects. Where
as in symmetric AOP composition every component can be composed with any other
component. For example Hyper/J follows this approach [13].

3.4.1 Aspect Weaving

The integration of aspects and components is called aspect weaving. There are different
ways to weave aspects, the approach shared by most of the relevant AOP implementa-
tions for this thesis is called source code weaving. This approach combines the aspect
code in predefined ways with the original source code and creates its output as native
source code for the target language that can be compiled using a native compiler. This
approach to aspect weaving has the following advantages [13]:

High-level source modification

All modifications are done on a source language level, removing the need
to have any information about the target (output) language of the native
compiler.

Aspect and original source optimization

After weaving the aspects into the original source code the outputted code is
optimized by the native compiler, while this doesn’t allow for aspect specific
optimizations, it allows for all the benefits of the native compilers optimization
phases.

13

Aspect-Oriented Software Development 3.4

Native compiler portability

Any compiler for a specific source language can be used, newer versions of the
same compiler with improved optimizations are also possible. Furthermore
it possible to port a software project utilizing such an AOP solution to any
platform that has a compiler for the source language.

But it also has disadvantages [13]:

Language dependency

Source code weaving is written explicitly for the syntax of the input language.

Limited expressiveness

Aspects are limited to the expressive power of the source language. For ex-
ample, it is not possible to add multiple inheritance to a single inheritance
language.

3.4.2 AspectJ

The AspectJ [18] programming language is an aspect-oriented extension of the Java pro-
gramming language. It was developed by Gregor Kiczales who was also the person who
wrote the first paper on AOP [19] back in 1997. AspectJ is an open eclipse project,
which means it can be used by anyone who wants to use it. This was done to encourage
a wider community of people to develop aspect-oriented software and also to provide
researcher with new ideas for AOP.

Nearly all AOP languages relevant to this thesis are closely related to AspectJ. A num-
ber of ideas used in the later chapters of this thesis are based on extensions that were
originally written for AspectJ.

AspectJ was designed to have a certain level of compatibility to Java, that level of com-
patibility set the standard for compatibility concerning other aspect-oriented extensions
to modern programming languages, like AspectC# (see section 3.4.3) and AspectC++
(see section 3.4.4). AspectJ is compatible to Java in four ways [13, 18]:

Upward compatibility

All legal Java programs must be legal AspectJ programs.

Platform compatibility

All legal AspectJ programs must run on standard Java virtual machines.

14

3.4 Aspect-Oriented Software Development

Tool compatibility

It must be possible to extend existing tools to support AspectJ in a natural
way, this includes IDEs, documentation tools and design tools.

Programmer compatibility

Programming with AspectJ must feel like a natural extension of programming
with Java.

AspectJ supports two types of cross-cutting implementation. First, there is dynamic
cross-cutting, which allows to advice a program at well defined regions-in-time [20].
Those regions-in-time are called before(), after() and around(), which are fairly
self-explanatory [18]. The term regions-in-time comes from the uncertainty concerning
aspect ordering in many instances, while advice code is always executed in a specific
order that order might not be directly defined by the programmer and especially in
cases where multiple aspects advice a single joinpoint the order of execution might not
be obvious to the programmer.

Second, there is static cross-cutting, which allows to define new operations on existing
types in the case of AspectJ that means mostly classes but also methods and relation-
ships between classes [13].

AspectJ supports a number of pointcuts, which are expressions used in aspects to deter-
mine the joinpoints a given advice is used on. The built-in pointcuts of AspectJ include
classes, methods, function parameters, method calls and relationships between classes,
among others.

3.4.2.1 Metadata Annotations and AspectJ

After the introduction of the Java Metadata Facility in Java version 5.0 the AspectJ lan-
guage was extended to support the use of metadata in different ways. The most basic
usage in the AspectJ language concerns the definition of aspects, advice and pointcuts
with the help of metadata. Figure 3.3 shows how annotations can be used to define
aspects instead of the standard AspectJ syntax.

This feature in itself is hardly interesting as it only changes the syntax used in As-
pectJ and does not actually enhance the expressiveness of the language.

AspectJ also supports the use of annotations in pointcut expressions. The matching
of annotations to objects is performed by allowing so called annotation patterns into
pointcut expressions.

Those patterns also support the operator ! for negation and simple concatenation as
shown in figure 3.4. The first annotation would match any annotated element which has
an annotation of type Immutable. The second annotation would match any annotated

15

Aspect-Oriented Software Development 3.4

(1a) Aspect definition without annotations

1 public aspect Foo {}

(1b) Aspect definition with annotations

1 @Aspect
2 public class Foo {}

(2a) Pointcut definition without annotations

1 pointcut anyCall() : call(* *.*(..));

(2b) Pointcut definition with annotations

1 @Pointcut("call(* *.*(..))")
2 void anyCall() {}

(3a) Advice node definition without annotations

1 before() : call(* org.aspectprogrammer..*(..)) && this(Foo) {
2 System.out.println("Call from Foo");
3 }

(3b) Advice node definition with annotations

1 @Before("call(* org.aspectprogrammer..*(..)) && this(Foo)")
2 public void callFromFoo() {
3 System.out.println("Call from Foo");
4 }

Figure 3.3: Using Java annotations for declaring aspects, advice nodes and pointcuts

element which does not have an annotation of type Persistent. The following annota-
tion matches any annotated element which has both an annotation of type Foo and an
annotation of type Bar. The fourth annotation matches any annotated element which
has either an annotation of a type matching the type pattern (Foo || Bar). In other
words, any annotated element with either an annotation of type Foo or an annotation of
type Bar (or both). And the last annotation matches any annotated element which has
either an annotation of a type matching the type pattern (com.foo..*). In other words,
any annotated element with an annotation that is declared in the com.foo package or a
sub-package.
Those patterns enhance the expressiveness of the AspectJ pointcut language by allowing
further distinguishing characteristics to be defined for annotated elements but they only
support elements that can already be addressed with AspectJ and do not increase the
number of those elements.

Utilizing those annotation patterns in pointcuts is shown in figure 3.5. The first ex-

16

3.4 Aspect-Oriented Software Development

1 @Immutable
2
3 !@Persistent
4
5 @Foo @Bar
6
7 @(Foo || Bar)
8
9 @(com.foo..*)

Figure 3.4: Annotations for pointcut expressions [21]

pression matches any join point where the code executed is declared in a type with
an @Secure annotation. The format of the within pointcut designator in AspectJ 5 is
’within’ ’(’ OptionalParensTypePattern ’)’. The second expression matches a staticini-
tialization join point of any type with the @Persistent annotation. The format of the
staticinitialization pointcut designator in AspectJ 5 is ’staticinitialization’ ’(’ Option-
alParensTypePattern ’)’. The following expression matches to any call to any method
with the @Oneway annotation. The last expression matches against the execution of
any public method in a package with prefix org.xyz, where the method returns a result
that is annotated with the @Immutable annotation.

The last example also demonstrates the only use for type annotations in combination
with AspectJ currently. They can be used instead as a replacement for the type patterns
normally used in pointcut expressions at this place.

1 within(@Secure *)
2
3 staticinitialization(@Persistent *)
4
5 call(@Oneway * *(..))
6
7 execution(public (@Immutable *) org.xyz..*.*(..))

Figure 3.5: Annotations as parts of pointcuts in AspectJ [21]

3.4.2.2 Extensions to the AspectJ Joinpoint Model

AspectJ is supported by a huge community and a number of researchers have examined
ways to extend the joinpoint model to allow advisement of smaller units than methods
or method calls. Two of those works have relevance for this thesis.

LoopAJ [1] is a language extension for AspectJ which allows the advise of Java loops
inside of functions, it introduces a number of new pointcut expression which can be used
to match against loops and access the variables used in the loop in the advice code.
LoopAJ though is fairly limited as the code-analysis used only supports a small subset

17

Aspect-Oriented Software Development 3.4

of possible Java loops. It also does not support nested loops in any way, which is a sig-
nificant disadvantage considering how important such loops are in many circumstances
to program performance [22].

Closure Joinpoints [23] is an AspectJ extension to allow the application of advice on
block statements. The paper is language specific for Java as it is the only language to
support the closures mechanism described within. Nonetheless it also provides a com-
prehensive analysis of problems and challenges that have to be overcome when advising
local blocks in an AOP language. That analysis is quite language independent and can
be applied to this thesis.

3.4.2.3 Metadata Annotations and Extensions of the AspectJ Joinpoint Model

Research into the usage of metadata annotations for extending the AspectJ joinpoint
model has been conducted in Statement Annotations by Marc Eaddy [24]. They utilized
metadata annotations on a statement level inside of methods, as a new type of pointcut
which could be advised like any other AspectJ joinpoint. In addition the standard
Java metadata annotations syntax was used, which also allowed for the propagation of
parameters into the advice code by binding a context variable from the advice to a value
in the metadata annotation class. Figure 3.6 shows a short and simple example from
that paper.

Using statement annotations to expose interesting events

1 ... several statements ...
2 @Note("Searching for plugins")
3 ... several statements ...
4 @Note("Entering very long, but hopefully not infinite, loop")
5 while(true) { ... }
6 @Note("Loop exited successfully")

Aspect for logging notes

1 aspect LogNotesAspect {
2 before(Note noteAnnotation) : @annotation(noteAnnotation) {
3 System.out.println(noteAnnotation.value() + " [" + thisJoinPoint + "]");
4 }
5 }

Figure 3.6: Example of Statement Annotations in AspectJ [24]

3.4.3 AspectC#
AspectC# [25] is an aspect-oriented extension of the C# programming language. As-
pectC# is quite different from AspectJ in that there are no syntax extensions for advice
generation, as a matter of fact AspectC# does not do source code weaving to apply
advice. AspectC# itself is just a number of C# classes that use custom annotations to

18

3.4 Aspect-Oriented Software Development

integrate advice code into base code.

The basic syntax of AspectC# is similar to the alternative syntax in AspectJ that
allows aspect and advice definition with the use of metadata annotations. The advice
code in AspectC# is not statically weaved into the application at compile time, instead
a dynamic framework is used to execute advice code based on the information found in
those annotations at runtime. It is an interesting approach that allows to use aspect-
oriented concepts in C# without extending the programming language itself, instead it
just requires the use of the AspectC# library to extend the behavior of the program.
For example without including the runtime library it is still possible to compile and run
an AspectC# application. The annotations that define the aspect behavior are then
simply ignored and only the base code is executed.

Figure 3.7 shows a part of the runtime library code used in AspectC#. This partic-
ular code is used to collect the advice code from before and after advices and add
them to the execution of the method dynamically at runtime.

1 MethodJoinPoint methodJP = hasAdvice(c.getNameAndParameters());
2 if(methodJP.hasAdvice()) {
3 if(before) {
4 foreach(Advice beforeAdvice in beforeList) {
5 AspectBuilder aspectAdvice = beforeAdvice.GS_Aspect;
6 string codeBefore = aspectAdvice.getAspectCode(beforeAdvice.GS_methodName);
7 CodeExpressionStatement expressionBefore = new CodeExpressionStatement(new

CodeSnippetExpression(codeBefore));
8 method.Statements.Add(expressionBefore);
9 }

10 }
11 string code = c.getFinalText();
12 CodeExpressionStatement expression = new CodeExpressionStatement(new

CodeSnippetExpression(code));
13 method.Statements.Add(expression);
14 if(after) {
15 foreach(Advice afterAdvice in afterList) {
16 AspectBuilder aspectAdvice = afterAdvice.GS_Aspect;
17 string codeAfter= aspectAdvice.getAspectCode(afterAdvice.GS_methodName);
18 CodeExpressionStatement expressionAfter = newCodeExpressionStatement(new

CodeSnippetExpression(codeAfter));
19 method.Statements.Add(expressionAfter);
20 }
21 }
22 Class.Members.Add(method);
23 }

Figure 3.7: Code excerpt from the AspectC# runtime library [25]

3.4.3.1 Extensions to the AspectC# Joinpoint Model

Work into extending the AspectC# joinpoint model has been done by Walter Cazzola
[26] where based on his own annotation mechanism [9] AspectC# was extended to allow
the direct advice of annotations on a statement level to allow the advice of code inside

19

Aspect-Oriented Software Development 3.4

a function body without the need to refactor the code for this purpose as is a common
workaround in aspect development. Figure 3.8 shows such an annotation as used in a
recent paper [26].

1 public ProceduralWall() {
2 [LoadData(Target = Polyline)] {}
3 }

Figure 3.8: Example of AspectC# metadata annotations [26]

3.4.4 AspectC++
AspectC++ [27] is an aspect-oriented extension of the C++ programming language de-
veloped by Olad Spinczyk and others. It is also the target language for the extensions
presented in this thesis. AspectC++ was created to utilize the AOP paradigm in the
realm of embedded system software, where code-size, performance and numerous other
requirements prevent the use of languages like Java. Even C++ is not as widely used
as it may be should as C is still the dominant language in embedded system software
development. AspectC++ is closely related to AspectJ in the way advice is defined,
pointcut expression are shaped and how the joinpoint model is constructed.

Of course having C++ as the base language instead of Java also leads to significant
differences. Nonetheless AspectC++, like AspectJ, supports dynamic as well as static
advice. Where static advice is done utilizing so called slices to extend existing or cre-
ate new classes with aspects. Dynamic cross-cutting advice is realized with before(),
after() and around() advice on joinpoints which are defined using pointcuts, like
in AspectJ.

For this purpose AspectC++ supports a number of built-in pointcut functions, a full
summary of which is available in the AspectC++ Language Reference [28]. Furthermore
AspectC++ supports dynamic runtime advice using a cflow pointcut function. The
next chapter will provide an extensive analysis of the AspectC++ joinpoint model and
pointcut language.

The example for the AOP approach earlier in this chapter was written in AspectC++
and can be seen as this sections example as well (see figure 3.2).

3.4.5 Other
LogicAJ2 [29] is an aspect-oriented language which was developed at the University of
Bonn. While it is related to AspectJ it has a very different joinpoint model and point-
cut language. What makes it quite relevant in the context of this thesis is its ability to

20

3.4 Aspect-Oriented Software Development

express fine-grained generic advice on every element of its base language Java. Further-
more it was also designed to allow the same expressiveness as LoopAJ without putting
additional constraints on the structure of the base program.

The LogicAJ2 pointcut language only has three basic built-in pointcuts (see figure 3.9)
nevertheless those basic pointucts can be combined to express all possible joinpoints
including the same joinpoints that can be addresed with AspectJ and LoopAJ but also
many more. The disadvantage of the pointcut language lies within the complexity of
the pointcut expressions, furthermore the complexity does not in fact prevent the fragile
pointuct problem [30].

• decl(join_point, declaration_code_pattern)

• stmt(join_point, statement_code_pattern)

• expr(join_point, expression_code_pattern)

Figure 3.9: Basic pointcus of LogicAJ2 [29]

For example the paper on LogicAJ2 demonstrate how to model the AspectJ call point-
cut in LogicAJ2 (see figure 3.10), which shows how difficult and complex it is to express
even simple AspectJ pointcuts in LogicAJ2.

1 pointcut call(?jp, ?declType, ??modifiers, ?returnType, ?name, ??parTypes):
2
3 expr(?jp, ?name(??args)) &&
4 decl(?method, ??modifiers, ?returnType, ?name(??par) { ??stmts }) &&
5 equals(?method, ?jp::ref) &&
6 equals(?declType, ?method::parent::type) &&
7 parameterTypes(??parTypes, ??par);

Figure 3.10: Implementation of the call pointcut [29]

Still it does give an impression on how expressive AOP languages could be beyond the
current standards found in AspectJ and related languages.

21

4 Joinpoint Model Extension

The AspectC++ [27] joinpoint model is the abstract model that is used to determine
where aspects can take effect. Any examination of the joinpoint model can not be per-
formed independently from an in-depth examination of the pointcut language. As the
pointcut language is used to determine where specific aspects take effect in a project.
Limitations in the joinpoint model are often times mirrored as limitations in the point-
cut language and should therefore be analyzed together.

This chapter starts with an analysis of the joinpoint model currently used in AspectC++
in combination with an analysis of the expressiveness of the pointcut language. After-
wards the limitations of the current mechanisms are examined, specifically those limi-
tations that could be circumvent using metadata annotations, before extensions in the
context of metadata annotations are proposed.

Extensions to the joinpoint model of any aspect-oriented language have to take into
account the base language used and the unique properties of those languages. Java and
C++ are related in the sense that both languages utilize the OOP pradigm but they are
also very different in how that paradigm is realized. For example, Java does not support
multiple inheritance, automatic type conversions, operator overloading, and pointers.
Because of this blindly implementing the same extensions into AspectC++ that were
used in AspectJ is not a recommended course of action without first motivating those
extensions in the context of AspectC++.

4.1 Analysis of the AspectC++ Joinpoint Model

The AspectC++ joinpoint model not only holds information about the different types
of joinpoints supported by AspectC++ but also supports modeling of the correlations
between different joinpoints.

4.1.1 Joinpoints Types

The joinpoint model uses a number of types to distinguish between different kinds of
joinpoints. Those types have their own inheritance structure. There are two basic
types followed by a number of different subtypes which are explained in the following
paragraphs.

23

Joinpoint Model Extension 4.1

4.1.1.1 Basic Joinpoint Types

The basic joinpoint types are name and code joinpoints. Name joinpoints are joinpoints
that can be directly addressed by using match expressions, which are special types of
strings in the pointcut language of AspectC++. Code joinpoints are always children
of name joinpoints that are identified by using a combination of match expressions and
pointcut functions in AspectC++. Every type of code joinpoint has a corresponding
pointcut function in AspectC++. To access the code joinpoints that are children of a
specific name joinpoint a match expression mapping to that name joinpoint is used as
an argument for the pointcut function mapping to that specific code joinpoint type.

Figure 4.1 shows an example representation of source code as a joinpoint model in
AspectC++.

4.1.1.2 Name Joinpoint Types

Name joinpoints are divided into three subtypes. Those are namespaces, classes and
functions. The global namespace in C++ is used as the root of the tree representation
in the joinpoint model. Namespaces can only be children of other namespaces, where
classes and functions can only be children of namespaces and classes. The C++ language
does support exceptions from these rules, for example local classes can be defined inside
of functions but the joinpoint model does simply ignore those exceptions.

4.1.1.3 Code Joinpoint Types

Code joinpoints are children of name joinpoints, they are divided into four subtypes.
These subtypes are execution, call, construction and destruction. Currently code join-
points are only used as children of function joinpoints. Every function, which is part of
the project, has one execution joinpoint. Every call made to a function from another
function in the program code is represented as a call joinpoint child of that function
which points to the name joinpoint of the called function. Construction and destruction
joinpoints are children of constructor and destructor functions of classes respectively.

Call functions are special in AspectC++ as they not only refer to so called call expres-
sions but are also generated for operators on data types that have overloaded operator
functions. This in particular will be examined later in this chapter.

4.1.2 Pointcut Language Expressiveness
Expressiveness in the context of the AspectC++ pointcut language refers to the ability
of the language to identify specific joinpoints. AspectC++ has a number of built-in
pointcut functions.

Match expressions are not just simple strings that are only used to identify specific
joinpoints. Match expressions also support wildcard characters that allow to identify

24

4.1 Joinpoint Model Extension

(a) Example source code

1 void debug();
2
3 namespace NS {
4 class TestClass {
5 public:
6 TestClass() { /* constructor */ }
7 ~TestClass() { /* destructor */ }
8
9 void function() { debug(); /* call to debug() */ }

10 };
11 }
12
13 void debug() { /* debug function body */ }
14
15 int main() {
16 NS::TestClass a;
17 a.function(); // call to TestClass::function
18 return 0;
19 }

(b) Example joinpoint model

1 <namespace id="1" sig="::">
2 <namespace id="2" sig="NS">
3 <class id="3" sig="NS::TestClass">
4 <function id="4" sig="NS::TestClass::TestClass()">
5 <construction id="9"/>
6 </function>
7 <function id="5" sig="NS::TestClass::~TestClass()">
8 <destruction id="10"/>
9 </function>

10 <function id="6" sig="void NS::TestClass::function()">
11 <exec id="11"/>
12 <call id="19" target="7">
13 </call>
14 </function>
15 <function id="13" sig="NS::TestClass::TestClass(const NS::TestClass &)" builtin

="1">
16 <construction id="14"/>
17 </function>
18 </class>
19 </namespace>
20 <function id="7" sig="void debug()">
21 <exec id="15"/>
22 </function>
23 <function id="8" sig="int main()">
24 <exec id="17"/>
25 <call id="20" target="6">
26 </call>
27 </function>
28 </namespace>

Figure 4.1: Example of AspectC++ joinpoint model types

25

Joinpoint Model Extension 4.2

multiple joinpoints based on patterns with them. Figure 4.2 (a) shows a number of
match expressions which utilize those wildcards. For a more detailed describtion the
AspectC++ language reference [28] is recommended.

Pointcut functions are not only used to identify code joinpoints. For example the
within pointcut functions is used to select every joinpoint that is a child of the join-
point used as an argument for the pointcut function. Furthermore arguments to pointcut
functions are not only limited to match expressions but can be fully qualified pointcut
expressions including pointcut functions themselves. Figure 4.2 (b) demonstrates this.
The pointcut expression has two parts only joinpoints that are part of both sets of
joinpoints specified are advised by the expression. That shows another feature of the
pointcut language in that it allows binary operations on sets of joinpoints.

Class joinpoints for example hold additional information concerning the inheritance
structure of the class, more specifically they hold references to the base classes and
the derived classes of the class. To utilize that there are two pointcut functions avail-
able, derived and base which in combination with match expressions can be used to
select class joinpoints based on the inheritance structure present in a program. Figure
4.2 (c) shows an example pointcut expression that would apply the around advice spec-
ified there to all constructors of all classes that are derived from the classes “Parent1”
and “Parent2”.

All examples so far have utilized static pointcut functions that are examined before
the execution of a program. AspectC++ also supports the use of dynamic pointcut
functions in expressions. Those pointcut functions are evaluated at runtime and advice
is applied based on dynamic checking against the requirements. An example of such a
function is cflow. Without going much into detail, the function is used to dynamically
check if the control flow took a specific path through the static call graph of the pro-
gram. For example, figure 4.2 (d) uses this pointcut function to apply advice on any
function execution that is part of the control flow of all calls that match against the
match expression “% ...::target_function()” in this instance.

This section is not intended designed to provide a complete presentation of the expres-
siveness of the pointcut language in AspectC++, but shall provide the reader with a
basic understanding of the language elements provided by it. The next section examines
a number of limitations found in the current model.

4.2 Joinpoint Model Limitations
The pointcut language in AspectC++ does support complex pointcut expressions as
shown in the last section. Nonetheless, a number of limitations are present for identi-
fying unique joinpoints in the joinpoint model. The limitations evaluated in this thesis
are centered around the prospect that they can be overcome or circumvented utilizing

26

4.2 Joinpoint Model Extension

(a) Examples of match expressions

1 "void debug()" // matches the specific function debug
2 "% NS::TestClass::%(...) " // matches against all functions in the TestClass class
3 "% ...::%(...)" // matches against all functions in all scopes

(b) Targeting specific function calls

1 advice call("% ...::target_function()") && within("% specific_scope::%(...)") : after() {
2 <statements executed here>
3 }

(c) Targeting constructors of a multiple inheritance class

1 advice construction(derived("Parent1") && derived("Parent2")) : around() {
2 <statements executed here>
3 }

(d) Targeting all function executions in the control flow of a specific call

1 advice cflow(call("% ...::target_function()")) && execution("% ...::%(...)") : around() {
2 <statements executed here>
3 }

Figure 4.2: Example of AspectC++ match expressions and pointcuts

metadata annotations.

4.2.1 Limits for Advice of Specific Joinpoints

The two most fine-grained units of separation in the joinpoint model are functions and
function calls. For example, figure 4.3 (a) shows a function that has two different calls
to the same function within its function body, with the current joinpoint model there is
no way to advice only one of the calls, the only possibilities are to advice all or none of
the function calls and nothing in between.

This comes back to the granularity of the name joinpoints in AspectC++. The calls can
only be addressed by using a match expression on the function signature in combination
with the call pointcut function. For reducing the set of joinpoints further the within
pointcut function is used, but the smallest unit that can be used there is the parent
functions name.

To resolve this limitation in the current model a mechanism would be needed to uniquely
identify specific function calls in addition to the current mechanism provided.

27

Joinpoint Model Extension 4.3

4.2.2 Limits for Advice Execution
Furthermore there is no support for directly applying advice at specific locations inside
a function body. There are two ways to apply advice code to a function in the current
joinpoint model. First advice can be applied to the execution joinpoint either before,
after or around. The only way to apply advice inside of a function is to use a call
joinpoint. When no call joinpoint is available for this or when no uniquely identifyable
call joinpoint is available (see above) the current “best-practice” in AOP is to create a
function with the only purpose of creating a new joinpoint.

The created function depends mostly on the advice code that has to be applied through
it. Sometimes the function needs arguments to allow the advice code access to certain
context information, e.g local variables. Sometimes the function is empty while other
times it executes parts of the original function statements so that the advice can be ap-
plied at the intended position during the programs execution. Figure 4.3 (b) shows an
example of such a function. Those wrapper functions itself have to be carefully tailored
so that the program behavior is not changed. Furthermore other advice code has to be
carefully examined, to ensure that the new function is not affected by other advice code.
Figure 4.3 (c) shows an example of this. Yet there are more problems involved with this
solution.

Advice is supposed to implement cross-cutting concerns. This implementation should
essentially be done oblivious with regards to the underlying base code. Refactoring
the base code should not be necessary to advice its behavior but in the current join-
point model design it really is the “best-practice” available, that not only applies to the
AspectC++ joinpoint model, similar problems have become apparent for AspectJ and
other AOP languages as well.

To resolve this limitation new joinpoint types for advice inside the execution of functions
are needed. These problems with regards to AspectC++ have been documented before,
for example the analysis of aspects in the eCos kernel [31] noted some of them. The
solution back then was the development of a new operating system designed with as-
pects in mind from the bottom-up with CiAO [32], which allows to avoid those problems
during development of the software system. In this thesis the problems are not avoided
but instead possible solutions are examined in the next sections.

4.3 Requirements for Joinpoint Model Extensions
AspectJ demonstrates how metadata annotations can be used to identify joinpoints by
using additional identifiers to the ones provided by the base language. This thesis in-
troduces metadata annotations into AspectC++ in the next chapter. In addition this
thesis will introduce new joinpoint types to further extend the expressiveness of the
AspectC++ language.

28

4.3 Joinpoint Model Extension

(a) Function with multiple equal calls within

1 void Model::process() {
2 this->elements.sort();
3 list<Elements*>::iterator it;
4 for(it = this->elements.begin(); it != this->elements.end(); it++) {
5 <change elements>
6 }
7 this->elements.sort();
8 }

(b) Workaround for advising code which is part of a function

1 void Parent::function() {
2 <statements>
3 <statements which shall be advised>
4 <more statements>
5 }

1 void Parent::function() {
2 <statements>
3 wrapper_function(<wrapper_function_args>);
4 <more statements>
5 }
6
7 void Parent::wrapper_function(<wrapper_function_sig>) {
8 <statements which shall be advised>
9 }

(c) Tracing aspect with changed behavior after workaround for (b)

1 aspect Tracing {
2 advice execution("% Parent::%(...)") : around() {
3 cout << "TRACE: enter " << tjp->signature() << endl;
4 tjp->proceed();
5 cout << "TRACE: leave " << tjp->signature() << endl;
6 }
7 };

Figure 4.3: Example of AspectC++ advice limitations

Metadata annotations provide means to identify a joinpoint by annotation in addi-
tion to a match expression or combination of pointcut functions currently found in the
AspectC++ language. In addition metadata annotations can be applied to language el-
ements that are not identifiable using match expressions, which allows for the expression
of joinpoints in the pointcut language that are not currently supported.

This in turn allows for joinpoint types to be defined without having to consider ways to
address them directly by using match expressions for example. These joinpoints would
not require a unique signature to be addressed using metadata annotations. Joinpoints
that fall into that category are called explicit joinpoints as they need to be explicitly
annotated to be addressed. This removes a restriction from the design of new joinpoint

29

Joinpoint Model Extension 4.4

types in comparison to the old joinpoint types present in the current model.

The next section examines joinpoint model extensions used in the AspectJ language
in the context of AspectC++. As AspectC++ is not AspectJ all extensions have to
meet a number of requirements to be considered for implementation into AspectC++ in
the following chapters.

Genericity

The new joinpoint types should apply for generic language elements of the
C++ base language used in AspectC++. That means they should be present
in a wide variety of programs without being overly specialized in the context
of the base language.

Expressiveness

The new joinpoint types have to extend the expressiveness of the AspectC++
pointcut language, that means they must allow for more fine-grained advice
execution in AspectC++. That means they must allow to execute advice code
at places that can not traditionally be advised without using workarounds or
refactoring of source code.

4.4 Extending the Joinpoint Model
This section describes the new joinpoint types introduced in this thesis. How they fit
into the existing joinpoint model structure and why they provide a desirable extension
of the current joinpoint model.

4.4.1 Statement Level Advice
There are several types of statements in the context of AspectC++. The C++ language
supports statements in different forms as shown in figure 4.4. In this section those
statement types are examined against the requirements listed in the previous section.
Similar examinations have been done in the context of AspectJ and are also considered
in this section.

4.4.1.1 Statement Level Advice in AspectJ

There are three papers that are relevant in the context of statement level in AspectJ with
regards to this thesis. Statement level annotations (see chapter 3 section 3.4.2.3) are
interesting in the context of metadata annotations. The LoopAJ [1] language extension
provides joinpoints for loop-statements, although the for loops themselves have to meet
restrictive requirements that are independent from the syntactic possibilities provided
by the Java language. Such restrictions in the context of AspectC++ would violate the

30

4.4 Joinpoint Model Extension

1 LABEL: statement; // labeled-statement
2
3 call_to_function(); // expression statement
4
5 if (cond) // condition statement
6 statement;
7 else
8 statement;

Figure 4.4: Examples of statements in C++

requirements mentioned above.

The most interesting concept is expressed in the paper “Closure Joinpoints” by Bodden
et al. [23]. The paper examined the execution of advice on block statements. It includes
an extensive analysis of problems that had to be solved in order to allow that kind of
advice. The actual solution postulated in that paper is not quite as interesting in the
context of AspectC++ as it utilizes a language feature unique to the Java language, the
so called closures.

4.4.1.2 Genericity and Statement Joinpoints

Nevertheless, the concept of advising compound statements is quite interesting in the
context of AspectC++. Compound statements are ubiquitous in most programs, they
are used in combination with a number of different types of statements. This would
already ensure that block joinpoints would meet the genericity requirement described
above. Furthermore they allow to execute advice in the context of loop-statements and
condition-statements, even the advice on try-blocks would be enabled with the addition
of this joinpoint type.

Furthermore block joinpoints should be considered before considering more specialized
joinpoint types based on loops, if/else clauses or even exception handling constructs
in C++. Block joinpoints might provide a level of expressiveness for the AspectC++
language that makes further specialized joinpoint types less desirable.

4.4.2 Compound Statement Joinpoints
A compound statement joinpoint or short a block joinpoint is a joinpoint applied to
a compound statement, which is often also called a block statement. A compound
statement is a C++ language element that denotes a local semantic scope. This means
any declaration within the block statement is only valid until the end of the block
statement and not further. Compound statements can be used as stand-alone blocks
inside of a function, but most often they are part of other statements as shown in figure
4.5.
In any given C++ source code there are already a high number of blocks present. So

31

Joinpoint Model Extension 4.4

1 // stand-alone block
2 { <statements> }
3
4 // blocks as part of if/else-if/else statements
5 if (<condition>) {
6 <statements>
7 } else if (<condition>) {
8 <more statements>
9 } else {

10 <even more statements>
11 }
12
13 // a block as part of a for loop
14 for (int i = 0; i < n; i++) {
15 <statements>
16 }
17
18 // a block as part of a switch statement
19 switch(v) {
20 case 1:
21 <statements>
22 break;
23 case 2:
24 <statements>
25 break;
26 default:
27 <statements>
28 break;
29 }

Figure 4.5: Example of compound statements in C++

creating a joinpoint type for blocks does fulfill the genericity requirement introduced
in the last section. A complete list of statements that utilize blocks can be found in
the C++ language reference [33]. Furthermore it does allow the advice of loop bodies
and other generic language structures of the C++ language indirectly. Therefore it is
possible for a well-designed block joinpoint mechanism to allow advice in a comparable
fashion to the LoopAJ [1] mechanism as mentioned above.

4.4.2.1 Problems

An extensive analysis has been conducted into utilizing block joinpoints in the context
of AspectJ [23]. Based on this analysis block joinpoints pose a number of problems for
advice generation. For introducing a new joinpoint type into AspectC++ those problems
have to be solved. In addition the exact behavior of before, around and after
advice has to be defined in relation to the new joinpoint type. It is similarly important
to define the exact behavior of the JoinPoint API of AspectC++. A good way to start
designing such behavior is an examination of a similar joinpoint type and comparing it
to the semantic behavior of the new joinpoint type. The most similar joinpoint to blocks
is the execution joinpoint already present in the AspectC++ language.
A function is a group of statements that are executed when the function is called from
some point in the program. To simplify functions lets consider the function arguments as
the input data and the function return value as its output data. But that is not always

32

4.4 Joinpoint Model Extension

JoinPoint Function Block
types:

Result result type -
That object type object type
Target target type -
AC::Type encoded type of an object type of an object
AC::JPType joinpoint types joinpoint types

static methods:
int args() number of arguments -

AC::Type type() type of the function -
AC::Type argtype(int) types of the arguments -
const char *signature() signature of the function -

unsigned id() joinpoint identification joinpoint identification
AC::Type resulttype() result type -
AC::JPType jptype() type of joinpoint type of joinpoint

non-static methods:
void *arg(int) actual argument -
Result *result() result value -

That *that() object refered to by this object refered to by this
Target *target() target object of a call -
void proceed() execute joinpoint code execute joinpoint code

AC::Action &action() Action structure Action structure

Figure 4.6: Comparison between function and block joinpoint behavior

true in the context of C++, functions as members of a class can access and modify other
class members and arguments, also be pointers or variable references which allow the
function to output information through them can be supplied as arguments. Like blocks
functions declare their own semantic scope, that means any variable locally defined in
the function is only valid until the end of the function body.

When comparing blocks to functions, the first step is to determine the blocks input
and output data. Blocks do not have directly defined arguments, but blocks can, like
functions, access and modify class member variables. Furthermore, blocks can access
and modify all variables present in their parent scope. When comparing blocks to func-
tions it is also important to notice that blocks are only executed at exactly one point in
the program code which is marked by the location of the block statement.

For the definition of the behavior of the JoinPoint API utilized in AspectC++ it
is important to realize that blocks only have a limited use for the functions defined in
the API in comparison to functions. For example, there is no target() in the con-
text of the JoinPoint API concerning block joinpoints as there are no calls to the

33

Joinpoint Model Extension 4.4

block joinpoint at any point in the program. There is no need to convey this kind of
object type. The alternative to that behavior is to return the same value for target as
for that but as mentioned before this would be contrary to the actual behavior of blocks.

Figure 4.6 shows a comparison table between the behavior of functions and blocks con-
cerning the JoinPoint API. The next paragraph describes how block joinpoints are
placed in the joinpoint model and the paragraph thereafter examines how differences to
functions have to be incorporated when advising a block joinpoint.

4.4.2.2 Integration into the Joinpoint Model

Block statements unlike classes or functions do not have a unique identifier in the C++
language. This makes block joinpoints explicit joinpoints as described previously. Like
a function joinpoint it has a child of type execution joinpoint to allow advice utilizing
the built-in execution pointcut function. Futhermore it will be used as a container
for other joinpoints during the creation of the joinpoint model to allow the use of the
built-in within pointcut function in combination with other joinpoints.

4.4.2.3 Advice

Because of the special interactions between the block scope and its parent scope during
execution a number of problems for around advice are present. Functions can easily
be called from within the proceed function of the joinpoint API because all necessary
information can be provided at call time. The problem lies in the fact that the code in
the body of a block might need access to local variables from the parent scope, whether
that parent scope is a function or even just another block. In the case of another block,
it is even more complicated as the block might access local variables of all other blocks
it is a child off. In regards to AspectJ [23] this poses a large problem, but in regards
to AspectC++ it is less complicated as one might expect as will be shown in this section.

Executing the code of a block outside of its original parent scope requires the pres-
ence of all variables used inside the body of the block, furthermore to ensure correct
execution semantic after the execution of the block changes to non-local variables inside
the block have to be applied to the variables inside their respective scopes. Those vari-
ables can be separated into several cases:

(1) Global variables or functions:

Those do not pose a problem as they are globally defined and can be accessed
from outside the parent scope of the block.

34

4.4 Joinpoint Model Extension

(2) Class member variables or functions:

The AspectC++ joinpoint API provides a mechanism for accessing the this
pointer of a joinpoint, therefore access problems for class members can be
circumvented here.

(3) Pointer variables:

Pointer variables have to be separated into two cases again, first the block only
uses the pointer to access the object and does not change the target address of
the pointer itself and second the block does actually change the target address
of the pointer. Only in the second case the changes on the pointer variable
have to be applied to the local pointer variable inside the parent scope to
ensure correct execution of the program.

(4) Local variables:

Local variables similarly have to be written back when changes on them occur
in the context of the block scope.

After further consideration it was decided that all variables used inside a block have to
be consistently updated in their parent scope to simplify the source code analysis that
has to be conducted in this context.

4.4.2.4 Improved Expressiveness

The second requirement for joinpoint extensions mentioned above, was an improvement
of the expressiveness of the AspectC++ language. The question is whether or not block
joinpoints provide such an improvement.

Block joinpoints provide an AspectC++ developer with an implicit mechanism to advice
part of a function body by encapsulating that part in a block statement, why such an
encapsulation might require some refactoring of the code it still simplifies the process in
comparison to the “best-practice” mechanism described above.

Block joinpoints provide an additional level of granularity for the within pointcut
function in AspectC++. This allows an AspectC++ developer to select call expressions
more distinctively by utilizing this feature. As an example figure 4.7 shows an annotated
block joinpoint and how a call joinpoint can be uniquely identified with the help of the
block joinpoint.

4.4.2.5 Conclusion

Block joinpoints are an interesting alternative to joinpoints based on a specific statement-
type (if/else, for, while, switch, etc.) as has been used in AspectJ in the past. The
number of problems faced in comparison to block joinpoints in Java [23] are smaller in

35

Joinpoint Model Extension 4.4

1 void SomeDataType::calculation_procedure() {
2 ...<some statements>...
3 generic_function(<parameter>);
4 ...<some statements>...
5 @check {
6 generic_function(<parameter>);
7 }
8 ...<some statements>...
9 generic_function(<parameter>);

10 ...<some statements>...
11 }

1 aspect AdviceSpecificCall {
2 advice call("void ...::generic_function(...)") && within(execution(@check)) : after()

{
3 ...<interesting advice code>...
4 }
5 };

Figure 4.7: Example of improved expressiveness through a block joinpoint

AspectC++. This makes implementation of block joinpoints a logical step for extending
the AspectC++ joinpoint model.

4.4.3 Type Annotations in AspectC++

Metadata annotations in the Java programming language can be applied to types. As
explained in the last chapter that feature of the annotation mechanism is only of limited
use in the AspectJ programming language. Furthermore even the type checking based
on predefined annotations is not even part of the standard Java compiler yet and requires
the use of a specialized compiler.

For metadata annotations in AspectC++ the feature of using annotations for type
checking is not part of this thesis. The main focus of this thesis is the extension of the
AspectC++ joinpoint model with regard to more fine-grained advice inside of functions.
Type checking can not be used to improve the application of advice or the implementa-
tion of cross-cutting concerns in the context of AspectC++.

While utilizing type annotations is an interesting concept for AspectC++ with regard
to type checking or different mechanisms. The concepts are well placed outside the
scope of this thesis. Already in the course of this thesis a number of extensions will
be implemented into AspectC++. The complete mechanisms for metadata annotations
that will be explained in the next chapter, as well as block joinpoints as described above.

Type annotations and their possible use in AspectC++ pose an interesting problem
for future work in this area.

36

4.4 Joinpoint Model Extension

4.4.4 Expression Level Advice
Expressions refer to a wide variety of language elements in the C++ language. One sub-
set of those expressions are the call expressions which are already covered by an existing
joinpoint type in the AspectC++ language. Limitations of the call expression joinpoint
will be addressed in combination with the metadata annotations mechanism introduced
in the next chapter.

Other expressions so far have been ignored in the context of the AspectC++ joinpoint
model. After introducing a new advice type already on the statement level of C++ it is
only a logical next step to at least consider even more fine-grained places in a programs
source code where advice could be applied.

Consider for example the annotation of operators for applying advice to the execution
of said operators. Already as part of the call joinpoint type the invocation of overloaded
operator functions is part of the AspectC++ joinpoint model. In addition to support
the annotation of any operator in this context, the joinpoint model could be extended to
include function joinpoints for the built-in operators of standard types. This would allow
the annotation of any operator inside a program for the application of advice. Where
as in the current model, the possibility of such advice is dependent on the existence of
overloaded operators in custom types.

On the subject of advice inside of functions there are no smaller language elements that
have clearly defined semantic behavior beyond the operators mentioned above. Even
LogicAJ2 [29] which is to date the most fine-grained aspect-oriented language available,
does not allow for advisement on a more fine-grained layer.

37

5 Metadata Annotations in
AspectC++

This chapter introduces metadata annotations into AspectC++. It provides the defini-
tion of syntactic and semantic rules that govern metadata annotations and are used to
apply annotations to generic language elements. Metadata annotations in the context
of AspectC++ are used to provide additional means to identify joinpoints on top of the
current mechanisms present in the AspectC++ language.

5.1 Design Goals
Extending a programming language is not a simple task. Small changes can have unex-
pected repercussions and side effects that are not immediately obvious to the designer.
Because of this any extension has to be carefully planned and must be designed under
careful consideration of a multitude of factors.

The new joinpoint types introduced in the previous chapter are explicit joinpoints,
which are joinpoints that do not have a unique signature which is used to identify
such a joinpoint through a match expression. For this reason, explicit joinpoints benefit
from metadata annotations as they allow the identification of these joinpoints without
additional refactoring of the source code.

The analysis of the AspectC++ joinpoint model in the previous chapter (see section
4.2) showed that not only explicit joinpoints can benefit from metadata annotations.
Therefore this chapter provides syntax and semantic for annotating the existing join-
point types in AspectC++ as well.

5.1.1 Metadata Annotations and Obliviousness
Obliviousness in the context of AOSD refers to the fact that the base code does not
need to be specially prepared to have advice applied to it. Aspect code can be managed
independently from the base code and AOP languages support clear separation of those
two types of source codes. Even the metadata annotation mechanisms used in AspectJ
and AspectC# does comply with this separation. Metadata annotations are language
elements of the Java and C# language used as base languages in those AOP implemen-
tations respectively. In the case of AspectC++ this is quite different. Unlike the other
base languages, C++ does not support metadata annotations in any form. Extending

39

Metadata Annotations in AspectC++ 5.2

the AspectC++ language with a metadata annotations mechanism therefore means, that
aspect code is no longer clearly separable from the basis code. A consequence of this
for example is, that the basis code can no longer be compiled using a standard C++
compiler, which is entirely possible with the current AspectC++ language features, in
the case that base code and aspect code are truly separated into different source files.

Metadata annotations intentionally break that behavior as those annotations will be
directly applied locally to the corresponding language elements. That means that anno-
tated source code can not be compiled using a standard C++ compiler any longer. That
leads to a fundamental difference between the use of metadata annotations in AspectJ
(or AspectC#) and AspectC++. Where as in the Java language metadata annotations
are part of the semantic and pose no problem with regard to their presence inside of
standard Java source code. The case is quite different for C++, as AspectC++ code is
transformed into C++ code during the weaving process, and every metadata annotation
has to be removed from the resulting source code. That means any all features that
utilize metadata annotations are part of the AspectC++ language instead of the base
language as in the case AspectJ.

That also leads to the fact that metadata annotations can only be used in a static
context at compile time and not dynamically at runtime because at that point their is
only pure C++ program left, and C++ does not support metadata annotations in any
form.

5.2 Design Rules for Metadata Annotations

Based on those facts metadata annotations must follow a number of rules in the con-
text of AspectC++. Those rules are in part based on the implementations of similar
annotation mechanisms in Java and C#, as those features have shown themselves to be
quite useful for metadata annotation mechanisms, these are present in the rules (1-3).
In addition there are objects that might be annotated in future versions of the metadata
annotation mechanism as explained at the end of the previous chapter, it is therefore
a non-functional requirement to annotate elements in such a way that future exten-
sions could be integrated without the need to change syntax or semantic rules developed
in context of this thesis as described in rule number (4). Furthermore the weakest
requirement concerning annotations is number (5) where a certain level of unified syn-
tax for annotating language elements is proposed, the rules governing the placement of
annotations for basic language elements should when possible have a degree of similarity.

40

5.3 Metadata Annotations in AspectC++

(1) Location of metadata annotations must be unique for any language element

That means metadata annotations applied to an language element must only
be found at exactly one place in the source code. This should minimize the
consequences that emerge from breaking the separation of aspect code and
base code.

(2) Allow multiple metadata annotations for language elements

Similar to the annotation mechanism in Java, multiple metadata annotations
should be allowed for language elements that can be annotated.

(3) Allow metadata annotations to have parameters

Metadata annotations should allow the application of parameters. In the case
of explicit joinpoints there are no directly defined input or output values which
could be influenced by advice code, instead metadata annotations are used to
provide values of interest for the advice code.

(4) Consider future extensions in the syntax development

A secondary objective for the syntax proposed in this chapter is to allow for
later extensions concerning the annotation of additional even more fine-grained
generic language elements, like type expressions for example.

(5) Similar syntax for all language elements

The syntactic rules for applying annotations to objects should be visually
similar so that a unified structure concerning different language elements can
be distinguished.

5.3 Syntax and Semantic of Metadata Annotations
This section establishes the syntactic and semantic rules that govern metadata annota-
tions in the AspectC++ language. It is divided into three parts. In part one metadata
annotations are introduced as a language element of AspectC++. Part two handles the
syntax for applying metadata annotations to existing joinpoints, where as part three
describes how metadata annotations are used in the contex of explicit joinpoints as
discussed in the previous chapter.

5.3.1 Metadata Annotations as Language Elements
To simplify the development process for metadata annotations in AspectC++ it was de-
cided to utilize a syntax for metadata annotations similar to the syntax used in the Java
Metadata Facility. An alternative to this would have been to introduce a new keyword
into the AspectC++ language to address the definition of annotations. While a valid

41

Metadata Annotations in AspectC++ 5.3

idea it was decided to use a syntax similar to Java to ensure that metadata annotations
can be easily distinguished from other language elements in the AspectC++ language.

Similar to their use in the Java programming language, AspectC++ should allow the
application of multiple annotations to an language element, which leads to the support
for annotation sequences which are simple concatenations of annotations.

Furthermore similar to metadata annotations in the Java language, AspectC++ should
allow the definition of parameters on annotations. This leads to the following syntax for
metadata annotations in AspectC++:

annotation:
@identifier annotation-paramopt

annotation-param:
(expression-listopt)

annotation-seq:
annotation
annotation-seq annotation

The identifier used in a metadata annotation has to be a valid identifier following the
rules of identifiers of the C++ language, there are no further restrictions on those iden-
tifiers. Any identifier can be used and can be applied to any language element without
restriction. The parameters for metadata annotations are optional, as are the round
brackets used to encase the parameter list. From a semantic standpoint the parameter
list is similar to the one used in postfix expressions that model function calls, but no
semantic checks are performed on them at parse time.
An annotation sequence is a simple concatenation of annotations without any special
syntax, but their is one general semantic rule that has to be applied. A semantic error
has to be produced if the same annotation identifier is used more than once inside an
annotation sequence. An number of examples of valid and invalid metadata annotations
can be found in figure 5.1.

1 @foo // Annotation without parameters
2
3 @bar(i, v) // Annotation with parameters
4
5 @foo @bar(1, "text") // Annotation sequence
6
7 @foo @foo(i) @foo("text") // INVALID annotation sequence

Figure 5.1: Examples of valid metadata annotations in AspectC++

42

5.3 Metadata Annotations in AspectC++

5.3.2 Metadata Annotations for Existing Joinpoints

After defining the syntax for the metadata annotations themselves, the next step in the
design process is to define how metadata annotations are applied to language elements
in the AspectC++ language. Metadata annotations are designed to be used in com-
bination with joinpoints to add a new dimension of identification used in the pointcut
language of AspectC++. This section describes how metadata annotations are applied
to the joinpoint types of the original AspectC++ joinpoint model with the exception
of namespaces where an explanation is provided for why metadata annotations are not
applied to that specific language element.

5.3.2.1 Namespaces

Namespaces are a container object in the C++ language. Unlike most other objects in
the C++ language they can be declared at multiple places scattered across numerous
different source files (as is the case in most software projects utilizing C++). This means
that using metadata annotates with namespaces has a number of problems.

First allowing the annotation of a namespace declaration would mean that annotations
can be placed at multiple places in the source code and would therefore violate the first
design rule mentioned above. Furthermore the meaning of such an annotation would not
be clear as their are several possible meanings that could be perceived from an annota-
tion on such a declaration. They could either be interpreted as annotations applied to
the specific language elements specified within the context of this specific declaration.
Or they could be interpreted as being valid for the whole namespace, that means every
other namespace declaration anywhere else in the source code.

Namespaces are used as containers. Inside of them other declarations and definitions
are placed in the C++ language. Their are two quite different ways annotations of
namespaces could be interpreted should they be allowed:

Partial namespace annotation

This means that an annotated namespace declaration is used as a simple way
to apply the annotation to any language element defined inside the namespace.
That are classes and functions in the context of the namespace and only classes
and functions specifically declared within this specific declaration would be
annotated. As those language elements are supposed to allow for metadata
annotations themselves, this complicates the mechanism unnecessarily.

43

Metadata Annotations in AspectC++ 5.3

Complete namespace annotation

The other way annotations on namespaces are interpreted is that the anno-
tation is to be applied to the whole namespace itself. That allows for anno-
tations on the same namespace to be at multiple places in the source code of
a program. Furthermore it would complicated the verifiction of the semantic
requirement that any object does not have the same annotation applied twice.

In addition namespaces themselve are already used as named containers for other lan-
guage objects in C++. Adding other identifiers to them in the form of annotations has
advantage from a developers perspective in AspectC++. Therefore it was decided that
namespaces will not be among the language elements that metadata annotations can be
applied to.

5.3.2.2 Classes

The next type of language elements to be considered are classes. Classes can have defini-
tions in multiple files, for example forward declaration are regularly used in some header
files. The C++ language only allows one class definition which is where annotations will
be applied exclusively.

The syntax shown below was chosen for two reasons that will become apparent later
on in this section. First as shown later, it resolves the requirement for a similar syntax
across all objects. Secondly, it lessens the amount of effort that has to be applied to
modify the C++ parsing process (in the later implementation). As a side note the orig-
inal syntax used in the remainder of this section is based on the syntax trees found in
the C++ standard [33]. The placement of metadata annotations in those syntax trees is
emphasized by a bold typeface. This is for clarification purposes only and has no other
meaning.

class-key:
class
struct
union

class-specifier :
class-head { member-specificationopt }

class-head:
class-key identifieropt annotation-seqopt base-clauseopt

class-key nested-name-specifier identifier annotation-seqopt base-clauseopt

class-key nested-name-specifieropt template-id annotation-seqopt base-clauseopt

Annotations on multiple classes can be considered as an additional dimension in the
context of AspectC++. Where namespaces help to define and manage one dimension
of separation between classes, an annotation can be used to define another and multiple

44

5.3 Metadata Annotations in AspectC++

annotations can be used to define even more additional dimensions of separation between
classes. This can help for the advice of multiple classes across several namespaces as an
alternative to defining a pointcut variable.

Figure 5.2 shows two examples of annotated classes, of note is the placement of the
metadata annotation after the identifier and before the base clause or the curly bracket
respectively.

1 // an annotated class declaration
2 class Bar @foo("text") {
3 <member specification>
4 };
5
6 // an annotated class declaration with a base clause
7 class Foo @bar(i) : public Bar {
8 <member specification>
9 };

Figure 5.2: Examples for annotated classes in AspectC++

5.3.2.3 Functions

The next language element that should allow metadata annotations to be applied are
functions. Functions similar to classes can be declared and defined at different places.
For the placement of metadata annotations the definition is chosen. Annotations for
functions allow similarly, as they do for classes the addition of new dimensions on the
structure of functions independently from the separation performed by namespace and
class declarations. This can improve the different ways separated concerns can be ad-
dressed with regard to the decomposition of the program without the need for declaring
pointcut variables [34, 12]. This not only simplifies addressing of certain subsets of func-
tions in a program but also prevents accidental invocations of side effects like the fragile
pointcut problem [30].
function-body:

compound-statement

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt annotation-seqopt function-body
decl-specifier-seqopt declarator function-try-block

This is the part where the similarities in the syntax across different language elements
concerning metadata annotations becomes apparent. The example in figure 5.3 demon-
strates how similar the syntax for classes and functions is in practice.

5.3.2.4 Call Expressions

Call expressions are very interesting in the context of metadata annotations in As-
pectC++. The analysis conducted in the previous chapter showed clearly that the

45

Metadata Annotations in AspectC++ 5.3

1 // INVALID annotations on a function declaration
2 static void calculate_foo(int, int, int) @foo @bar;
3
4 // annotating a number of constructors of a class
5 class Foo {
6 private:
7 int _a_value;
8 bool _some_value;
9 public:

10 ...
11 Foo (int a) @bar() : _a_value(a), _some_value(false) { }
12 Foo (int a, bool s) @bar() : _a_value(a), _some_value(s) { }
13 ...
14 };
15
16 // annotating a function definition
17 static void calculate_foo (int i, int x, int y) @foo @bar {
18 ...
19 }

Figure 5.3: Examples for annotated functions in AspectC++

ability to identify specific call expressions can improve the expressiveness of the As-
pectC++ language. It is also something that can not be done under all circumstances
in the current joinpoint model.

Call expressions are not limited to simple function calls. The C++ language supports
operator overloading, which means that the usage of built-in operators also results in a
call to a function. Therefore, when metadata annotations should be allowed for calls,
they also have to be allowed for operators if the requirement for genericity is to be re-
solved. Genericity in this context refers to the ability to annotate any type of call with
metadata annotations not only a subset of all possible calls.

Unlike the language elements discussed previously, calls have a complicated syntax.
They are part of the postfix expressions defined in the C++ standard [33]. Because of
this, the syntax tree is not part of this section, as it is quite extensive.

The syntax for call expressions in the sense of standard function calls is simple, the
metadata annotation is simple supplied as a prefix to the call. For operators the same
syntax is used and metadata annotations are simply placed as a prefix to the operator.

There are some cases of overloaded operators that pose a problem in this regard. Figure
5.4 shows a number of examples concerning the annotation of calls and operators. The
problem with operators that have a suffix usage meaning ++ and −−. As the variable
used as an argument for the operator and that argument itself can again be a call, it
was considered best to forbid the usage of metadata annotations on those two operators
completely.

The semantic of those annotations is actually very simple. They have to be completely

46

5.3 Metadata Annotations in AspectC++

ignored after the initial parsing. Only when the AspectC++ compiler generates the
joinpoint model those annotations become of interest, but this is explained in the next
chapter.

1 // simple function call in statement form
2 @foo @bar call_to_function(<function_parameters>);
3
4 // function calls as part of other expressions
5 for (int i = 0; i < @foo list.size(); i++) {
6
7 }
8
9 // annotated operator

10 Date y = ...
11 ...
12 if(y @volatile == new Date()) {
13 ...
14 }
15
16 // special cases
17 @incr a.size()++; // annotates the call
18 @decr --a.size(); // syntax error

Figure 5.4: Examples of annotated call expressions in AspectC++

5.3.3 Metadata Annotations for Explicit Joinpoints
After defining how metadata annotations are to be applied to the language elements
that are used as a basis for the AspectC++ joinpoint model, this section defines how
metadata annotations are applied to explicit joinpoints.

5.3.3.1 Compound Statements

The block joinpoint type was newly introduced in the previous chapter. Block joinpoints
are joinpoints over generic language elements, as also mentioned in the previous chap-
ter. AspectC++ has no means to directly identify such a pointcut, as blocks and other
generic language elements do not have unique identifiers. Metadata annotations though,
allow to add identifiers to generic language elements to circumvent that limitation of the
AspectC++ language.

The number of places where a block can be annotated are quite limited. Consider-
ing other C++ language elements there are only three possible choices as shown in
figure 5.5. Solution (a) is similar in style to the annotation of functions and classes and
the separation to other language elements is also clear. The problem with solution (b)
is that after the annotation sequence, there is no explicit separator with regard to the
following statements. Depending on the syntax for the annotation of statements, which
includes expression statements and those can also include call expressions, therefore it
would not be obvious which element is annotated by the sequence. The last possible

47

Metadata Annotations in AspectC++ 5.3

solution is similar to the way objects can be directly declared at the end of struct
declarations, unlike the syntax from the struct type there is no semicolon at the end
of the annotation sequence. Which would lead to the exact same problem already de-
scribed concerning solution (b).

At the end it was decided to use the syntax shown in figure 5.5 (a) for metadata anno-
tations on compound statements, as this syntax is also the most similar with regard to
the syntax concerning other language elements defined previously in this chapter.

compound-statement:
annotation-seqopt { statement-seqopt }

statement-seq:
statement
statment-seq statement

(a) Before the opening curly bracket

1 @foo @bar {
2 <statements>
3 }

(b) Directly after the opening curly bracket

1 {
2 @foo @bar
3 <statements>
4 }

(c) After the closing curly bracket

1 {
2 <statements>
3 } @foo @bar

Figure 5.5: Possible locations for the annotation of compound statements

5.3.3.2 Outlook: Type Annotations

As mentioned in the design goals section of this chapter leaving room for future exten-
sion is a secondary objective for the integration process of metadata annotations into
AspectC++. The syntax proposed in this chapter does not interfere with type annota-
tions in any way. Assuming type annotations are used with a similar syntax as the one
used in the Java annotations mechanism.

Figure 5.6 (a) shows a couple of examples in that regard. Going back to the anno-
tation of classes and functions it could have been easily decided to place the metadata

48

5.4 Metadata Annotations in AspectC++

(a) Clear separation between annotation types

1 @type void function_name(@otherType Foo x) @function {
2 ...
3 }

(b) Less clear separation between annotation types

1 @type void @function function_name(@otherType Foo x) {
2 ...
3 }

Figure 5.6: Examples of metadata annotations on types

annotations for those objects before the identifiers. As can be seen in figure 5.6 (b)
this does not appear to be a good idea. While the syntax itself would still be uniquely
defined and the meaning clearly identifiable, this syntax would not provide such a clear
separation of the different types of metadata annotations used on those objects.

5.4 Metadata Annotations for Pointcut Expressions

After adding metadata annotations to generic language elements in AspectC++ in the
previous section, this section is used to examine the integration of metadata annotations
into the pointcut language of AspectC++, in such a form that the language can utilize
the additional information on basic language elements provided by the metadata anno-
tations in the context of applying advice.

This section focuses on design decisions behind the syntax extensions for metadata
annotations in the pointcut language. A more detailed description of the actual mech-
anisms behind the implementation into AspectC++ is provided in the next chapter of
this thesis.

5.4.1 Additional Design Goals

While the design goals used in the previous section continue to apply, additional con-
cerns have to be considered with regard to an extension of the AspectC++ pointcut
language. The first two concerns could be regarded as one combined concern but both
are equally important that explicitly stating both here becomes necessary. In addition
an additional concern is that advice code should be able to access and in the case of
references even change the values of parameters given to annotations.

49

Metadata Annotations in AspectC++ 5.4

(6) No definition of additional pointcut functions

For utilizing explicit joinpoints and metadata annotations in the pointcut
language of AspectC++ it should be avoided to create new pointcut functions.
As a matter of fact it will be shown that new pointcut functions are not
necessary for the joinpoints described in this thesis.

(7) Compatibility with existing pointcut functions

The existing joinpoint functions are more than enough to handle, in com-
bination with metadata annotations, the identification of explicit joinpoints.
Therefore the existing pointcut functions should allow metadata annotations
instead of match expressions as parameters.

(8) Access to annotation parameters in advice code

Function joinpoints allow the access and even the modification of the function
arguments in advice code, joinpoints with annotation should offer a mech-
anism to access specific annotation parameters like ordinary variables. This
would also enable a programmer to use a reference as an annotation parameter
the advice code could then perform operations on the parameters that would
automatically be propagated back into the execution of the base code.

5.4.2 Basic Integration
The first step for integrating metadata annotations into the pointcut language is to de-
fine how metadata annotations can be used in pointcut expressions. Here it is useful to
take a look at the use of metadata annotations in the AspectJ language again. AspectJ
allows metadata annotations as expressions inside the pointcut language, furthermore
binary operators like AND, OR or NOT can be applied to metadata annotations in
pointcut expressions.

For AspectC++ the same features are quite interesting. Binary operators can be ap-
plied to match expressions and pointcut functions in AspectC++, therefore it is only
logical to also allow their application to metadata annotations. In addition, design goal
(7) described above requires metadata annotations to be valid arguments for pointcut
functions. Furthermore binary operators in pointcut expressions should also allow the
combination of metadata annotations and match expressions respectively pointcut func-
tions.

5.4.2.1 Handling Annotation Parameters

Another problem that has to be solved when integrating metadata annotations into the
pointcut language is how annotation parameters can be used in advice code. One pos-
sible solution would be to use a similar syntax for annotation parameters to the syntax

50

5.4 Metadata Annotations in AspectC++

used for accessing function arguments through the JoinPoint API in AspectC++.
Instead though another solution was chosen for this feature. Metadata annotations in
pointcuts can be bound to advice arguments similarly to how function arguments can be
bound. This allows for the use of annotation parameters in advice code without having
to access the tjp object supplied by the AspectC++ API.

Figure 5.7 shows examples of pointcut expressions with metadata annotations as pro-
posed in this section. It also demonstrates how bindings of variables are supposed to
work. A more in-depth view at the implementation of those features is supplied in the
next chapter.

1 // pointcut expressions that only selects execution joinpoints of function with the
@some_annotation annotation

2 advice execution(@some_annotation && "% ...::%(...)") : around() {
3 ...
4 }
5
6 // binding a single annotation parameter
7 advice execution(@loopx(i)) : after(int i) {
8 ...
9 }

10
11 // binding multiple annotation parameters
12 advice execution(@func(a,b)) : before(int b, bool a) {
13 ...
14 }

Figure 5.7: Examples of metadata annotations in pointcut expressions

5.4.2.2 Call Joinpoints

When applying the changes described above to the pointcut language of AspectC++ an
interesting side effect occurs. The call pointcut function when used with a metadata
annotations as an argument does return a subset of joinpoints that can be divided into
two quite distinct parts:

(a) Annotated calls

A part of the returned subset of joinpoints consists of calls annotated with the
metadata annotation supplied as an argument to the pointcut function.

(b) Calls to annotated functions

The other part is call joinpoints which target function joinpoints annotated
with the metadata annotations supplied as an argument of the pointcut func-
tion.

A developer using AspectC++ has to be aware of this effect. In general this should
encourage developers to utilize different annotations for different types of joinpoints

51

Metadata Annotations in AspectC++ 5.5

even though it is not required by the language. It can be considered good programming
practice. Similar to how the use of different namespaces and classes is encouraged by
OOP even though everything could be placed within one namespace or one class.

5.4.3 Pointcut Expressions for Explicit Joinpoints
Based on the design goals mentioned above the identification of explicit joinpoints us-
ing metadata annotation should only utilize the existing pointcut functions. Adding
new pointcut functions specifically designed for explicit joinpoints would certainly be
possible, but is not necessary for the joinpoints designed in this thesis.

5.4.3.1 Compound Statement Joinpoints

The block joinpoint type introduced in the previous chapter consists of a new type of
name joinpoint and a child execution joinpoint. That means block joinpoints can be
addressed using the execution pointcut function of AspectC++.

Similarly to the behavior of the call pointcut function as mentioned above. The usage
of metadata annotations as arguments for the execution pointcut function also result
in ambiguous results. The pointcut function produces a subset of all execution joinpoints
when used with metadata annotations. This subset consists of all named joinpoints that
have a execution joinpoint in their list of children, which means all functions and blocks
that are annotated with a matching metadata annotation.

This should again serve as a reminder, that developers should not reuse the same an-
notations in multiple contexts for pointcut expressions that use metadata annotations.
To be truly distinctive, a wide variety of identifiers should be used in combination with
annotations (in a software project).

5.5 Improved Expressiveness
In the last section of this chapter the limitations discussed in the previous chapter (see
section 4.2) are revisited and reevaluated considering the extensions proposed in the
previous two chapters.

5.5.1 Identifying Specific Calls
One limitation mentioned in the previous chapter is that different calls to the same func-
tion within the same scope can not be separately addressed in AspectC++. Metadata
annotations allow to annotate specific calls of interest and to address those indepen-
dently of other calls to the same function.

Similarly specific calls to overloaded operators can be addressed and only the execution

52

5.5 Metadata Annotations in AspectC++

of those precise calls can be advised without changing the behavior of other executions
of the same function.

5.5.2 Fine-Grained Execution Advice
Block joinpoints provide a mechanism to explicitly encapsulate parts of functions and
to apply advice to those parts directly without the need for a workaround as mentioned
in the discussion of joinpoint model limitations in the previous chapter.

In general block joinpoints supply a programmer using AspectC++ with a high number
of additional joinpoints for the implementation of cross-cutting concerns as they are
common language elements that are present at many places in existing code.

53

6 Implementation

This chapter describes the practical work done in the context of this thesis. It de-
scribes the implementation of the features designed in the previous two chapters into
the AspectC++ compiler. In particular it shows where differences between the theoret-
ical and practical design were necessary and examines the reasons for those differences.
This chapter also provides an insight into problems and obstacles that became apparent
during the implementation that were not considered in the design process.

6.1 AspectC++ Compiler Basics

As mentioned before the AspectC++ compiler is a source code weaver (see section 3.4).
The AspectC++ source code is transformed into valid C++ source code that incorpo-
rates the changes invoked by the aspect code. The compiler itself is written in C++ and
utilizes the PUMA framework for all parsing and transformation operations. Without
describing the internal processes in detail, the relevant subjects for the implementation
of the features described in the previous two chapters are:

PUMA framework extension

The whole parsing process is implemented in the PUMA framework, therefore
extensions to the AspectC++ language have to be first implemented as part
of the PUMA framework.

Joinpoint model extension

This refers to the extension of the abstract joinpoint model mentioned in
chapter 4. It also refers to the generation of the project repository, which is
the specific instantiation of the joinpoint model generated during compilation.

Pointcut language extension

The evaluation of the pointcuts in an AspectC++ project is handled inside
the AspectC++ compiler source code and not by the PUMA parser. To allow
for the usage of metadata annotations as part of pointcut expressions and to
implement the ability to identify explicit joinpoints with them, this evaluation
process has to be extended.

55

Implementation 6.1

Weaver extension

The weaver is a part of the AspectC++ compiler that is invoked to weave
the aspect code and the base code of an AspectC++ project. It produces
valid C++ source code that executes the behaviors described in the advices
at the appropriate places in the base source code. In the context of this thesis
the weaving of block joinpoints has to be implemented on top of the existing
transformations.

6.1.1 PUMA Framework

Puma

Input Languages

C++

AspectC++

C Dialects

MS Visual C++ GNU gcc/g++

Analyses

CPP Parsing & Sem. Analysis

Full Sem. Analysis

AST Matching

Transformation

Figure 6.1: PUMA framework feature model [35]

PUMA is a code analysis and manipulation framework developed by Mathias Urban,
Olaf Spinczyk and others [35]. PUMA is used to parse C, C++ or AspectC++ source
code. It is part of the AspectC++ compiler. PUMA was developed utilizing AOP con-
cepts, it is highly modular and aspects are used to implement a number of features. For
example PUMA supports several common language extensions, such as GNU and MS
Visual C++. In addition it also supports a number of C++ standards, such as C99 or
C++11. Figure 6.1 shows an overview over the PUMA feature model [35].

Aspect-oriented concepts are used in the PUMA framework to separate parallel run-
ning features. For example the syntax and semantic are separated into different classes
the interfaces are implemented by utilizing loose-coupling through aspects instead of tra-
ditional OOP transactions. The advantage of this approach is that features like dialects
and different language standards can be exported into aspects. As a matter of fact the
PUMA framework is also a software product-line that can be configured to support only
specific features.

56

6.2 Implementation

The AspectC++ compiler uses PUMA for a multitude of tasks. All parsing is done
using PUMA. Code analysis tasks and code transformations also utilize classes that are
part of the PUMA framework. This close relation between the compiler and the PUMA
framework leads to the fact that to implement language extensions into AspectC++
modifications of the PUMA framework are also necessary.

6.2 PUMA Framework Extension
To integrate metadata annotations into the AspectC++ compiler the first step is to
extend the PUMA framework. The syntax and semantic defined in the previous chapter
have to be integrated into the parser. During the implementation the changes where
introduced and debugged without the use of aspects to speed up the developing process.
Nevertheless, a number of functions already required the use of aspects and advices
in this phase. There are features in the PUMA framework that are quite similar to
metadata annotations. For example the GNU C++ dialect supports the use of addi-
tional prefixes to existing syntax elements in the C++ language. It is planned that the
metadata annotation feature should be an optional feature in PUMA, for this purpose
it should be implemented in aspects similar other additional features already present in
the PUMA framework.

It is important when discussing the integration of metadata annotations into the PUMA
framework to differentiate several separate concerns. One, metadata annotations out-
side the scope of an aspect can be used to annotate language elements as defined in
the previous chapter. Those annotations do not change the semantic behavior of those
elements. That means the best solution would be to notice the metadata annotations
and save their relevant information before continuing with the syntactic and semantic
parsing process without additional changes. The AspectC++ language extension of the
PUMA compiler uses a separate semantic database class to store additional information.
Is the AspectC++ language support enabled at compile time the class is statically added
to the standard semantic database using the slice mechanism provided by AspectC++.
The PUMA framework uses static weaving to integrate that additional class into the
normal semantic database. Additional advices are applied to enable the behavior con-
cerning information that is to be saved in this database.

During the parsing process of PUMA, metadata annotations are collected and the infor-
mation about identifiers, parameters and annotation targets are saved in this separate
semantic database. The semantic rules concerning annotations are also enforced at this
point in the execution through additional advice.

Two, metadata annotations inside of functions bodies are different in relation to the
PUMA framework. For the most part they are ignored in the syntactic parsing and
semantic analysis. The semantic rules for the metadata annotations themselves still

57

Implementation 6.3

apply during the parsing process, but their information is not saved inside the semantic
database at this point in time.

As mentioned above the implementation of the additional cross-cutting concerns in-
troduced by metadata annotations uses aspects. For example take the advice code
displayed in figure 6.2 this is code that is used for the syntactic parsing of metadata
annotations applied to a compound statement.

Three, metadata annotations inside of an aspect, more specifically inside of pointcut
expressions are quite different. To integrate metadata annotations into the pointcut
language with the syntax described in the previous chapter it is necessary to allow the
parsing of a metadata annotation as a valid postfix expression. This enables the annota-
tion to be used as function parameters for example. But this has to be valid only within
pointcut expressions. This in combination with the syntax outside of aspects would lead
to an ambiguous parsing process, should those cases not be clearly separated. For the
purpose of solving this problem, the semantic had to be extended to not only keep track
of entering and leaving aspects or classes as it did already. But to provide additional
interfaces to keep track whether or not the current elements are part of pointcut expres-
sions. Furthermore, unlike the metadata annotations outside of pointcut expressions,
the metadata annotations inside of pointcut expressions need to be compatible to binary
expressions in combination with match expressions and other metadata annotations as
described in the previous chapter as well.

This concludes the changes that had to occur within the PUMA framework. The next
step in the implementation process take place in AspectC++ compiler source code itself
and not in an additional library. For this step it is important to note that aspects can
only be used in the context of the PUMA framework, the AspectC++ compiler is “only”
a C++ project not an AspectC++ project.

1 advice within (derived(csyntax())) && execution("bool ...::CmpdStmt::parse(...)") && that
("Puma::CCSyntax") : around () {

2 JoinPoint::template Arg<0>::ReferredType &s = *tjp->arg<0>();
3 if (s.tag_spec_seq()) {
4 tjp->proceed();
5 } else {
6 tjp->proceed();
7 }
8 }

Figure 6.2: Example advice for parser modification concerning metadata annotations

6.3 Joinpoint Model Extension
The joinpoint model has to be extended in three areas. The first area is that joinpoints
can have additional information in the form of metadata annotations. The possibility

58

6.4 Implementation

was implemented for every type of joinpoint although it is not necessarily used the in-
terface functions are present inside the source code. The decision whether and which
information is added is implemented in the functions used to generate the joinpoint
model.

The second area is the introduction of block joinpoints into the hierarchy of the joinpoint
model. Block joinpoints are children of either other block joinpoints or function join-
points. Every block joinpoint has one child that represents the corresponding execution
joinpoint.

The joinpoint model generation is separated into two parts during the weaving pro-
cess. During the first generation phase of the joinpoint model the function bodies are
ignored, the metadata annotations are collected and inserted into the joinpoint model
for classes and functions only. During the second generation phase the function bodies
are evaluated using a mechanism to traverse the syntax trees constructed by the PUMA
framework, which is also supplied as part of the PUMA framework. In this second
phase the call and block joinpoints are generated. For support of mechanisms like the
without pointcut function later on, the call joinpoints are placed as children of a block
joinpoint should the call expressions be part of the block statements syntax tree.

There are additional requirements that had to be placed on the extensions of the join-
point model that emerge from the implementation of the pointcut language extensions
and are explained as part of the next section in this chapter.

6.4 Pointcut Language Extension
While the PUMA framework parses the pointcut expressions and performs a number
of semantic checks on the expressions, the evaluation of pointcut expressions as part of
the AspectC++ language definition is performed later as part of the AspectC++ com-
piler source code. Based on the syntax tree of a pointcut expression an internal pointcut
expression tree is generated by the compiler. During the evaluation of a pointcut expres-
sion, every joinpoint in the joinpoint model is evaluated against the pointcut expression.

For the purpose of utilizing the changes introduced in this thesis in the AspectC++
compiler. A number of changes have to be introduced into the evaluation of pointcut
expressions. First metadata annotations must become valid elements of this tree and
similar to match expressions must match against all joinpoints that are annotated as
described by the annotation in the pointcut expression.

Metadata annotations are similar to match expressions as they can be used to identify
name joinpoints like classes and functions. It is important to note here that metadata
annotations have to be declared as being name joinpoints in the context of the pointcut
language. This puts restrictions on the joinpoints they can match against with regard

59

Implementation 6.4

to the extensions of the pointcut language concerning block and call joinpoints. As only
name joinpoints can be expressed with match expressions, an annotated call joinpoint
must be represented as a name joinpoint in the joinpoint model. The same applies to
a block joinpoint, which is why the block joinpoint and the execution joinpoint of the
block are modeled as two separate elements in the joinpoint model.
Furthermore many pointcut functions have to be extended in some regards. For example
within has to be extended to recognize block joinpoints as another type of container
for joinpoints. The execution pointcut function also must recognize a block joinpoints
as a valid parent for execution joinpoints. The call pointcut function ordinarily checks
whether an argument supplied to it matches against the target function of a call to
determine the matching call joinpoints. In addition to that it must recognize annotated
calls as valid matches as well.

A major problem concerning the utilization of metadata annotations in pointcuts be-
came apparent in this phase of the implementation process When pointcut expressions
are evaluated the information provided by the evaluator only consists of whether or
not a joinpoint is a match concerning the pointcut expression. Due to the nature of
metadata annotations, any joinpoint can possible have several annotations applied to
itself. For the purpose of weaving the advice code later in the weaving process it can
be important to recognize which annotation was matched in context of a joinpoint. The
current joinpoint model evaluation procedure does not support this.

This problem is unsolved in the current implementation, to assure only expected behavior
in this regard, it is currently forbidden to use multiple annotations in combination with
annotation parameters, as the problem only occurs in this context. Figure 6.3 shows an
example of this.

1 void some_function() {
2 @foo(2, "Note foo") @bar("Note bar", 4) {
3 ...<statements>...
4 }
5 }

1 aspect ProblemParameters {
2 advice execution(@foo(a,b)) || execution(@bar(b,a)) : after(int a, const char* b) {
3 ...<advice code>...
4 }
5 };

Figure 6.3: Example of the ambiguous metadata annotation parameters

6.4.1 Metadata Annotation Parameters
Bindings of variables between metadata annotations and advices were a huge prob-
lem during the implementation. The feature is described in the previous chapter. As-

60

6.5 Implementation

pectC++ supports the binding of variables by utilizing specific built-in pointcut func-
tions (args, that, target) in a pointcut expression. The problem with integrating a
similar feature into the metadata annotations is that those parameters can arrive from
additional sources. In theory they can arrive from several metadata annotations that
have to be evaluated in combination with each other.

This leads to a number of rather severe restriction when combining metadata anno-
tations with those pointcut functions.

During the evaluation of a pointcut expression it is important to check whether or
not the metadata annotation parameters the variables declared through other means try
to apply to the same advice variable. These additional steps require an extension of the
binding class that is used for the tracking of the bindings of variables.

Due to time constraints during the development it was not possible to implement that
feature successfully yet, Instead should metadata annotation parameters and other point-
cut functions try to bind advice function arguments for the same advice node an error
message is currently produced.

6.5 Weaver extension
With all the changes made previously to this point in the implementation process, it is
surprising that the weaving of call joinpoints does not need to be modified, the changes
introduced in the context of this thesis do only require the changes described above to
be implemented correctly.

6.5.1 Block joinpoint weaving
As described in chapter 4 block joinpoints require a static code analysis when around
advice is to be applied to them.

In the same chapter a comparison was conducted between function and block joinpoints.
For the purpose of weaving it was therefore decided to encapsulate the block inside a
special type of function for the purpose of advice weaving.

The C++ language supports local classes inside of functions, that are only valid in
the scope of the parent function. Furthermore local classes in AspectC++ have the
advantage to be ignored in the creation of the joinpoint model. The information col-
lected by the static code analysis is enough to export the block statement body into a
static function inside a local block, more precisely the static code analysis provides the
necessary information to determine the parameters necessary for this local class function.

The C++ language allows the use of variable references which means that changes

61

Implementation 6.5

1 class TestClass {
2 ...
3 void debug (int i) {
4 ...
5 {
6 class __class_exec_block5 {
7 public:
8 static void __exec_old_block5(int &i, TestClass *__TThis__) {
9 {

10 cout << "x: " << __TThis__->x << endl;
11 i = i + __TThis__->x;
12 cout << "i + x: " << i << endl;
13 }
14 }
15 };
16 typedef TJP___exec_old_block6_0 <void, void, void, AC::TL < int, AC::TLE > >__TJP;
17 __TJP tjp;
18 tjp.block_func (&__class_exec_block5::__exec_old_block5, i, this);
19 AC::invoke_BlockTesting_BlockTesting_a0_around<__TJP> (&tjp);
20 }
21 ...
22 }
23 ...
24 };

Figure 6.4: Example of a block statement exported into a local class.

on those references are directly applied to the referenced variables as well. This feature
simplifies around advice on block joinpoints. For discovering the used variables inside
of a block statement a static code analysis of the block statement body code is required
and has to be performed. During the implementation of the three advice types for block
joinpoints it became also apparent that encapsulating the block statement in a local
class was necessary for all three and not only for around advice. Therefore, in the
implementation the static code analysis is performed for any advice that is applied to a
block statement. In the original function the block statement can be replaced with a call
to the local class function and the arguments can be supplied as referenced variables to
ensure that no semantic changes occur during execution of the program. This allows to
weave a block execution joinpoint nearly exactly the same as a normal function execu-
tion joinpoint, with one difference that is desecribed later in this section. Nevertheless
it still simplifies the weaving of block joinpoints.

The description above simplifies a number of considerations that had to be applied
concerning the static code analysis. In addition to the cases listed in chapter 4, the
additional encapsulation inside of a new class scope requires additional changes to the
block statement body. These changes concern the use of the this pointer, as the seman-
tic meaning of that pointer is changed inside the local class. Therefore that pointer has
to be replaced with an additional parameter that also supplied by the static code analyis.

An example of that behavior is shown in figure 6.4. Another noteworthy aspect of the
implementation is that unlike with ordinary function joinpoints, the “block function”

62

6.5 Implementation

has to supplied as a pointer to the TJP template instantiation in the case of around
advice on the block joinpoint. This is because the function needs to be executed inside
the proceed() function of the template instantiation, and the fully qualified function
name is only valid inside of the scope of the parent function, where as the template is
defined outside of the scope of the parent function.

6.5.2 Conclusion
At the end of the weaving process all metadata annotations have to be removed from
the source code. For metadata annotations that are part of pointcut expressions that is
already implicitly done when removing the aspects in the clean up phase of the source
code weaver. For all other metadata annotations it is important to have access to their
positions in the source code throughout the whole weaving process. This feature was
actually one of the first features implemented after finishing the first few modifications
in the PUMA framework. Because without this feature no testing would have been
possible during the implementation of this project.

Leaving the project with the implementation problems mentioned during this chapter
unsolved is not optimal for the evaluation process described in the next chapter. Nev-
ertheless, the extensions to AspectC++ developed during the course of this thesis, even
with the limitations placed on them as described above, are evaluable improvements in
the context of the AspectC++ language development.

63

7 Evaluation

With one focus in recent research, with regards to AspectC++, being on embedded
system software, especially small (“deeply”) embedded operating systems, the CiAO
(CiAO is Aspect-Oriented) operating system [32] was chosen as one evaluation target for
this thesis. The goal is to demonstrate how metadata annotations in AspectC++ can be
used to optimize the implementation of cross-cutting concerns even in an aspect-oriented
software project.

Afterward the extension of the joinpoint model developed in the context of this the-
sis is compared to related works that were conducted in the context of the AspectJ
language. In the end of this chapter the results collected are discussed.

7.1 Refactoring Aspects in CiAO

The CiAO operating system [32] was developed with the goal of creating an aspect aware
operating. CiAO in this regard is special, as unlike earlier works concerning the use of
AspectC++ in embedded operating systems [31], it was designed from the beginning
as an aspect-oriented software product-line (SPL) that utilizes aspects to implement
cross-cutting concerns.

The CiAO operating system design follows three fundamental principles [32]:

The principle of loose coupling.

Make sure that aspects can hook into all facets of the static and dynamic
integration of system components. The binding of components, but also their
instantiation (e.g. placement in a certain memory region) and the time and or-
der of their initialization should all be established (or at least be influenceable)
by aspects.

The principle of visible transitions.

Make sure that aspects can hook into all control flows that run through the
system. All control-flow transitions into, out of and within the system should
be influenceable by aspects. For this they have to be represented on the
joinpoint level as statically evaluable, unambiguous joinpoints.

65

Evaluation 7.1

The principle of minimal extensions.

Make sure that aspects can extend all features provided by the system on a
fine granularity. System components and system abstraction should be fine-
grained, sparse, and extensible by aspects.

CiAO is interesting in the context of metadata annotations in AspectC++ as it is a soft-
ware system that is specifically tailored to the requirements, possibilities and even the
limitations of the standard AspectC++ language. It is interesting to evaluate whether
or not even in such a software system the extensions provided in this thesis can be used
to simplify the implementation of cross-cutting concerns.

CiAO offers a fine granularity of joinpoint, this means that at any point in the exe-
cution flow of the program advices can be applied. This is realized by encapsulating
the source code into numerous namespaces, classes and functions on an excessive level.
CiAO is also an example of how far two dimensional separation, as is used in ordinary
AspectC++, can be driven.
The table in figure 7.1 shows a couple of numbers associated with the CiAO version used
in this evaluation. The principles utilized in the design process of CiAO resulted in a
highly configurable and complex system.

File type Number of files Non-blank lines
Header files (*.h) 384 16639

C++ source files (*.cpp) 181 4919
Aspect source header (*.ah) 701 13603

Figure 7.1: Statistics of the CiAO operating system

7.1.1 Named Pointcuts in CiAO
In CiAO a huge number of the named pointcuts are used in advice code. In numbers
that means that of there are 218 named pointcuts that are currently defined inside the
CiAO source code.

In actuality those numbers are slightly off though, as some of those named pointcuts are
defined in multiple places, while others are only renaming of others. Where renaming
refers to named pointcuts that are identical in the match expressions they consist of.

A programmer could use metadata annotations to annotate some of those functions
instead of defining, sometimes several layers of, named pointcuts. The problem with
such a high number of named interconnected pointcuts is that it requires nearly com-
plete system knowledge to understand even small changes in aspects and advices.

Furthermore there are several cases in the current version of the CiAO source code

66

7.2 Evaluation

that show another significant problem with that many named pointcuts. For example
the “asReturningVoid()” pointcut is never actually used anywhere in the source code.
Instead there are several pointcut expressions that use a “returningVoid()” named point-
cut that does not actually exist. The worst part of this is, that those pointcuts match
exactly to zero joinpoints in their current form. There are clearly cases where named
pointcuts based on match expressions are a better choice instead of metadata annota-
tions. For example “asReturningStatusType()” matches against all functions that return
a value of type “StatusType“, the number of joinpoint matches in the current source
code are 40 function joinpoints. Metadata annotations provide no improvement with
regard to this named pointcut.

7.1.2 Refactoring Aspects with Metadata Annotations
Metadata annotations allow the definition of additional dimensions for identifying loca-
tions of interest in a programs source code. In CiAO the construction of some aspect
related requirements resulted in the existence of empty functions inside the CiAO source
code which have only two reasons for their existence. One, they provide call and execu-
tion joinpoints for receiving advice from several sources.

And two, they provide a way for advice code to invoke the behavior encapsulated in
the advises for these joinpoints. Which would be difficult if these functions were not
present to be invoked from inside of advices.

Introducing explicit joinpoints into CiAO to refactor empty functions is not possible
because of these interactions without considerable more effort in regard to time, than
this evaluation allows.

7.1.3 Results
The refactoring that was planned in the context of this evaluation process turned out
to be far more complex than first examinations implied. The CiAO system as it is cur-
rently designed encapsulates behavior into functions on such a fine-grained scale that
refactoring joinpoint identification with the use of metadata annotations is possible only
when significant changes in the global structure of the source code occur.

The interactions between the 701 aspect headers, which are part of the CiAO source
code are very complex and any form of change has numerous side effects in regard to
those interactions.

7.2 Comparing Related Works
This section begins the second part of this chapter, it evaluates how the extensions
developed as part of this thesis to the AspectC++ joinpoint model compare against

67

Evaluation 7.2

extensions developed in the context of the AspectJ joinpoint model.

7.2.1 Closure Joinpoints
The closure joinpoints paper by Eric Bodden [23] was one of the sources of inspiration
that lead to the design of the AspectC++ block joinpoint in this thesis. Based on this
relation a comparison between the two is logical.

Unlike block statements in C++, closures in Java are quite different from a pure lan-
guage element viewpoint. Where block statements are generic language elements that
are used at numerous places in nearly all C++ programs and therefore are implicitly
provided by C++ application programmers in practice. Closures are a very specialized
language element in the Java programming language.

In the context of applying advice to those two constructs, the differences disappear.
Because to apply advice to a block in AspectC++ we need to annotate the block with
a metadata annotation, where in AspectJ the programmer has to redefine the block
statement as a closure. Overall the amount of effort required for the advice of both is
about equal.

Furthermore for accessing variables used in those constructs in the advice code those
variables have to be explicitly announced, either as annotation parameter in AspectC++
or as closure arguments in AspectJ.

Overall the effort required for the advice of block statements in AspectJ and AspectC++
is equal. The differences between the languages presented themselves through the fact
that implementing block joinpoints in AspectC++ was significantly less problematic.

7.2.2 Statement Annotations
Another interesting paper in the context of metadata annotations was written by Marc
Eaddy concerning statement annotations inside of functions [24]. This paper proposed
a language extension to annotations in Java to allow the annotation of single statements.

In comparison we can express all examples provided in that paper with our block join-
point mechanism in AspectC++. In addition as mentioned above the block joinpoints
introduced in AspectC++ also have all the features of closure joinpoints.

Figures 7.2 show an example from the paper and the equivalent implementations utiliz-
ing AspectC++ and block joinpoints. The annotation in the context of block joinpoints
and AspectC++ have to be applied to empty compound statements, but in combination
with optimizations supplied by the C++ compiler this does not affect the runtime of
the final program. A difference during the execution comes from the fact that unlike
closures in AspectJ, block joinpoints in AspectC++ does not have a unique signature

68

7.3 Evaluation

which leads to difference in the output generated here. Even though the code itself
models the identical behavior.

(a) Example for use of statement annotations in AspectJ [24]

1 ...several statements...
2 @Note("Searching for plug-ins...")
3 ...several statements...
4
5 @Note("Entering very long, but hopefully not infinite loop")
6 while(true) { ... }
7 @Note("Loop exited successfully")

1 aspect LogNotesAspect {
2 before(Note noteAnnotation) : @annotation(noteAnnotation) {
3 System.out.println(noteAnnotation.value() + "[" + thisJoinPoint + "]");
4 }
5 }

(b) Previous example implemented in AspectC++

1 ...several statements...
2 @Note("Searching for plug-ins...") { }
3 ...several statements...
4
5 @Note("Entering very long, but hopefully not infinite loop") { }
6 while(true) { ... }
7 @Note("Loop exited successfully") { }

1 aspect LogNotesAspect {
2 advice execution(@Note(const char*)) : before(const char *s) {
3 cout << s << "[" << tjp->signature() << "]" << endl;
4 }
5 };

Figure 7.2: Statement annotations (AspectJ) and block joinpoints (AspectC++)

7.3 Discussion
CiAO as an evaluation was a bad choice with regards to the language features developed
in context of this thesis. The design of CiAO was deeply driven by the limitations of
the ordinary AspectC++ language. Those limitations lead to the implementation of
fine-grained advice on a function level. Separation of concerns is achieved by utilizing
numerous namespaces and functions. While only able to utilize two dimension in this
regard, CiAO uses a huge spectrum of identifiers to separate the different features and
control flows during execution.

69

8 Conclusion and Future Work
Metadata annotations allow the definition of additional dimensions for identifying and
separating joinpoints independent from the primary decomposition that can be applied
to a program in C++. This improves the abilities of programmers to implement cross-
cutting concerns by decoupling the application of advice from the tyranny of the primary
decomposition problem [34].

In addition this thesis extended the AspectC++ joinpoint model through mechanisms
that allow for the execution of advice inside of functions without additional workarounds.
These explicit joinpoints were only possible because of the extensions provided by the
metadata annotation mechanism. An example of such an explicit joinpoint is the block
joinpoint type introduced in this thesis.

The current implementation of those features is still not fully matured. As there still re-
main a number of problems that need to be addressed in the context of pointcut language
integration and the application of metadata annotation parameters in combination with
binding of variables to advices, as was shown in the implementation chapter of this thesis.

It was shown that the granularity of the joinpoint model in AspectC++ does not need to
end at the function level. A valid concern in this regard is that extensions and features as
used in AspectJ are not necessarily equally valid in the context of AspectC++ because
of the inherent differences between those two languages. The lack of problems regarding
the implementation of block joinpoints in AspectC++, without the added complication
provided by metadata annotations, also can be seen as an interesting discovery in the
context of this thesis.

An evaluation of AspectJ extension proposals that were dismissed due to their lack
of interoperability with the AspectJ language in its current form, with regard to their
application in the context of AspectC++ could prove interesting.

8.1 Future Work
This thesis should only be considered the beginning of research into the combination of
metadata annotations and the AspectC++ language. Significant problems have to be
solved regarding the application of metadata annotations in combination with parame-
ters and binding of variables in the context of advices.

71

Conclusion and Future Work 8.1

Type annotations are another interesting concept and the ideas mentioned in chap-
ter 4 should only be considered starting points for further research in this context.

In addition, because of to the shortcomings in the evaluation in the scope of this thesis,
designing an aspect-oriented software project utilizing metadata annotations and block
joinpoints could be another topic for research.

Furthermore the C++11 standard was recently finalized, even though to date still no
compiler completely supports the extensions provided in this new standard. The con-
sequences and possibilities regarding both the ordinary AspectC++ language and the
metadata annotations feature specifically can be considered open questions for future
work as well.

72

Bibliography
[1] Harbulot, Bruno ; Gurd, John R.: A join point for loops in AspectJ. In: Proceed-

ings of the 5th international conference on Aspect-oriented software development.
New York, NY, USA : ACM, 2006 (AOSD ’06), p. 63–74

[2] Baca, Murtha ; Gilliland-Swetland, Anne: Introduction to Metadata: Path-
ways to Digital Information. Getty Publications, 1998. – ISBN 0892365331

[3] Duval, Erik ; Hodgins, Wayne ; Sutton, Stuart ; Weibel, Stuart L.: Metadata
Principles and Practicalities. In: D-Lib Magazine 8 (2002), April, Nr. 4. http:
//www.dlib.org/dlib/april02/weibel/04weibel.html

[4] Goldfarb, Charles F. ; Prescod, Paul: The XML Handbook. Upper Saddle
River, NJ 07458, USA : Prentice-Hall PTR, 1998

[5] Buckley, Alex ; Kiczales, Gregor ; Lea, Doug: JSR 175: A Metadata Facil-
ity for the Java™Programming Language. http://jcp.org/en/jsr/detail?
id=175. Version:August 2011

[6] Darcy, Joe ; Chapman, Bruce ; Lea, Doug ; Niemeyer, Patrick D.: JSR 269:
Pluggable Annotation Processing API. http://jcp.org/en/jsr/detail?
id=269. Version:August 2011

[7] McLaughlin, Brett: Annotations in Tiger, Part 1: Add metadata
to Java code. http://www.ibm.com/developerworks/java/library/
j-annotate1/. Version:August 2011

[8] Buckley, Alex ; Ernst, Michael ; Lea, Doug: JSR 308: Annotations on Java
Types. http://jcp.org/en/jsr/detail?id=308. Version:August 2011

[9] Cazzola, Walter ; Cisternino, Antonio ; Colombo, Diego: [a]C#: C# with
a customizable code annotation mechanism. In: Proceedings of the 2005 ACM
symposium on Applied computing. New York, NY, USA : ACM, 2005 (SAC ’05), p.
1264–1268

[10] Watt, D. A.: Programming Language Concepts and Paradigms. Prentice Hall,
1990

[11] Gamma, E. ; Helm, R. ; Johnson, R. ; Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, 1995

73

http://www.dlib.org/dlib/april02/weibel/04weibel.html
http://www.dlib.org/dlib/april02/weibel/04weibel.html
http://jcp.org/en/jsr/detail?id=175
http://jcp.org/en/jsr/detail?id=175
http://jcp.org/en/jsr/detail?id=269
http://jcp.org/en/jsr/detail?id=269
http://www.ibm.com/developerworks/java/library/j-annotate1/
http://www.ibm.com/developerworks/java/library/j-annotate1/
http://jcp.org/en/jsr/detail?id=308

Bibliography 8.1

[12] Ossher, Harold ; Tarr, Peri: Using multidimensional separation of concerns to
(re)shape evolving software. In: Commun. ACM 44 (2001), October, p. 43–50. –
ISSN 0001–0782

[13] Roo, A.J. de: Towards more robust advice : message flow analysis for composition
Filters and its Application, University of Twente, Master’s thesis, 2007

[14] Filman, Robert E. ; Friedman, Daniel P.: Aspect-Oriented Programming is
Quantification and Obliviousness, Addison-Wesley, 2000, p. 21–35

[15] Gradecki, J. D. ; Lesiecki, N.: Mastering AspectJ: Aspect-Oriented Programming
in Java. John Wiley and Sons, 2003. – ISBN 0471321044

[16] Lohmann, Daniel ; Spinczyk, Olaf ; Schröder-Preikschat, Wolfgang: Lean
and Efficient System Software Product Lines: Where Aspects Beat Objects. In:
Rashid, Awais (Hrsg.) ; Aksit, Mehmet (Hrsg.): Transactions on Aspect-Oriented
Software Development II Bd. 4242. Springer Berlin / Heidelberg, 2006, p. 227–255.
– "10.1007/11922827_8"

[17] Lohmann, Daniel ; Spinczyk, Olaf: Developing embedded software product
lines with AspectC++. In: Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications. New York,
NY, USA : ACM, 2006 (OOPSLA ’06). – ISBN 1–59593–491–X, p. 740–742

[18] Kiczales, Gregor ; Hilsdale, Erik ; Hugunin, Jim ; Kersten, Mik ; Palm,
Jeffrey ; Griswold, William: An Overview of AspectJ. In: Knudsen, Jørgen
(Hrsg.): ECOOP 2001 - Object-Oriented Programming Bd. 2072. Springer Berlin /
Heidelberg, 2001, p. 327–354

[19] Kiczales, Gregor ; Lamping, John ; Mendhekar, Anurag ; Maeda, Chris
; Lopes, Cristina ; Loingtier, Jean-Marc ; Irwin, John: Aspect-oriented pro-
gramming. In: Aksit, Mehmet (Hrsg.) ; Matsuoka, Satoshi (Hrsg.): "ECOOP’97
- Object-Oriented Programming" Bd. 1241. Springer Berlin / Heidelberg, 1997, p.
220–242

[20] Endoh, Yusuke ; Masuhara, Hedehiko ; Yonezawa, Akinori: Continuation Join
Points. In: Proceedings of the Foundations of Aspect-oriented languages workshop
at AOSD ’06, 2006 (FOAL ’06), p. 7–16

[21] Team, AspectJ: The AspectJ 5 Development Kit Developer’s Notebook.
http://www.eclipse.org/aspectj/doc/released/adk15notebook/
index.html. Version:August 2011

[22] Falk, Heiko ; Marwedel, Peter ; Catthoor, Francky: Control Flow Driven
Splitting of Loop Nests at the Source Code Level. In: Jerraya, Ahmed A. (Hrsg.)
; Yoo, Sungjoo (Hrsg.) ; Verkest, Diederik (Hrsg.) ; Wehn, Norbert (Hrsg.):
Embedded Software for SoC. Springer US, 2004. – ISBN 978–0–306–48709–5, p.
215–229

74

http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

8.1 Bibliography

[23] Bodden, Eric: Closure joinpoints: block joinpoints without surprises. In: Proceed-
ings of the tenth international conference on Aspect-oriented software development.
New York, NY, USA : ACM, 2011 (AOSD ’11), p. 117–128

[24] Eaddy, Marc ; Aho, Alfred: Statement annotations for fine-grained advising.
In: Proccedings of the Workshop on Reflection, AOP and meta-data for Software
Evolution, 2006 (RAM-SE ’06)

[25] Kim, Howard: AspectC#: An AOSD Implementation for C#, Dissertation, 2002

[26] Cazzola, Walter ; Colombo, Diego ; Harrison, Duncan: Aspect-oriented pro-
cedural content engineering for game design. In: Proceedings of the 2009 ACM
symposium on Applied Computing. New York, NY, USA : ACM, 2009 (SAC ’09)

[27] Spinczyk, Olaf ; Gal, Andreas ; Schröder-Preikschat, Wolfgang: As-
pectC++: an aspect-oriented extension to the C++ programming language. In:
Proceedings of the Fortieth International Conference on Tools Pacific: Objects for
internet, mobile and embedded applications. Darlinghurst, Australia, Australia :
Australian Computer Society, Inc., 2002 (CRPIT ’02), p. 53–60

[28] Urban, Matthias ; Spinczyk, Olaf: AspectC++ Language Reference.
1.7, April 2011. http://www.aspectc.org/fileadmin/documentation/
ac-languageref.pdf

[29] Rho, Tobias ; Kniesel, Günther ; Appeltauer, Malte: Fine-grained generic
aspects. In: Proceedings of the Foundations of Aspect-oriented languages workshop
at AOSD ’06, 2006 (FOAL ’06), p. 29–35

[30] Koppen, Christian ; Stoerzer, Maximilian: PCDiff: Attacking the fragile point-
cut problem. (2004), August

[31] Lohmann, Daniel ; Scheler, Fabian ; Tartler, Reinhard ; Spinczyk, Olaf ;
Schröder-Preikschat, Wolfgang: A quantitative analysis of aspects in the eCos
kernel. In: Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006. New York, NY, USA : ACM, 2006 (EuroSys ’06), p.
191–204

[32] Lohmann, Daniel ; Hofer, Wanja ; Schröder-Preikschat, Wolfgang ; Stre-
icher, Jochen ; Spinczyk, Olaf: CiAO: an aspect-oriented operating-system fam-
ily for resource-constrained embedded systems. In: Proceedings of the 2009 con-
ference on USENIX Annual technical conference. Berkeley, CA, USA : USENIX
Association, 2009 (USENIX’09), p. 16–16

[33] ISO/IEC 14882:2003: Programming languages: C++. 2003 http:
//www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?
CSNUMBER=38110

75

http://www.aspectc.org/fileadmin/documentation/ac-languageref.pdf
http://www.aspectc.org/fileadmin/documentation/ac-languageref.pdf
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110

Bibliography 8.1

[34] Tarr, Peri ; Ossher, Harold ; Harrison, William ; Sutton, Jr. Stanley M.: N
degrees of separation: multi-dimensional separation of concerns. In: Proceedings of
the 21st international conference on Software engineering. New York, NY, USA :
ACM, 1999 (ICSE ’99). – ISBN 1–58113–074–0, 107–119

[35] Urban, Matthias ; Lohmann, Daniel ; Spinczyk, Olaf: The aspect-oriented
design of the PUMA C/C++ parser framework. In: Proceedings of the 9th Interna-
tional Conference on Aspect-Oriented Software Development. New York, NY, USA
: ACM, 2010 (AOSD ’10), p. 217–221

76

List of Figures

2.1 Example of using the Override annotation [7] 4
2.2 Example of using the Deprecated annotation [7] 5
2.3 Custom Java annotations part 1 . 5
2.4 Custom Java annotations part 2 . 6
2.5 Example of a type annotation in Java 7.0 7
2.6 Example of metadata annotations in C# 7
2.7 Example of extended metadata annotations in C# 8

3.1 Modeling addition, display and logging without aspects [13] 10
3.2 Modeling addition, display and logging with aspects [13] 12
3.3 Using Java annotations for declaring aspects, advice nodes and pointcuts 16
3.4 Annotations for pointcut expressions [21] 17
3.5 Annotations as parts of pointcuts in AspectJ [21] 17
3.6 Example of Statement Annotations in AspectJ [24] 18
3.7 Code excerpt from the AspectC# runtime library [25] 19
3.8 Example of AspectC# metadata annotations [26] 20
3.9 Basic pointcus of LogicAJ2 [29] . 21
3.10 Implementation of the call pointcut [29] 21

4.1 Example of AspectC++ joinpoint model types 25
4.2 Example of AspectC++ match expressions and pointcuts 27
4.3 Example of AspectC++ advice limitations 29
4.4 Examples of statements in C++ . 31
4.5 Example of compound statements in C++ 32
4.6 Comparison between function and block joinpoint behavior 33
4.7 Example of improved expressiveness through a block joinpoint 36

5.1 Examples of valid metadata annotations in AspectC++ 42
5.2 Examples for annotated classes in AspectC++ 45
5.3 Examples for annotated functions in AspectC++ 46
5.4 Examples of annotated call expressions in AspectC++ 47
5.5 Possible locations for the annotation of compound statements 48
5.6 Examples of metadata annotations on types 49
5.7 Examples of metadata annotations in pointcut expressions 51

6.1 PUMA framework feature model [35] . 56
6.2 Example advice for parser modification concerning metadata annotations 58

77

List of Figures 8.1

6.3 Example of the ambiguous metadata annotation parameters 60
6.4 Example of a block statement exported into a local class. 62

7.1 Statistics of the CiAO operating system 66
7.2 Statement annotations (AspectJ) and block joinpoints (AspectC++) . . 69

78

	Introduction
	Goals and Relevance
	Structure of this Thesis

	Metadata Annotations
	Introduction
	Java
	Predefined Annotations
	Custom Annotations
	Type Annotations

	C#

	Aspect-Oriented Software Development
	Introduction
	Traditional Approach
	AOP Approach
	AOP Solutions
	Aspect Weaving
	AspectJ
	AspectC#
	AspectC++
	Other

	Joinpoint Model Extension
	Analysis of the AspectC++ Joinpoint Model
	Joinpoints Types
	Pointcut Language Expressiveness

	Joinpoint Model Limitations
	Limits for Advice of Specific Joinpoints
	Limits for Advice Execution

	Requirements for Joinpoint Model Extensions
	Extending the Joinpoint Model
	Statement Level Advice
	Compound Statement Joinpoints
	Type Annotations in AspectC++
	Expression Level Advice

	Metadata Annotations in AspectC++
	Design Goals
	Metadata Annotations and Obliviousness

	Design Rules for Metadata Annotations
	Syntax and Semantic of Metadata Annotations
	Metadata Annotations as Language Elements
	Metadata Annotations for Existing Joinpoints
	Metadata Annotations for Explicit Joinpoints

	Metadata Annotations for Pointcut Expressions
	Additional Design Goals
	Basic Integration
	Pointcut Expressions for Explicit Joinpoints

	Improved Expressiveness
	Identifying Specific Calls
	Fine-Grained Execution Advice

	Implementation
	AspectC++ Compiler Basics
	PUMA Framework

	PUMA Framework Extension
	Joinpoint Model Extension
	Pointcut Language Extension
	Metadata Annotation Parameters

	Weaver extension
	Block joinpoint weaving
	Conclusion

	Evaluation
	Refactoring Aspects in CiAO
	Named Pointcuts in CiAO
	Refactoring Aspects with Metadata Annotations
	Results

	Comparing Related Works
	Closure Joinpoints
	Statement Annotations

	Discussion

	Conclusion and Future Work
	Future Work

	Bibliography
	List of Figures

