technische universitat
dortmund

Bachelor’'s Thesis

AspectClang:
Moving AspectC+-+’s
Weaver to the Clang

C++ Front End

Benjamin Kramer
September 6, 2013

Adviser:
Prof. Dr.-Ing. Olaf Spinczyk
Dipl.-Inf. Christoph Borchert

Technische Universitat Dortmund

Fakultat fir Informatik

Lehrstuhl Informatik 12

Arbeitsgruppe Eingebettete Systemsoftware
http://ess.cs.tu-dortmund.de

http://ess.cs.tu-dortmund.de

Hiermit versichere ich, dass ich die vorliegende Arbeit selbststdndig verfasst, keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich
gemacht habe.

Dortmund, den 6. September 2013

Benjamin Kramer

Abstract

The source-to-source translator (weaver) that translates code using the aspect-oriented
C++ language extension AspectC++ into standard C++ was built upon a C++ parsing
framework called PUMA. The framework is developed alongside the weaver; it is showing
its age and the complexity of the C++ language drives up the upkeep of PUMA. This
thesis explores the replacement of PUMA with the widely used Clang C++ front end.
Clang is used in industry and academia and shares many design goals with PUMA,
making it a viable successor. A port of the weaver from PUMA to Clang, using the code
name AspectClang, is developed to show the feasibility of a Clang-based weaver and to
evaluate its features in the context of AspectC++ weaving. The result is vastly improved
conformance with the C++ language specification and the availability of C+-+11 support
in the parser will benefit the AspectC++ community in the long term.

Das Ubersetzungsprogramm (Weaver), das aus AspectC++, einer aspektorientierten
Spracherweiterung fiir C++, normalen C++-Quelltext erzeugt baut auf der Programm-
bibliothek PuMA auf. Die Bibliothek wird zusammen mit dem Weaver entwickelt und
zeigt Alterungserscheinungen durch den hohen Aufwand um die Kompatibilitdt mit der
komplexen C++-Sprache zu wahren. Diese Arbeit untersucht die Austausch von PUMA
durch den weit verbreiteten C++-Parser Clang. Clang wird sowohl in der Industrie als
auch in der Forschung eingesetzt und hat viele Ahnlichkeiten mit PUMA, was es einen
wiirdigen Nachfolger macht. Im Rahmen dieser Arbeit wurde ein Weaver auf Clang-Basis
mit dem Namen AspectClang entwickelt um die Machbarkeit des eines Clang-basierten
Weavers zu untersuchen und Clangs Funktionen im Kontext der AspectC++-Sprache
kritisch zu betrachten. Die Ergebnisse zeigen eine deutlich verbesserte Kompatibilitdt mit
dem C++-Sprachstandard und die Verfiigharkeit von C++11 im Parser wird AspectC++
auf lange Sicht niitzen.

Contents

1 Introduction
1.1 Motivation and Goals
1.2 Thesis Structure

2 Background

2.1 The AspectC++ Language,
2.2 PUMA . . . e
23 Clang
2.4 Other C++ Parsers
2.5 Summary ... oL

3 Analysis

3.1 Structure of the Weaver
3.2 Use of PumA Components in the Weaver
3.3 Projecto
3.4 Preprocessor
3.5 Unitsand Tokens
3.6 Parser
3.7 AST . . .
3.8 Code Manipulation
3.9 Summary e
4 Design
4.1 Code Manipulation
4.2 Changesto Phase 1
4.3 Changes to Phase 2
4.4 SUMMATY oo

5 Implementation

5.1 Build System
5.2 Phasel
5.3 Phase 2
5.4 Summary ... oL

Contents

6 Evaluation

6.1 C++4 Conformance
6.1.1 Compatibility with Other Code Bases: SystemC
6.1.2 Compatibility with Other Code Bases: Qt
6.1.3 Compatibility with Other Code Bases: LyX

6.2 Performance

6.2.1 Phase 1
6.2.2 Phase 2

6.3 Discussion .

7 Conclusions and Future Work

7.1 Future Work
Bibliography
List of Figures
List of Tables

Listings

43
43
44
46
47
48
48
51
52

53
o4

56
57
57

59

ii

1 Introduction

AspectC++ is an aspect-oriented extension for the C+4 programming language. The
exntension is implemented with a source-to-source translator which transforms code and
aspects into standard C++. The output can be used with any modern C++ compiler.
This transformation process is called aspect weaving.

Since the beginning, the AspectC++ weaver ac++ was built upon a C++ parsing
framework called PUMA that is developed in tandem with the weaver. Writing and
maintaining a C++4 parser requires a significant amount of work and the upkeep that
has to be paid for PUMA is quite high.

This thesis explores the replacement of PUMA with the widely used Clang C++ front
end. Clang is widely used in industry and academia and shares many design goals with
PumMA, making it a viable successor. A port of the weaver from PUMA to Clang, using
the code name AspectClang, is developed to show the feasibility of using Clang and to
evaluate its features in the context of AspectC++ weaving.

1.1 Motivation and Goals

There are several issues with the current implementation of the ac++ weaver. Some of
them prevent usage of aspects while using certain C++ libraries at the same time; others
are less technical in nature or just inconvenient for users of AspectC++. While changing
the parser underneath the ac++ weaver is probably the most severe change in weaver
code since its inception, it would solve many of the problems in one go and proof the
weaver for coming challenges in the environment surrounding the C++4 programming
language.

Maintenance

Many problems with the AspectC++ weaver are actually rooted in the PUMA frame-
work. Maintaining an entire C++ front end is not an easy task and drains development
resources that could be spent improving the language itself. Using Clang instead of
PuMA would remove most of the work needed to keep the parser running as Clang is
maintained by an external community. With the freed-up resources, the team developing
the weaver can focus on advancing the AspectC++ language.

Introduction 1.2

Speed

Weaving aspects into a couple of C++ files in a large project can often take longer than
compiling the entire project without using the extension. A part of this problem is due
to the way the weaver handles source code with multiple parsing phases but also because
PumMaA has to make trade-offs on performance as it struggles to achieve correctness. Clang
lists having a fast parser as an explicit design goal and was heavily optimized [1]. It is
possible that a faster parser would significantly speed up the weaving process, reducing
the time spent waiting for the build to complete.

Support for C++

PuMA does not support the C++ language completely. This is often not an issue with
code written for AspectC++ from the ground up but with libraries used commonly with
C++ code. Due to the way C++ is compiled, the aspect weaver has to parse all the
headers used, which may contain C++ constructs PUMA does not understand in their
entirety. Bogus parser errors are the result, necessitating workarounds that should not
be needed. Clang claims complete support for the C++ standard so issues of this kind
should become a thing of the past.

C++11 and Coming Standards

There is very little support for features of the new C++11 standard in PumMA and
improving it is a major effort given the current state of the project. Clang on the other
hand was one of the first C4++ compilers to claim full support for C++11 and it is
likely that future standards will be implemented in a timely manner. The AspectC++
weaver could make use of the new features with only a small amount of additional
implementation effort.

1.2 Thesis Structure

Following the introduction chapter, chapter 2 discusses the foundations of AspectC++,
the PuMA parser framework and Clang. After this the usage of PUMA in the AspectC++
weaver is analyzed and Clang replacements for the used PUMA components are considered
in chapter 3. This leads to chapter 4 which lays down a detailed picture of the work
needed to move the weaver to Clang. Its subsequent implementation is discussed in the
following chapter 5 and critically evaluated afterwards in chapter 6. There, Clang has to
show if it can match the expectations on performance and conformance with the C++
standards. The concluding chapter 7 summarizes the achieved work and goes on to point
out directions for the future.

2 Background

This chapter gives a high level overview of the critical parts that make up AspectClang,
setting the stage for the following analysis, design and implementation chapters.

2.1 The AspectC++4 Language

AspectC++ [2] is a language extension that adds support to the C++ language for writing
code in an aspect-oriented manner. It is modeled after the AspectJ extension [3] for Java,
sharing a similar design, with differences to accomodate for the distinct features of the
underlying C++ language.

Design goals of AspectC++ [4] are ease of use, in particular a familiar setting for
programmers already proficient in AspectJ, and an easy integration into existing projects.
Furthermore AspectC++ should be strong in domains where C++ is already used for its
specific feature set. This applies especially to the embedded systems programming and
high performance computing areas. It is also the motivation for breaking with AspectJ
by not providing extensions which make use of language features with significant runtime
overhead, such as exception handling or run-time type information.

AspectC++ is implemented as a source-to-source translator, turning code using the
extensions into regular C++ code that can be compiled with any modern C++ compiler.
Source-to-source translation allows integrating AspectC++ with existing C++-consuming
tools and platforms with little effort. This translation process is called weaving in aspect-
oriented programming jargon. The AspectC'++ weaver is also known by its command
line invocation ac++.

The language extension is based on four basic concepts: pointcuts, advice, slices and
JoinPoint API functions. In actual code, all of those constructs are contained in a
top-level aspect which behaves similar to a C++ class, supporting both inheritance and
abstract classes.

Pointcuts

Pointcuts are AspectC++’s way to address entities in the input source code. For
this a domain specific language is used. Pointcuts can match names, similar to regular
expressions.

Listing 2.1: Name pointcut that matches all member functions of the class C that return
an int

|pointcut ints() = "int C::%(...)";

Background 2.1

A different type of pointcut can use a predefined set of expressions to address other
constructs in the code. Name pointcuts and expression pointcuts can be combined with
boolean operators.

Listing 2.2: Expression pointcut that matches all subclasses of Queue

| pointcut queues() = derived ("Queue");

Advice

Advices are the primary way to inject code in AspectC++. The actual position for the
injection is specified by a join point which consists of a pointcut and a location fragment.
They come in two flavors.

e FExecution join points specify a piece of code that is woven before, after or around
a function in the input source code.

Listing 2.3: Execution advice to print a string every time the function login is entered.

advice execution('void login(...)") : before() {
cout << "Logging in." << endl;
}

For this kind of advice the weaver emits a wrapper function which adds the new
code and then proceeds with calling the old code. The wrapper replaces the original
function so it is called instead of the function.

e (all join points on the other hand do not affect the function itself but calls to the
function.

Listing 2.4: Call advice to print a newline before all calls to printf
advice call ("% printf(...)") : before () {
printf ("\n");

}

This requires modifying the code itself instead of just adding a wrapper, making
the weaver’s job more complicated.

Slices

Slices are used to modify classes by adding members to them. This is also the only
way to add new functions to the output which can in turn trigger other advice to match
on the introduced function, leading to recursive weaving.

2.1 Background

Listing 2.5: Slice that adds a new integer member to all nested classes named Nested

slice class IntoNested {
int new;
1
advice " ...:: Nested" : slice IntoNested;

Slices can also add new base classes to easily inject a whole class into an existing one.

Listing 2.6: Base class introduction which adds NewBase as a base class to all nested
classes named Nested

Hadvice "...::Nested" : slice class : NewBase;

JoinPoint API

In advice code a set of predefined functions can be used that provide information about
the aspect or the matched function. It is also used to proceed with the original function
from the advice code.

Table 2.1: Examples of functions available in advice code

Name ‘ Action

JoinPoint: :Result | Result type of the matched function
JoinPoint: :ARGS | Returns the number of arguments of the matched function
JoinPoint: :signature() | Returns the name of the matched function
tjp—>proceed() | Calls the matched function

AspectC++ also provides introspection code to query meta data of the compiled
program, such as the number of members in a class. This code is dynamically inserted
during the weaving process.

A detailed analysis of the AspectC++ weaver can be found in chapter 3. For more
information on the AspectC++ language refer to the language reference on the AspectC++
homepage. [5]

Background 2.2

2.2 Puma

Developing a standard-compliant parser for the C++ syntax is just a night-
mare. It is an extremely hard, tedious and thankless task. Additionally, to
support a substantial set of join point types, an aspect weaver has to perform
a full semantic analysis, and the semantics of C++ is even worse.

(Spinczyk, Lohmann, Urban [4])

The PuMA C/C++ parser framework is the C++ front end used by the ac++ weaver.
It is also utilizing an aspect-oriented design [6] making it a user of AspectC++ itself.
PumMA is developed under the AspectC++ project umbrella and maintained by the same
team as the weaver.

The framework itself contains both the classical components used to parse C++,
including a scanner, preprocessor, parser and full semantic analysis. It also contains a
powerful source code manipulation module which is used by the AspectC++ weaver to
implement its source code transformations.

Puma

Input

Languages [Analyses] [Manlpulatlon]

Parsing &

[CH++] [C] [Dialects] Preprocessor Semantic AST Matching

Analysis

MS Visual Full Semantic
AspectC++ Ot GNU gcc/g++

Figure 2.1: Overview of PumA’s features. [6]

Language extensions are implemented using aspects that are woven into the parser code
instead of adding the code directly to the parser. Among the parser extension aspects
are GNU GCC extensions, Microsoft Visual C++ extensions and special AspectC+-+
extensions. The AspectC++ extensions were used to parse the input aspects in the
AspectC++ weaver but are no longer in use as the weaver now implements parsing of
those constructs directly.

Sadly, PUMA development has slowed down considerably in recent years. There are
huge problems in standards compatibility, which have prevented adoption of AspectC+-+
for code bases depending on modern C++ libraries such as boost, which is known to be
very challenging for C++ parsers and cannot be parsed by PUMA.

It also never gained many users outside of AspectC++ [7] leading to failure in attracting
new contributors. The focus on AspectC++ weaving determined the focus of Puma
which does little analysis over the basic things needed by a weaver. For example access
control is still missing [8]; private class members can be accessed without complaints.

2.3 Background

While PuMmA supports C++03 reasonably well, the new C++11 standard is yet to be
implemented. This is a major undertaking as some of the new features are very complex.
For example the new constexpr feature [9] adds another Turing complete [10] language
to C++. Implementing the new standard in PUMA requires a significant amount of work
and, given the current activity, is unlikely to happen any time soon.

PuMA is open source software and available under the GNU GPL license, just like the
ac++ weaver.

2.3 Clang

Clang is a compiler front end for C, C++ and Objective C. It contains a unified parser
for the three languages and implements many compiler extensions. The parser is tuned
for fast compiles and excellent error messages [11]. Clang is also used as a base for more
exotic C dialects such as CUDA [12] and OpenCL, which are also directly supported by
the parser.

When PuMA was implemented in the early 2000s there was no viable alternative
around. Clang is a relatively new development, it was started in 2006 and became a
serious competitor in the C++ parser landscape in 2010 [13].

It shares many design goals with PUMA, both are designed as a set of libraries to be
used by other tools and provide both the usual lexical and semantic analysis and also a
sophisticated source code manipulation library.

Contrary to Puma, Clang is used to implement a complete compiler, paired with
LLVM as a code generator. The resulting compiler is the default C and C++ compiler
on FreeBSD [14] and Apple’s OS X operating system [15]. This gives it a large backing
in both corporate and academic communities leading to very mature support for the
provided programming languages. The parser is exposed to a huge corpus of C and C++
source code through FreeBSD’s ports system, giving it coverage on many open source
code bases.

Format

Clang
AST ARCMigrate

StaticAnalyzer

Figure 2.2: Overview of Clang’s libraries.

Background 2.3

Clang is a very large project and ships with a variety of libraries over the ones provided
by PUMA. This includes

e Features for use in integrated development environments. This includes creating an
index of the input source so it can be navigated in an editor. Clang also contains
support for automatic code completion, which returns a list of valid identifiers at a
given location in the source code. Another useful feature is the direct availability
of Doxygen comments in the syntax tree.

e A static analyzer that can find errors by symbolically evaluating source code and
showing code paths that may lead to unintended behavior or crash the program
under certain circumstances.

e A GCC-compatible driver library that can parse and understand GCC command
lines. This allows Clang to be used as a direct replacement for the GNU compiler
without adjustment of build systems. AspectC+-+ currently relies on GCC to do
its command line parsing; this could be replaced with the library and implemented
in a cleaner fashion.

e A source code formatting utility which can easily adapt code to existing coding
styles. It corrects line breaks and white space for a given input.

e Library support for automatic refactoring of C++ source code. An example is
automatic migration of existing C++03 code to C++11, modifying code to use
features such as range-based for loops and automatic code simplification with the
new auto keyword.

The Clang project claims to have complete support for the C++03 and C++11
standards [16]. Experimental support for features likely to be included in the next
revisions of the standard is also available. It is likely that this will continue and a
Clang-based weaver would gain support for new C++ standards essentially for free.

Clang implements almost all GNU extensions and many Microsoft extensions are also
supported. This is important for compatibility with existing code bases on Linux and
Windows as even basic system header files make heavy use of compiler extensions. The
extensions are directly implemented in the parser code; this approach is not as clean as
PumMA’s aspects and complicates the parser code.

The Clang source code is available under the very liberal University of Illinois/NCSA
Open Source License which allows free redistribution and modification of the code,

including usage in projects whose source code is not delivered with the binary executable
files.

2.5 Background

2.4 Other C++ Parsers

Of course PuMA and Clang are not the only C++ parsers available. The elephant in
the room is GCC which originated in the GNU project. It is freely available under the
GPL license but made design decisions which make decoupling the front end from the
back end very complicated [17]. It also does not provide any support for source code
manipulation.

A major commercial option is the EDG C++ front end which is used by many
proprietary source-to-source translators. It is not freely available though, making it
impossible to use it in a open source AspectC++ weaver.

There are other, smaller open source parsers such as Elsa and OpenC++. None of
these options claim to have a complete implementation of C++ and would provide no
advantage over PUMA.

2.5 Summary

This section explored the features of the AspectC++ language and showed the properties
of the PUMA parser which the ac++ weaver is built upon. The Clang front end was
introduced, and its advantages over PUMA were pointed out. Clang and PuMA share
many design goals, making Clang a good spiritual successor to PUMA while providing a
much more complete and mature C++ parser and many additional features.

3 Analysis

In this chapter the differences between Puma and Clang in the context of their use in
the AspectC++ weaver are analyzed.

3.1 Structure of the Weaver

The AspectC++ weaver can be seen as a pipeline taking both C++ source code and
aspect code and emitting pure C++ code at the end. The transformation is divided into

two phases.
C++ Source
Transform Transform
H H C Output
Phase 1 Phase 2 o P
Aspects T
z .
3 n
= < act++
/ L \ I Puma
Project Preprocessor H Semantics Manipulator

1 i)

Figure 3.1: High-level overview of the AspectC++ weaver.

Phase 1 takes the input source code and tries to find AspectC++ constructs in them.
To do this it asks a PUMA component called the Project for input files and runs
the preprocessor on the code. It then goes on to analyze the resulting tokens,
looking for aspects. If it finds one, the aspect is stored on the side and removed
from the source code which is subsequently fed into the next phase.

Phase 2 runs the full C++ parser on the output of phase 1. The resulting syntax tree
is analyzed and broken down into a simpler representation. On this representation
pointcuts are evaluated and code transformations are performed. The code trans-
formation is provided by PUMA’s manipulator class. Results are written back into
C++ files using path information from the Project, concluding the weaving step.

11

Analysis 3.2

3.2 Use of Puma Components in the Weaver

To get a more detailed picture of the dependencies between AspectC++ weaver compo-
nents and PUMA components, the parser usage by individual AspectC++ classes was
explored. Figure 3.2 shows which class in ac++ uses which classes and functions from
what sublibrary in PUMA.

The used PuMA libraries in particular:

aspects
This is a special library for the aspects woven into PUMA. A dependency on this
library means that a language extension is referenced.

basics
Utility classes used throughout PUMA and AspectC++.

common
Components shared by all libraries.

cpp
Implementation of the C Preprocessor.

infos
Definitions for all classes that represent semantic information.

manip
Source code manipulation library.

parser
Contains the code to build syntax trees and extract semantic information from it.
This component also covers sublibraries specific to C and C++ code, including a
separate sublibrary for template instantiation.

scanner
The code that drives lexical analysis of the input files.

The basics and commons libraries are excluded from the graph because all AspectC++
components depend on it.

The following sections describe major components from all the libraries, their usage in
AspectC++, and how they can be replaced with Clang equivalents if one exists.

12

3.2 Analysis

Slicelncludes
ACProject

ACConfig

AspectIncludes
LineDirectiveMgr

IncludeGraph
ST
IncludeExpander /
—

— =
— =
o =
/
CTimastormar scanner >
Introducer 2N parser/ccparser

==

\\- -
CodeWeaver @
e

TrackerDog " aspects
o O S : .
JoinPointPlan “ ‘ infos/acinfos

infos

Advicelnfo

ResultBuffer

Figure 3.2: Dependencies from ac++ to PUMA components

13

Analysis 3.4

3.3 Project

Contained in PUMA library common.

PuMA’s Project class is referenced in almost every component of the weaver. It takes
on three major responsibilities in AspectC++.

e Configuring the preprocessor. This includes parsing a set of predefined macros
from a file that is provided by the ag++ driver. ag++ extracts the information from
a GCC compiler invocation.

In this configure phase the Project also takes care of enabling language extensions.

e Finding and managing file paths. Project contains essential information on whether
a file belongs to it. This is used all over the weaver to determine if a file should be
modified as part of the manipulation process. Knowing what files belong to the
project avoids changing unrelated source code.

This information also allows the Project to emit relative paths to be used in newly
added include directives.

e Managing and saving modified files. The Project also manages the Units (see
below) of all parsed files. When weaving is completed the modification are commit-
ted back to the Project. As a final step the modifications are written to the file
system.

In Clang there is no direct equivalent to the PUMA Project class. Some parts of its
responsibility can be taken over by Clang functions though. Clang includes a GCC-
compatible driver which can parse a g++ command line and produce predefined macros,
this can potentially replace the configuration phase.

As the PUMA project currently provides a location to store the state of the preprocessor
and the Units, a project for Clang would take ownership of Clang’s source management
facilities, namely FileManager and SourceManager. Clang’s rewriter has a method
to save modified files but it is incompatible with AspectC++’s phased approach with
intermittent reparsing, so it cannot be used directly. Before parsing the input a second
time the source files would be committed to the SourceManager. A separate saving step
could fetch the textual data from the manager and store it into a file.

The path management functionality can be used unmodified with a Clang-based
AspectC++ weaver. To remove the dependency on PuMA the class could be stripped
of PuMA-specific methods and copied into the AspectC++ source tree. This is not a
requirement for a working weaver utilizing Clang, which can still use PuMA parts, but
an important step for removing the dependency on PUMA.

14

3.5 Analysis

3.4 Preprocessor
Contained in PUMA libraries epp and scanner.

The preprocessor is in charge of interpreting directives such as file includes and macro
expansion. In modern C and C++ parsers, it directly interacts with the lexical analysis for
performance reasons instead of being implemented as a separate source code manipulation
step. Both PuMA’s and Clang’s preprocessors take an input file and return a stream of
tokens which can be consumed by a semantic analysis step. PUMA provides a visitor
mechanism to retrieve information on preprocessor directives. Clang uses a callback
interface (PPCallbacks), through which the same information can be collected while the
Preprocessor runs.

In the AspectC++ weaver the preprocessor is run by phase 1 which directly consumes
tokens and phase 2 where a full semantic analysis is performed. Since most of the
interaction with the preprocessor happens in phase 1 this section focuses on this portion
of the weaver.

Phase 1 runs the preprocessor and performs simple semantic analyses on the tokens,
identifying classes and all syntactic extensions such as advice and pointcuts. The
information on those extensions is stored on the side and the code is removed from the
source files, making it invisible to later passes. This makes it possible to parse AspectC++
with a generic C++ parser that does not have to recognize any extensions.

The data stored about aspects is mostly parser-independent with the exception of class
slices which are stored as Units for consumption by phase 2.

To get a deeper insight on the differences between PuUMA and Clang in the preprocessing
step a test program was written which runs both preprocessors and prints out the tokens
found. It was then executed on various source files from PuMA and AspectC+-+ for
manual inspection of the differences.

e PuMA intentionally does not implement some hard to parse language features such
as the GNU __attribute__ extension. The tokens resulting from those constructs
are silently dropped by PUMA’s lexical analysis pass. This is not a problem for
AspectC++ as the extensions do not affect weaving.

e In the Clang output, tokens derived from macro expansions carry source locations
differing from the locations PUMA uses. This has an effect on error messages
emitted by the AspectC++ weaver.

e Minor bugs were found in PUMA’s preprocessor that since have been fixed. For
example, include directives were ignored if preceded by a comment on the same
line.

e On the tested files Clang’s preprocessor was up to four times faster than PuMA’s
without significant differences in the parsed tokens. While this is not representative
for a full C++ parser it will hopefully have an effect on the performance of
AspectClang.

15

Analysis 3.5

3.5 Units and Tokens

Contained in PUMA library common.

One of the fundamental classes used in PUMA’s parser is the Unit. A Unit stores a
list of tokens representing a single file in the input. Another use case occurs in macro
instantiations where artificial Units are created to store the expanded tokens.

The AspectC++ weaver also creates such artificial Units to store slices during phase 1,
which are eventually inserted into the output in phase 2. Those Units contain special
marker tokens to indicate insertion positions for names in phase 2. They have no direct
counterpart in the original input.

In Clang there is no equivalent concept to a Unit. The SourceManager class manages
the content of input files and all tokens reference data stored in the manager. This
means that phase 2 cannot reference any tokens from phase 1. This poses problems when
porting the code from PUMA to Clang; a strict separation of tokens between phase 1 and
phase 2 has to be maintained to avoid mixing state from both phases. The Units used
during source-to-source translation can be represented as simple lists of tokens, we will
only lose comments and formatting in the injected slices that way.

Tokens also play an important role in phase 2 as they are providing the locations
where code transformation should occur. This is very different from Clang’s approach
where tokens are basically hidden after semantic analysis. On the other hand Clang’s
SourceLocation object provide a very fine-grained way to address locations in the source
code. It is an opaque object that represents a byte offset. It can be translated into
a file/line/column triple by the SourceManager or used to address a position for code
manipulation. Any code using tokens in the weaver phase 2 has to be changed to use
SourceLocations instead. Sometimes this entails managing more state; a token has two
addressable positions, before and after, while a location is just a single point in the code
with zero length.

Listing 3.1: Example C++ code with multiple calls in one position

struct C {
C(int);
operator int ();

b
int abs(int);

void f(C &c) {
// Call advices for all three functions above could match
// here; adding multiple insertions at the same positions.
¢ = abs(c);

16

3.6 Analysis

For call advice it is possible that multiple code insertions happen at the same location
and have to be performed in the right order. The current AspectC++ weaver addresses
this problem by introducing ephemeral marker tokens which are only used to denote a
position. The code manipulation functions of Clang does not cannot use marker tokens
but it allows inserting code before or after a SourceLocation, moving existing insertions
in the specified direction. This involves complex changes to the weaving code as it has
to insert changes in the right order. Marker tokens did not put any constraints on the
ordering.

3.6 Parser

Contained in PUMA library parser.

A key part of a C++ front end is the parser which performs semantic analysis on the
stream of tokens and makes the extracted information available in some way.

The parser is primarily seen as an opaque step producing data structures to be used
for further processing of the source code. However, there are critical situations during
AspectC++ weaving that require interacting with the parser directly. It can be best
explained with the problem of recursive introduction. Take for example a simple segment
of AspectC++ code using class slices.

Listing 3.2: Example code for nested insertion

advice "Foo' : slice struct { struct Bar { }; }; // nested class
advice "%::Bar": slice struct { int in bar; };

struct Foo { };

The pointcut matches struct Foo so in a first step the nested class is introduced by
copying the body of the first slice into the structure.

Listing 3.3: First iteration of insertions

struct Foo {
struct Bar { };

}s

The nested class introduction now would make the second pointcut match. This
requires semantic information about the introduced nested class to be available at the
time the slices are expanded. If it is provided the member will be introduced triggering a
new iteration of code introduction.

17

Analysis 3.7

Listing 3.4: Second iteration of insertions

struct Foo {
struct Bar {
int in bar;
}s
b

Now no further pointcuts match and the weaver can begin processing execution and
call advices as those advice types cannot cause recursive introduction of code and do not
need special attention in the parser.

A similar problem can also happen with code that is not parsable without adding the
slice code and with the AspectC++ introspection feature. Introspection allows, among
other things, querying the number of members in a class. The number of members will
change if new members are introduced.

Injecting pieces of text during the parser run is not something commonly supported
by C++ parsers. PUMA provides a callback interface at certain points in the parser
that calls into ac++ so the weaver can inject code. The weaver then runs the parser
on the injected code and updates both its view of the source code and the Puma’s
data structures. Later the code is also inserted into the resulting files with a textual
manipulation action.

In Clang this approach is not feasible as the AST data structure containing all the
semantic and syntactic information is not designed to be modified in such a way. To
solve this problem with the Clang parser a different method has to be found.

3.7 AST

Contained in PUMA libraries infos and parser.

The semantic information emitted by the parser is the reason why a full C4++ front
end is needed for an AspectC++ weaver in the first place. It contains the knowledge
needed to perform all the transformations happening to the source code when being
transformed from AspectC++ to plain C++.

The primary consumer of the information is the Mode1lBuilder which further processes
it and extracts facts needed for the source transformations. It is split into two parts, one
analyzing semantic information and another class called the TrackerDog traversing the
syntax tree. This reflects the design of the data structures in PUMA.

In PumMmA, the parser builds two independent trees for a translation unit. The SemDB
contains high-level information on classes and functions, abstracting away many details
of the C++ syntax. The nodes of this tree are all derived from the CObjectInfo class.
On the other hand there is the actual syntax tree containing objects derived from CTree.
The class hierarchies for a class definition can be seen in figure 3.3. There are pointers
on both sides to get to the corresponding object in the other tree.

18

3.7 Analysis

—

[CSemObject } CTree CObjectInfo
N\ J - J
i JE— —
e 2 I f
CT Decl | CScopelnfo]
- LT J _ % N
p . CStructure
CT_ClassDef = % g
~ - s N
CRecord
- J
e % R
CClasslInfo
- J

Figure 3.3: Class diagram for syntactic and semantic objects describing a class definition

in PuMA
[DeclContext } Decl [Redeclarab1e<TagDecl>}
NamedDecl
TypeDecl
TagDecl
. J
s LT N
RecordDecl
. LT J
CXXRecordDecl
. J

Figure 3.4: Class diagram for objects describing a class definition in Clang

19

Analysis 3.8

After the semantic database is built, ModelBuilder walks the tree and adds information
on functions and classes that are candidates for code manipulation. The TrackerDog
visits the syntax tree of functions, looking for calls that are also added to the model.
They will be used for call advice.

Clang pursues a different approach here. There is only one large data structure called
the AST (Abstract Syntax Tree) which contains all the information. AST nodes are either
derived from the Decl or the Stmt class hierarchies. Having only a single tree has the
advantage that the AST nodes always carry detailed information on what piece of source
code they are derived from. On the other hand it adds the burden of dealing with the
intricate details of C++ syntax to all users that is invisible in PUMA’s semantic database
approach. For example a class in C++ can have multiple forward declarations and one
definition. When encountering a class declaration it is the consumer’s responsibility to
pick the desired one. A class information object in PUMA can always be asked for the
defining object and provides a simple interface for it.

Figure 3.4 shows the class hierarchy for a class declaration in the Clang AST. It uses
multiple inheritance to add information about redeclarations to the classes. A Clang
DeclContext roughly represents a scope in PUMA terminology and can be used to walk
scopes upwards, for example member function to class definition to namespace to file
scope.

Clang’s AST is not a standalone data structure but designed to be used with an
ASTConsumer class which provides virtual functions that are called for all top-level
declarations. This is different from PUMA where a tree can be traversed after it is
completely parsed. This will lead to structural changes in the weaver’s ModelBuilder.

3.8 Code Manipulation
Contained in PUMA library manip.

Both PuMA and Clang provide a low-level code manipulation component that can be
used by the AspectC++ weaver to do the actual source-to-source transformation.

PUMA contains a manipulation library that supplies basic insertion, deletion and
replacement operations. Locations are given as tokens which limits its precision. If
the user wants to manipulate a token she has to do so manually and replace the token
through the manipulator. When the manipulation is done changes are directly committed
to the project.

In contrast, Clang’s Rewriter does not use tokens but uses SourceLocations which
represent a byte offset into the file. This allows more flexibility than the design used by
PumMA. When multiple insertions are made at the same point it can be specified if a
new insertion should be added before or after existing changes. The Rewriter also takes
care of mapping the locations to the source even if something was added in front of the
location and essentially invalidating the byte offset. At the end all manipulations are
rendered into strings, one for every manipulated file.

20

3.9 Analysis

In the AspectC++ weaver the code manipulation primitives are encapsulated in the
WeaverBase class. It currently uses a token-based model to address positions similar to
PuMA. An interface based on SourceLocations would be a strict superset of the token
model.

The PuMA manipulator also provides a setting which automatically expands macros
when a transformation affects an instance of it. Clang does not provide similar function-
ality.

3.9 Summary

This chapter showed that many of the PUMA components used by the AspectC++ weaver
have close relatives in Clang, with the notable exception of the Project class which does
not have a direct equivalent. Significant parts of the Project code can be reused with
minor modifications though.

The other modules have varying degrees of compatibility, in particular the parts of the
weaver that depend on the parser and AST will require complex changes, mirroring the
large differences in the parser’s data structures.

21

4 Design

This chapter describes the design of the components used to move AspectC++ to Clang.
The design tries to facilitate agile software development by enabling an incremental
way for the implementation. This allows testing during the entire process and prevents
bugs from accumulating early. The other design goal is reducing changes the existing
AspectC++ code to avoid breaking code by accident.

To keep changes to the AspectC++ code base to a minimum, only parts that are
directly connected to PUMA are rewritten for to use Clang. The goal is to have a working
weaver at all times and being able to swap out PuMA code for Clang code piece by piece.
Some otherwise parser-independent parts of AspectC++ make direct use of PUMA’s
classes, for those cases an abstraction layer is introduced. When both a PuMA and a
Clang version of a class exist a Clang prefix is added. This can be dropped when the
PuUMA versions aren’t needed anymore.

4.1 Code Manipulation

WeaverBase and its subclass CodeWeaver are the primary providers of source code ma-
nipulation in AspectC++. It is built on top of PUMA’s manipulator classes. WeaverBase
wraps PUMA’s interface and extends it with a richer abstraction for addressing spe-
cific insertion positions in the source code. Clang provides a similar low-level inter-
face, the Rewriter, which the new class ClangWeaverBase is built upon. It is based
on SourceLocations instead of tokens so the additional position handling of the old
WeaverBase is not required anymore. If the Clang version is called with a token it will
measure the length of the token and use the location of the start and the end of the token
to emulate PUMA’s functionality. CodeWeaver provides higher level manipulation, such
as specific transformations for the individual advices of the AspectC++ language and
is most interesting for Phase 2. A major difference between the old implementation is
that the Clang-based Phase 2 does not have access to any tokens so the token emulation
cannot be used. It is necessary to rewrite the code using SourceLocations only.

The Clang-specific code is implemented in the classes ClangWeaverBase and Clang-
CodeWeaver so both implementations can be used at the same time. This also has the dis-
advantage of a lot of code duplication of the PUMA-based CodeWeaver in ClangCodeWeaver
that will go away once CodeWeaver falls out of use.

The PuMA-based CodeWeaver makes use of PUMA manipulator’s facilities to selectively
expand macros if a transformation occurs in a macro instantiation. Clang’s rewriter does
not provide this feature so it has to be reimplemented manually by checking for macros
in every manipulation primitive and storing the location.

23

Design 4.2

At the end of the weaving process it has to call Clang’s preprocessor and expand the
macro in place. This cannot be done on the fly because there may be other transformations
in the same macro and once it is expanded and copied in the target file it cannot be
changed anymore.

4.2 Changes to Phase 1

The following sections describe the individual changes to the classes used by phase 1
culminating in Phasel itself. Phase 1 and phase 2 share a lot of code, yet almost
everything is reinitialized after phase 1 has run. Some duplication and unnecessary
processing will be created during the porting process. This can be easily cleaned up
when the phase 2 port is done.

ACToken

ACToken is a wrapper that can contain either a pointer to a PUMA token or a Clang
Token. It defines a set of token kinds that are mapped to the values of the underlying
implementation, to minimize changes to the AspectC++ code itself. The token kinds
were extracted from AspectC++ with a simple grep operation and can be extended if
more tokens are needed in the future. It defines a small set of operations that map well to
either PUMA or Clang tokens. This is implemented as a non-Clang specific infrastructural
refactoring in AspectC++, the primarily affected classes are:

e Phasel

WeaverBase

CodeWeaver

IncludeExpander

Introducer

Transformer

First, the existing pointers to PUMA are stored in the ACToken instead of using raw
pointers. When the token is used in conjunction with a Unit the ACToken is turned back
into a PUMA Token until units are ported as well. Eventually conversions will only occur
when tokens are imported from the preprocessor or sent into source code rewriting. The
ACToken also has a companion class ClangACToken that wraps a Clang token instead of
a PUMA one. There are slight semantic differences between Clang and PUMA tokens, for
example PUMA uses a NULL pointer when the parser reaches the end of a file while Clang
uses a special EOF token. Those special cases require manual changes to the AspectC++
code that uses the tokens as there is no reasonable abstraction for them.

24

4.2 Design

PUMA W switch__to_ clang (Clang 1 switch__to__puma (PUMA

Units J SourceManager Units
Phase 1 Phase 2

Figure 4.1: Clang phase 1 in a PuMA world.

ACFilelD

The basic container for a file in PUMA is the Unit class. It consists of a file name, a
list of tokens and information about the current state of the file. Clang only provides an
ID that can be translated into a file name. The ID can be used in most places where
a Unit is used in AspectC++. A wrapper class called ACFilelID is created, which can
contain a Clang FileEntry or a PUMA Unit but only allows taking the name of the
underlying object. This is used to bridge filename-based operations between a Clang-
based phase 1 and a PuMA-based phase 2. When an ACFileID from a PUMA Unit
and a Clang one are compared, ACFileID does a textual comparison of the absolute
paths of the underlying files. Otherwise it simply compares the pointers of the objects
the ACFileID was initialized with. The textual file name comparison does not work for
purely virtual buffers that have no counterpart on disk. Those never cross the boundary
between the two phases so they can be ignored here.

Phase 1 contains a recording mechanism that uses Units as a temporary container for
tokens. Clang does not provide a similar container but the usage in phase 1 is simple
enough to be replaced with a std: :vector of tokens. Phase 1 also makes use of so-called
marker tokens to denote names in the recorded token list. Those are replaced with Clang
tokens with an invalid ID, those should never occur in real code.

ACProject

ACProject is the top-level class containing parser state. In the porting process
ACProject is extended to hold Clang state next to the existing state. As a tempo-
rary measure two new methods are introduced, ACProject::switch_to_clang and
ACProject::switch_to_puma, which transfer state from PuMA to Clang and vice-versa.
This is used to have a Clang-based phase 1 coexist in a PUMA-based ac++.

For the configuration it will use PUMA’s configuration files that contain lists of command
line arguments. Not all options are supported by Clang directly so light preprocessing
and filtering of the list is required. This allows the Clang-based AspectC++ weaver to
be used as a drop-in replacement for ac++ in the ag++ driver.

25

Design 4.2

ACProject is derived from PUMA’s CProject class, which also contains useful code
to manage the file tree ac++ sees, there is no direct equivalent for this functionality in
Clang. The long-term plan for ACProject is to remove any PUMA state from it and lift
PuMA code that’s still needed after that from PumMA into ACProject.

ClangErrorStream

PuMmA provides a way to emit diagnostic messages during the parsing process via the
ErrorStream class, which follows the C++ iostream pattern. Clang has a similar way
via its DiagnosticBuilder class. The new ClangErrorStream bridges PUMA’s interface
to Clang’s to simplify porting of AspectC++’s code. Instead of PUMA’s Locations
it understands Clang’s SourceLocation objects and passes them down into Clang’s
SourceManager formatting logic.

Basic Usage:
err () << sev_error << token—>location ()

<< "There’s an error near this token.
<< endMessage;

Clang provides rich diagnostic options like highlighting of ranges in the source code
and hints for code insertion to make it easier for the user to fix an error. Those features
aren’t currently exposed by ClangErrorStream but can be added in the future. One
immediate improvement over PUMA’s diagnostics is the addition of column numbers to
the output.

ACPreprocessor

ACPreprocessor is a base class of Phasel. It is responsible for setting up the prepro-
cessor and encapsulates the state of the preprocessor. This reduces dependencies on the
actual implementation. The class is small and its methods can be mapped to Clang in a
direct fashion.

IncludeGraph

The IncludeGraph class uses a callback mechanism to record #include directives in
the source code as it is getting preprocessed. A graph structure is created that can be
queried to reveal the include relation between to files. Clang provides a similar callback
mechanism that is used for the Clang version of class and replaces the PUMA-based code
in IncludeGraph. All uses of the graph in AspectC++ query the output of phase 1 so
only one implementation is needed, with ACFileIDs bridging the gap between Units and
Clang’s FileIDs.

26

4.2 Design

Phase 1 JoinPointPlan
Transformer
Phase 2 e Introducer

S J (.

Figure 4.2: Flow of tokens in a PuMA-based phase 1.

Phasel

After all of the above is done, the actual phase 1 transformation pass can be ported
to Clang. All uses of PUMA tokens are replaced with ClangACTokens. Some tokens are
recognized by PUMA as a language extension, for example advice and aspect keywords.
In Clang those are parsed as simple identifiers and their string value is compared instead
of the type of the token. This avoids adding new kinds of tokens to Clang.

A complication arises from the recorded tokens that are used to communicate As-
pectC++ slice classes with phase 2 as seen in figure 4.2. PUMA tokens were recorded in
Phasel, formatted in JoinPointPlan and inserted in the Introducer. Clang’s tokens
are managed by the SourceManager class and cannot be shared between the phases.
Instead of passing tokens directly, the tokens are formatted into a textual string and
passed down in this form. This eliminates the flow of tokens between the phases, leaving
only the changes in the Transformer class.

Transformer

The Transformer is the top-level pass that manages the work of phase 1 and 2. It now
calls the necessary operations on ACProject before and after the Clang-based phase 1
runs, transferring the contents from PUMA’s Units to Clang’s SourceManager. Over
time the Clang part can cover larger stretches of the Transformer until everything is
handled by Clang.

27

Design 4.3

4.3 Changes to Phase 2

While Phase 1 required mostly refactoring and porting work, Phase 2 faces larger
differences between PuMA and Clang, making structural changes necessary.

ModelBuilder

The ModelBuilder class analyzes semantic information coming from the parser and
extracts interesting parts for consumption by the code transformations. The split
nature of PUMA’s semantic database and syntax trees is reflected in the structure of
the ModelBuilder. First, it queries the semantic database for all classes and functions
and inserts them into the model. Then a separate walk over the syntax tree is started
to gather information on function calls. The syntax tree visitor is split out into the
TrackerDog class.

In Clang there is only one data structure holding all the information of a translation
unit, the AST. On the one hand this allows us to unify discovery of classes, functions
and calls into one pass, obsoleting TrackerDog. On the other hand, ModelBuilder now
has to deal with the intricacies of redeclarations in C4++ and the increased verbosity of a
syntax tree versus a simpler semantic database.

Most of the work on ModelBuilder itself is finding the right information in Clang’s
AST that corresponds to the information in PUMA’s semantic database. Many checks can
be directly replaced with a Clang method but some information (for example whether
an element in the AST is derived from a template instance) is spread out over multiple
nodes that have to be checked individually.

The generated model consists of two parts. One half is dedicated to parser-independent
information such as class names and function call signatures. The other half contains
pointers back to the parser data structures so the code transformations can query
them later to get additional information and the original locations in the source where
modifications should be performed. The parser-independent parts can be serialized into
an XML format, leaving a way to compare PUuMA- and Clang-derived models by getting
two XML files for a given source file and comparing them.

Clang ASTConsumer

ClangASTConsumer is a new class which implements recursive visitation of Clang’s
AST. It calls the corresponding methods of the ModelBuilder when it encounters an
interesting node in the syntax tree. The class is built upon Clang’s ASTConsumer interface,
which provides a callback mechanism that gets activated every time a new top-level
declaration is parsed. It then descends into the tree looking at every inner declaration
and all function calls.

Because a call expression in Clang does not know its parent function the consumer
has to keep this information around when it sees a function declaration. A complication
arises in C++ global initializers which also can contain function calls, those have to be
marked specially so they do not get attached to a different function by accident.

28

4.3 Design

ClangASTConsumer

-

calls mplicitly calls

AN
/

calls

-
0

Phase 1 ModelBuilder Introducer
generR /sed by

TransformInfo

Figure 4.3: Interaction between model and introducer.

The ClangASTConsumer determines whether a declaration is interesting by querying the
ACProject, checking if the file a declaration is in is contained in the project. Otherwise
the declaration is ignored.

Introducer

The Introducer is the most complicated component of ac++, reading data from the
model and parser and also injecting code and model information along the way.

One of the reasons why we need the introducer are advices that match inside of class
slices. This can happen recursively so we need to parse the injected slices and add
information about them to our model. A similar issue exists with inserted introspection
code which may be called by a slice and code that is invalid without the added slices.

In the PUMA version the Introducer is triggered by a callback from the PUMA parser
itself. The callback mechanism is introduced by an aspect during the compilation of
PumA. The Introducer then prepares the injection and calls back into PUMA to parse
the code. The results are appended to PUMA’s data structures.

In Clang manipulating the AST is discouraged and Clang does not provide a convenient
way to do it. For the Clang introducer a slightly different implementation was chosen.
Again the parser is patched to provide a callback mechanism to trigger the introducer.
But instead of parsing the injected code on the side and manipulating the syntax trees,
the introducer for Clang injects the code into the running token stream of the parser.
This way the new code gets included into the AST on the fly, and in turn triggers the
callbacks in ClangASTConsumer to update the model. This design also comes with the
downside of added fragility by moving data underneath Clang’s parser. Extra care has
to be taken so all parser state is set up in the right way when returning into Clang code.

29

Design 4.3

This applies in particular to introduced aspect includes, which contain other code that
the introduced code may rely on. Since we cannot paste them into the middle of a class
the introducer has to reset Clang’s context variables so they point to a top-level scope
and call the parser methods manually. The actual #include directives are added with
an extra code manipulation step.

All other injections are stored in ClangIntroductionUnits which contain some meta
data about the injection. Since we cannot manipulate code in text that’s inserted with
the CodeWeaver, any further code rewriting happens in the buffers referenced by the
ClangIntroductionUnits. The ClangCodeWeaver will insert them in the right order
into the final target files when all other code transformations are done.

The Clang-based introducer has three entry points to deal with different kinds of
AspectC++ slices.

e base_specifier_first: Is called when the parser sees a class with no base classes.
The last parsed token is the opening brace. At this position the base class slice is

added.

Listing 4.1: Introduction of first base classes
class C {

/]\
public NewBasel, public NewBase2

It is important that all aspect includes are resolved here as the base classes may be
declared in such a header.

e base_specifier_next: Similar to base_specifier first but gets called when
the parser sees a class that already has one or more base classes. It also gets called
when base_specifier_first introduced a base class; those cases are ignored.

Listing 4.2: Introduction of second base class
class C : Base {

T
, public NewBasel

e tag member: The parser calls this callback when a class definition is parsed com-
pletely. The insertion position is before the closing brace. This is used to insert class
members in slices and also aspectof methods, friend declarations and introspection
code.

30

4.3

Design

Listing 4.3: Introduction of inline member

class C {

};.
3

void injected member ();

For the additional aspectof functions, friend declaration and introspection code
that are inserted at this stage. aspectof does not require parsing but friend
declarations and introspection code have to be parsed since other introduced code
can rely on it. Friend declarations and aspectof functions are added to all classes
in the project scope while introspection code is only inserted when requested.
Introspection code is also inserted after every member introduction.

end_translation_unit: Finally, when the translation unit is parsed (the parser
found an end of file token) this method is called. Special care has to be applied
to the callback code because the Clang preprocessor deletes itself when it is done.
This is solved by setting it into a special incremental parsing mode and resetting
it when the introducer is done. In end_translation_unit non-inline member
slices are added to the translation unit. To do this it iterates over all classes that
we introduced members into earlier. If one or more of the introductions were
non-inline and we are in a translation units where the class was defined or some
other non-inline members were defined we inject the code here. The check for
other non-inline members is important to avoid multiple definitions of a member
function.

Listing 4.4: Introduction of non-inline member

<EOF>
/]\
void C::injected member() { }

On the Clang side there is a new abstract class ACIntroducer which is used by Clang’s
parser and gets implemented by the Introducer and Clang’s semantic analysis pass
stores a pointer to it. In Clang’s parser, code calling the three callbacks is added in all
places where the piece of code we are looking for is parsed. It also has to save the last
lexed token and restore it after the introduction is completed.

The modifications are currently distributed as a patch set against a stable release of
Clang. Implementing the changes in aspects that are applied to Clang was considered
but using the current design it leads to a lot of code duplication which would not ease
maintenance of the code. The code is also very specific to AspectC++ so submitting the
patches to be included in Clang’s upstream repository is unlikely to succeed.

31

Design 4.4

ClangCodeWeaver

The CodeWeaver is the final big piece of phase 2. It does all the hard work of
weaving the aspects into the output. It takes the information gathered in the model
and applies the advices for every matching pointcut. Some transforms are only using
parser-independent model information; those transforms can be directly taken from the
PuMA-based CodeWeaver. Others query the syntax tree and have to be ported manually.
In particular call advice manipulation requires a large amount of code and high precision
at inserting the generated bits. It is possible that there are multiple insertions at the
same location that have to be executed in the right order.

A shared component of all advice types is the insertion of ThisJoinPoint classes. To
determine whether a matched joinpoint requires such a class the code weaver performs
another walk over the syntax tree of the aspect code. The PUuMA-based version does this
by looking at SimpleName nodes and using the name to set various flags for the generator
of those classes. In Clang this information is not available as a separate node and various
ways to address the ThisJoinPoint object in C++4 code must be checked instead.

For execution advice most of the code is parser-independent with the parser-dependent
information wrapped in a SyntacticContext object. This is reduces the porting effort for
this type of advice to providing a SyntacticContext object for Clang and minor changes
to the actual weaving code. Since SyntacticContext is a relatively new development
in the AspectC+-+ weaver, other advice types do not make use of it and the code
handling them is deeply tied to PUMA data structures. It may be helpful to port them
to SyntacticContext instead of directly porting them to Clang. This would require
various extensions to SyntacticContext.

The last step done by the CodeWeaver before the transformations are committed
back into the project is moving all the ClangIntroductionUnits into their targets. It
is important that this is done in the right order so nothing is lost when introduction
were recursive. Figure 4.4 shows a typical tree of ClangIntroductionUnits that occurs
with recursive introductions. Each unit knows where it should be inserted in its parent
unit. Some of the units also have code manipulations done inside them, which means
that an advice matched here. The code weaver now does a postorder traversal of the
ClangIntroductionUnits tree, starting at the leaves, inserting every unit into its parent.
If there was code manipulation inside of the unit the manipulated code is inserted. The
last step is copying the contents of the top-level introductions back into the translation
unit.

IncludeExpander

The IncludeExpander is a late transformation pass independent of the CodeWeaver.
It expands #include directives in case the underlying header file was modified. The
PuMA version runs the preprocessor again and just replaces the #include directive with
the tokens of the modified files. In Clang the text can be copied instead, using a lexer
in raw mode so includes do not get expanded automatically by the lexer and using the
same callback mechanism phase 1 uses.

32

4.4

Design

Translation Unit

Manipulation

IntroductionUnit IntroductionUnit

Manipulation

IntroductionUnit

IntroductionUnit || IntroductionUnit

Figure 4.4: Tree of IntroductionUnits. Insertion starts at the leaf nodes of the tree.

4.4 Summary

A strategy for porting the major classes of the AspectC++ weaver was laid down in this
chapter. Structural changes to phase 1 could be kept at a minimum which will hopefully
lead to a quick and bug-free implementation. Phase 2 is more complicated, requiring
deep structural changes to the ac++ code that will certainly bring new problems.

33

5 Implementation

This chapter describes the steps that were taken to implement the elements laid down
in the design chapter. It also describes the various issues that were encountered while

writing the code and how they were solved.

W[SyntacticContext}

[ClangCodeWeaver] [ClangWeaverBase]

[ClangIntroductionUni@

[IncludeGraph } [Codulenver]

L IntroductionUnit]

[IncludeExpande@ [Introducer]

[Transformer]

[ACToken

TrackerD
(Phaset | (ModelBuilder]’J rackerbog |

[ClangACToken]

[ACProject }

[TransformInfo]

[ACPreprocessor}

[ClangASTConsumer]

(ACFileID |

[ClangErrorStream]

Figure 5.1: Modified classes in AspectC++. New classes are printed with dark back-
ground. Obsolete classes are printed in . Related classes are grouped
together and inner classes call classes at the edges of the diagram.

35

Implementation 5.1

For the port seven new classes were introduced and many were significantly changed.
Five classes became obsolete and can be removed when all code that uses them is removed.
Over the span of four months more than 3000 lines of code were added, 1000 were deleted
in AspectC++. The changes to Clang consist of 100 added lines.

Listing 5.1: Statistics for AspectC++ and Clang changes

AspectC++:

ACFilelD .h 60 -+
ACPreprocessor. cc 128 +—H++++++
ACPreprocessor.h 48 +++—

ACProject . cc 138 A
ACProject . h 18 +++

ACToken . h 92 A4+
ClangACToken . h 147 A+
ClangASTConsumer. cc 117 A
ClangASTConsumer . h 51 ++++++
ClangErrorStream .h 89 +HH-+-+++H
ClangWeaverBase. cc 138 A+
ClangWeaverBase . h 85 -

|
|
|
|
|
|
|
|
|
|
|
|
IncludeExpander.cc | 44 44—
|
|
|
|
|
|
|
|
|
|
|
|
|

IncludeExpander.h 7T+

IncludeGraph. cc 82 +H++——

IncludeGraph .h 63 +H+++—

Introducer . cc 687 +H4+++++++ -+
Introducer .h 98 +H+++—

IntroductionUnit . h 61 ++++++

ModelBuilder . cc 465 AA—44+++HHHAAAAt A
ModelBuilder.h 81 +—+++++++—

Phasel . cc 725 +H++H+H+
Phasel .h 29 44—

SyntacticContext .h 212+
TransformlInfo.h 380 A+
Transformer . cc 201 b

Transformer.h | 17 4+—
27 files changed, 3294 insertions(+), 939 deletions(—)

Clang:

include /clang/Parse/Parser.h | 8 ++++++

include /clang/Sema/Sema.h | 37 A+
lib /Parse /ParseDeclCXX. cpp B B e e o A B e e
lib /Parse/Parser.cpp |9+

lib /Sema/Sema. cpp | 3 +

5 files changed, 110 insertions(+), 4 deletions(—)

36

5.2 Implementation

5.1 Build System

AspectC++ uses a Makefile-based build system. All components are placed in a single
directory and are built individually. Dependencies are expressed using relative paths.
This can be adapted easily by adding an LLVM and Clang source tree next to the existing
directories. Using an external version of Clang is not possible due to the AspectClang-
specific modifications to the Clang source code for phase 2. Furthermore, on Unix-based
operating systems LLVM has to be built with support for exceptions which are disabled by
default by LLVM’s build system. This is necessary because ac++ makes use of exceptions
and code built with and without exception support cannot be used in the same binary in
general. When a solution for this is found it may be possible to optionally use a Clang
library provided by the system (for example a package in a Linux distribution) to reduce
the build times and foot print of ac++.

LLVM supports two different build systems: one based on the GNU autoconf system
and Makefiles, and one using CMake. For sake of simplicity AspectC++ uses the
Makefile-based system only. The build settings were chosen to disable as many unneeded
components as possible to reduce the time required to compile LLVM and Clang. The
specific build parameters are described in the README-LLVM file at the top level of the
AspectClang source tree. The modifications to Clang are distributed as a patch file that
has to be applied before Clang is built.

Clang updates are released every six months [18]. It is planned to update AspectClang
every time a new release becomes available. Another possibility was tracking Clang
development by taking the code directly from SVN, this option was discarded to avoid
changes to Clang that would break AspectClang underneath us. No critical bugs in
Clang were found that would necessitate using a newer version.

5.2 Phase 1

After an extensive planning phase, porting of the phase 1 transformations could commence.
Surprisingly the most error-prone part of this process was getting a clean separation
between PuMA-based and Clang-based parts. This includes turning token-based com-
munication into a string-based approach in the JoinPointPlanner but also getting the
switching in ACProject just right. In particular making sure that no state from the early
PuMmA-based parts is carried over to phase 2. This lead to dangling pointers to tokens
that do not exist anymore.

It is also important to set up everything right when switching back from Clang to
PuMma. The tokens must reference the original source files and not any temporary buffers
created by Clang. They also must be tokenized with the same parameters used in the
old phase 1 or phase 2 will see unexpected token kinds. This was more complicated than
expected and took multiple attempts to find a solution that works for all inputs.

37

Implementation 5.3

The resulting AspectC++ weaver with both Clang- and PUMA-based components was
verified using AspectC++’s own regression tests and by building a working PUMA, which
itself is a heavy user of AspectC++. All tests except one pass, the single failure is due
to not properly updating line numbers in the model, this will be fixed as part of phase 2
porting. Doing a self-hosted compilation with an AspectClang phase 1 compiled PumMA
linked against itself also passes the same regression tests.

5.3 Phase 2

As expected, the implementation for phase 2 was a lot more complicated and did not go
through as smooth as phase 1. The first major piece was the port of the ModelBuilder
class, which included setting up a Clang parser and retrofitting the builder to the more
incremental way of discovering declarations through the ClangASTConsumer.

ModelBuilder

To implement a Clang-based ModelBuilder in an incremental way, all of the existing
TransformInfo data structures storing the parser-specific parts of the model were
equipped with the necessary pointers into Clang’s AST, right next to the existing Puma
syntax tree pointers. Then the functionality of ModelBuilder was replaced method by
method. While doing this many points were found where Clang deviates from PUMA’s
way of describing a C++ source file.

e Through the incremental nature of the ASTConsumer it is not possible to know
whether a declaration has a definition at the time we see the declaration. This
means we have to keep a list of all redeclarations and update it when Clang finds a
new one.

e Clang does not have a simple way of telling whether a node in the AST was derived
from a template. We have to walk up the surrounding scopes until we find one
with the template instantiation flag set.

e Even if a class does not have any user-provided destructors or constructors we still
have to add them to the model. Clang stores information about them in the AST
which has to be processed separately.

e Names can be spelt differently. For example PuMA calls an anonymous namespace
<unnamed> while it is named <anonymous namespace> in Clang. The ModelBuilder
has to translate those notions where necessary otherwise a pointcut referencing a
PuMA-style name won’t match later on.

38

5.3 Implementation

To verify that the model is emitted correctly the XML serialization capability of
ac++ was used. For various test cases a file was generated with both a Clang-based
and a PuMA-based ac++ and manually compared. This allowed finding bugs in the
parser-independent model quickly, some minor differences in line numbers remain that
may need investigation later. It was not possible to test the parser-dependent part of the
model this way, which meant potential mistakes remain until the consumers for the data
are implemented.

Introducer

The Introducer is the most complex part of the AspectC++ weaver and thus the
most error-prone. The implementation started by patching Clang to provide the needed
callbacks and save required state when calling back into ac++. Adding new code in the
middle of a parsing process when the parser does not expect it leads to subtle and hard
to debug issues that remain unnoticed until a very complex source file is processed by
the weaver.

e Code insertion as part of weaving is now completely decoupled from injecting code
into the parser. This leads to situations where code is inserted in a different position
than the parser sees it which can lead to strange error messages on apparently
intact code.

e When code is injected it can make the parser call the introducer’s methods again
with the newly parsed code. Special care has to be taken to not do an introduction
twice in those cases.

e Injecting code when the parser does not expect it can confuse the parser and cause
it to drop tokens or crash. The Clang side has to be carefully written to avoid
going back to the wrong state after an insertion is parsed.

e Parsing introduced includes works very differently from the slice introductions.
Here the parser is reset to a global state and called manually on the included
source file. This means it also has to manually update the model by calling
ClangASTConsumer’s methods on the newly parsed AST nodes.

e [f there are multiple introductions at the same position they have to be added in
the reverse order of appearance in the output, the last injected code is parsed first.

e Added includes can contain classes which again need introductions leading to
recursion in the introducer itself. It is important that the Introducer does not
store any state in the class that would be overwritten by a deeper recursion step.

The new introducer was tested by running AspectC++’s regression tests and then on
Puma, without advice weaving disabled so only slices were added. This found a plethora
of subtle implementation mistakes and crashes in the Introducer. Given the complexity
of this component it will likely stay a major source of problems in AspectClang for some
time.

39

Implementation 5.3

ClangCodeWeaver

The CodeWeaver is the largest class of ac++ and a lot of it is specific to PUMA and
requires manual porting. Work was started by copying the code needed to transform
execution advice from the old CodeWeaver and porting it piece by piece.

e The code emitting wrappers for function definitions could be mostly reused directly
by just adding Clang support to the SyntacticContext. In the context the only
roadblock was finding the right locations in all the Clang AST nodes. The nodes
carry many different locations and it is often not obvious which location addresses
which part of a declaration.

e Another complication arose from the way Clang prints types. If the type is turned
into a string with the obvious getAsString method it will assume that the type is
a C type and will emit boolean types as Bool instead of bool. That is not valid
C++ code. To fix this issue, a PrintingPolicy has to be passed to getAsString
everywhere.

e Walking the AST to figure out whether a ThisJoinPoint class has to be generated
turned out to be difficult to convert to Clang. To gather AST snippets that trigger
ThisJoinPoint the regression tests were run and failing tests examined for missing
ThisJoinPoint classes. Code to match the found snippets was added but it is
likely that more cases have to be added to reach feature parity with the old weaver.

e Insertion of proceed functions which are used to call the original function from
advice code was not converted to SyntacticContext yet. Since most of it deals
with call advice only the execution advice specific parts were directly ported.

With those changes most execution advice regression tests pass with AspectClang.
Construction, destruction and call advice transformations were not implemented due
to time constraints. Doing that should be relatively straightforward with all the other
components being ready.

Another missing feature is the expansion of macros when a transformation occurs
inside a macro instantiation. This is not a widely used feature so it was dropped for now.

IncludeExpander

Since the IncludeExpander works independently of the rest of the weaver and the
CodeWeaver was not finished in time the expander was not ported. This leaves a
dependency on the PUMA preprocessor in place that still has to be replaced. This has an
impact on the overall performance of AspectClang.

40

5.4

Implementation

5.4 Summary

The implementation of phase 1 was completed without major interruptions and is well
tested and stable. Phase 2 is not yet finished. Of the components of phase 2 the model
and Introducer are almost complete and tested.

Table 5.1: Implementation status of various AspectC++ components

Component Progress Estimate
Phase 1 100%
Phase 2
ModelBuilder 95%
Introducer 85%
CodeWeaver 50%
IncludeExpander 0%

e The ModelBuilder is feature complete but suffers from occasional bugs due to the
structural differences between PuMA and Clang.

e The Introducer is missing introspection code but otherwise complete. It is,

however, a fragile piece of code where problems are abundant.

e The CodeWeaver only has basic support for execution advice, other advice types
are currently missing. This includes call advice which are the most complicated
advice type in terms of code transformation.

e The IncludeExpander was not ported to Clang and still uses PUMA’s preprocessor

which allows it to work but leaves a dependency on PUMA.

41

6 Evaluation

Most of the AspectC++ weaver is now implemented using Clang. This chapter focuses
on how the new implementation compares to the predecessor based on PUMA. The
major aspects that are evaluated are conformance to the C++ standard and overall
performance. C++ conformance was one of the foremost issues with PUMA, with many
open bug reports about it poorly handling certain C++ constructs. Clang claims to
implement the C4++03 and C++498 standards completely [16] so it should perform better.
Weaving speed is critical for development and debugging of software using AspectC++,
it would be great if Clang offers an improvement here as it is heavily optimized for fast
compile times [1].

6.1 C++ Conformance

In contrast to Puma, which has little use outside of AspectC++, Clang is widely used
as a C++ compiler which gives it a high coverage of uncommon C++ features. To
get a first estimation on the C++ conformance all open bugs in the parser category in
AspectC++’s bug database ! were tested. Table 6.1 lists them. The Puma and Clang
columns show whether the provided test case parses without error using a PumA- or
Clang-based AspectC+-+ weaver. The Type column categorizes the bug reports into one
of the following groups.

C++ conformance This is the most common category which contains bug reports where
PumMA rejects valid C++ input. Clang excels at this, resolving all known bugs.

GNU extension Lists bugs concerning GCC extensions not fully supported by PUMA.
Clang supports a larger number of those extensions than PUMA does, the only one
that is missing in the list of bug reports are the <? and >7 operators, which have
been deprecated by GCC and support was dropped in GCC 4.0. It is unlikely that
they will ever be implemented in Clang.

VC extension Lists extensions from Microsoft’s Visual C+4 compiler. Both Clang
and PUMA support a limited subset of those extensions which are important for
correctly parsing header files on Microsoft Windows. It is not clear whether some
of the extensions are actually bugs in Microsoft’s compiler that have been fixed
since the bug report was filed.

http://www.aspectc.org/bugzilla/

43

http://www.aspectc.org/bugzilla/

Evaluation 6.1

Internal Puma bug The test cases concern implementation details in PUMA which do
not directly apply to Clang.

Invalid or incomplete test case The given test case was not sufficient to generate a
reproduction of the bug reported or contained invalid C++.

C only Bug only affects C code and is irrelevant for AspectC++-.

Not a parser bug Bugs concerning parts of PUMA or AspectC++ unrelated to C++
parsing.

Of the tested bug reports, AspectClang could successfully compile 36, compared to the
old AspectC++ weaver failing all but seven. The seven remaining bugs were probably
fixed but the report was not closed. This means more than 29 bug reports can be closed
immediately when Clang becomes the primary C++ front end for AspectC++, most
of which preventing using AspectC++ with popular C++ code bases. This does not
take into account new bugs that were introduced by the switch to Clang but it is likely
that the amount of inappropriately rejected inputs will be much lower with the new
implementation.

6.1.1 Compatibility with Other Code Bases: SystemC

SystemC is a C++ class library to simulate and synthesize electronic systems. Hardware
description and aspect oriented programming play well together and so do SystemC and
AspectC++ [19] making it a natural target for evaluation.

A first attempt at trying to compile SystemC 2.2.0 showed one of the differences that
parsing with Clang brings. It is much stricter and will reject more invalid code than
PuMA did. In this case SystemC contains multiple constructs that are invalid according
to the C++ standard, for example declaring an instance reference variable as mutable.
Clang rejects this code requiring changes while PUMA has no problem with it. Clang is
also stricter than many other compilers. The widely used GCC C++ compiler accepted
this particular construct before version 4.6 which was released in 2011 [20]; SystemC
2.2.0 dates from 2007. It is likely that other old C++ code will need patches to properly
compile with Clang too.

Luckily SystemC 2.3.0 fixed the build with Clang so existing code bases may compile
after upgrading them to version 2.3.0. There is a minor bug in the ag++ driver which
prevents using the -pthreads command line flag with it but that can be worked around
by removing it from the compiler flags line.

All SystemC 2.3.0 tests compile cleanly and pass when built with AspectClang. They
don’t make any use of AspectC++ features though.

44

6.1

FEvaluation

Table 6.1: Status of AspectC++ bugs with PUMA and Clang as of August 15, 2013

ID Summary Type Puma Clang
40 advice aspects cannot be used with methods/functions with... not a parser bug
61 wrong handling of protection and casting C++ conformance no yes
73 Function bodies of templates are completely skipped. not a parser bug
100 VisualC++: Explicit constructor call in a member access e... VC extension no no
102 Visual C++: Implicit int support VC extension no no
145 argument default values for pointers and references C++ conformance no yes
186 Scanner problem with old DOS files VC extension no no
187 __ stdcall * VC extension no yes
188 GNU <7 and >7 operators old GNU extension no no
189 friend declarations VC extension/C++11 no yes
220 Recursive Inheritance C++ conformance no yes
236 Parser fails with non trivial template metaprogram invalid test case
258 destructor of POD types C++ conformance yes yes
264 Do not handle "taking address of temporary" as error invalid test case
275 resolution of cast expressions internal PumA bug
276 implicit conversion in init declarators internal PUMA bug
277 Puma: original parsing example missing not a parser bug
287 ___ wchar_t is no keyword VC extension no yes
289 Overload resolution not g++ compatible C++ conformance no yes
298 Visual C++ _ pragma keyword "disable" causes parser error VC extension no yes
299 Parser error with Microsoft Visual C++ 8.0 keywords incomplete test case
302 Problems processing examples with AspectC++ 1.0pre3 and c... incomplete test case
305 non-local template members not instantiated C++ conformance no yes
309 Error when try to compile the examples not a parser bug
325 No error message for invalid class member initializer VC extension no no
338 problem with two-dimensional static member array C++ conformance no yes
347 Early name binding in templates not implemented C++ conformance no yes
348 explicit specialization of function template not linked w... internal PUMA bug
356 Backslash path delimiter in #include VC extension no yes
365 Inconsistent syntax of slice introduction advices not a parser bug
369 the parser cannot handle the <boost/thread.hpp> header incomplete test case
374 GNU ___ attribute is not supported GNU extension yes yes
375 GNU __ attribute_ ((__mode__ (__ <SIZE>__))) not... GNU extension no yes
388 ¢99 type of aggregate initialization not supported GNU extension no yes
406 Implicit call to overloaded operator of template class no... C++ conformance yes yes
424 Overload resolution for pointers to static member functio... C++ conformance yes yes
428 preprocessor does not support C++ and/or/not etc. tokens C++ conformance no yes
433 Weave failing on operator overload C++ conformance yes yes
435 Multiple definitions error with templates. incomplete test case
437 Function address as template argument: & needed C++ conformance yes yes
438 GNU extension 7: not supported GNU extension no yes
453 reserved identifier violation not a parser bug
454 Pointer attributes are not initialised in constructor ini... not a parser bug
455 Copy assignment operators without check against self-assi... not a parser bug
466 Template specialization not found if defined before prima... C++ conformance yes yes
468 preprocessor turns #define into whitespace and not into a... Preprocessor no yes
473 Deduction of template parameters types between function a... C++ conformance no yes
479 Forward-declared template functions are not instantiated internal PUMA bug
480 template specialization by sizeof() differs to g++ due to... GNU extension no yes
482 invalid operand to array subscript ‘[]’ C++ conformance no yes
487 __ builtin_ types_ compatible_ p not correctly implemented C only
488 semantic analysis of typeof() arg not correct in the C pa... C only
492 GNU built-in type traits incomplete GNU extension no yes
496 dimension of static array in struct not stored correctly internal PumA bug
502 Complicated overload resolution scenario C++ conformance no yes
505 Template function call with explicit template args not co... C++ conformance no yes
506 Conversion operator in template class seems to be ignored C++ conformance no yes
507 Cyclic dependency between tempalte default arg and templa... C++ conformance no yes
508 Overload resolution problem with argument that is a bitfi... C++4 conformance no yes
510 Arithmetic <’ confuses template-id parsing C++ conformance no yes
511 Dependent type not correctly detected in template definition C++ conformance no yes
514 make examples fails not a parser bug
515 template template confusion in specialization C++ conformance no yes
Sum 7 Sum 36

45

Evaluation 6.1

6.1.2 Compatibility with Other Code Bases: Qt

Qt is a large C++ library, containing, among other things, a tool kit for graphical user
interfaces. It also has many users in the AspectC++ community making it an important
test case for AspectClang. To evaluate the changes in C++ conformance, a recent Qt
version (4.8.5) was downloaded and built. After that, the included example projects were
built with both a PumMma-based and a Clang-based AspectC++ weaver. This exercises
essentially all headers in Qt which would also be used with any other application using
Qt.

AspectC++ has clearly been thoroughly tested against Qt 4.8 and all tests passed with
a PUMA-based weaver. The tests actually found a new problem with the Clang-based.
The Clang-based phase 1 is stricter and does allow AspectC++ keywords in fewer places.
A PuMA-based phase 1 did not show this behavior. Rejected cases include slice used
as an argument name. The same problem exists for other AspectC++ keywords.

Hstatic void append_slice(PieSlice xslice);

AspectClang refuses to compile this example while the old ac++ accepts it. Three Qt
examples were affected by this.

e chapterb-listproperties
e chapter6-plugins

e pbuffers

For the newer Qt 5.1 things look quite different. Version 5 has started making use of
new C++11 features when it identifies a compiler that’s sufficiently new. Since PUMA
doesn’t qualify for this Qt tries a fall back mechanism, but this also fails. Without
patching PumMA Qt 5 is completely unusable with AspectC++. With Clang things look
much better, the only failures are due to the phase 1 problem listed above, making use
of AspectC++ keywords in unexpected places. Two tests are affected by this.

e pbuffers

e boxes

Qt 5 (and to some degree Qt 4.8) also provide new features using C++11 [21]. It’s
still possible to build it without using a compiler with any support for C++11 but it is
likely that users will pick up the new features eventually. AspectC++ is not yet ready
for the new C++ revision but having it built upon a parser with good support for the
new standard will make the transition easier.

46

6.1 FEvaluation

6.1.3 Compatibility with Other Code Bases: IyX

IyX is a visual ITEX editor. It is interesting because it makes use of both Qt 4 and
boost, another widely used C++ class library known to be exceptionally challenging
for C++ compilers. PUMA cannot even preprocess all boost headers properly and is
extremely far from parsing it. Clang claims to compile boost in its entirety [13].

Iy X only uses a subset of boost but a PUMA based weaver fails to compile any file
from the project. With Clang underneath it gets further along but eventually stops.
There were multiple issues identified in the In/X code base.

e Since PUMA cannot preprocess boost and AspectClang still runs the preprocessor
once to expand includes late in the pipeline. Since the expander is not needed for
plain C++ code without any aspects it can be disabled to avoid this issue during
the build.

e Phase 1 fails to parse an explicit instantiation of a boost template in the Ly X code
base.

#include <boost/crc.hpp>
template struct
boost :: detail ::crc_table t <32, 0x04C11DB7, true>;

This bug is also present in a PUMA ac++. A comment above the instantiation
describes it as working around a bug in older compilers. It can be removed without
impacting the overall build.

e [t found multiple bugs in the ModelBuilder part for Clang, sending it into an
infinite loop while trying to analyze boost headers. Those issues have been fixed in
AspectClang.

With the minor tweaks listed above, AspectClang can build a working Iy/X.

Boost headers have been by far the most challenging pieces of code that were tested
with ac++. It has uncovered problems in many parts of the AspectC++ weaver. The
issues were not fundamental and could be easily fixed or worked around, opening up
boost to the AspectC++ community. This is something that was never possible with
PuMA and will certainly be useful for many users of AspectC++.

47

Evaluation 6.2

6.2 Performance

Performance was evaluated after phase 1 was implemented and a more thorough analysis
was done after phase 2. This shows the impact of the individual phases on overall
weave times. All measurements were performed on a x86_64 system with Debian 7.0.
If not stated otherwise all given times show wall times and represent the average of
three consecutive runs. Since the AspectC++ weaver and in particular AspectClang is
still in development revision numbers for the AspectClang branch are added for better
reproducibility.

6.2.1 Phase 1

With just phase 1 changed? to use Clang as a preprocessor a first performance analysis
was performed. In figure 6.2.1 the timings for weaving individual source files in Puma
are shown, which itself is a heavy user of AspectC++. Weaving PUMA triggers many
conditions not covered by AspectC++’s regression test suite.

Building PumA with Clang phase 1 and PuMA phase 2 takes about 1.22x the time
than with a pure PUMA ac++® on weaving PUMA. The most plausible explanation for
this is the retokenization overhead when switching between the different parsers. The
current implementation runs multiple lexical analysis steps on the input code, some of
which are unnecessary.

1. At the beginning of the weave processes the main file is read, tokenized and a
preamble is inserted for use by both phases. This could be done on a textual basis
without turning it into tokens. When entering phase 1 the tokens are discarded
and only the text is used by Clang.

2. Now Clang tokenizes and preprocesses the code for phase 1. The tokens are analyzed
and transformations are applied.

3. After phase 1 the modified text is turned into tokens once again for consumption
by phase 2. In the old phase 2 all manipulation was based on tokens so this wasn’t
necessary. When phase 2 is ported it the Clang preprocessor will take over this
tokenization step.

Given the speed of Clang’s preprocessor over PUMA’s it is likely that when everything
is switched over to Clang this performance regression will be reverted. There is a lot of
optimization potential and only one tokenization step per phase is needed instead of two.
It may also be possible to cache preprocessor state between the phases to gain a speedup
in this area [22].

2SVN revision 258
3SVN revision 217

48

6.2

FEvaluation

PrePrintVisitor.cc
PreFilelncluder.cc
PreprocessorParser.cc
UnitManager.cc
CScanner.cc
CLexer.cc
CCLexer.cc
CCBuilder.cc
CCNameLookup.cc
CCSemExpr.cc
CCSemVisitor.cc
CCSemantic.cc
CCSyntax.cc
InstantiationParser.cc
InstantiationSyntax.cc
CBuilder.cc
CTree.cc
CSemExpr.cc
CSyntax.cc
CSemantic.cc
CSemVisitor.cc
CSemDeclSpecs.cc
CProject.cc
CPrintVisitor.cc
Syntax.cc

Parser.cc
CSemDatabase.cc
CFunctionInfo.cc
ACTree.cc
PreExprParser.cc
PreParser.cc

Generating headers

Figure 6.1: Weaver timings on PUMA with the original ac++, Clang phase 1 and Clang

phase 2

I I I T T T T T I

Clang phase 2

T [Clang phase 1

| PuMA phase 1

ZZ77777777777777777777272777272272227227272272272722722722727227]

]
Z7772777772772777772772777777]

2

Wall time [s]

Evaluation 6.2

Filename Wall Time P1P2 o P1P2 Wall Time C1P2 o C1P2 Wall Time C2P2 o C1C2

PrePrintVisitor.cc 4.83s 0.23 6.30s 0.03 5.87s 0.02
PreFilelncluder.cc 5.34s 0.08 6.52s 0.02 6.33s 0.06
PreprocessorParser.cc 5.40s 0.21 6.55s 0.03 6.42s 0.02
UnitManager.cc 4.88s 0.10 6.49s 0.04 6.26s 0.04
CScanner.cc 5.11s 0.12 6.27s 0.04 6.16s 0.01
CLexer.cc 5.02s 0.07 6.20s 0.02 6.41s 0.39
CClLexer.cc 4.96s 0.04 6.22s 0.01 6.22s 0.06
CCBuilder.cc 5.74s 0.03 6.59s 0.02 6.48s 0.02
CCNameLookup.cc 5.37s 0.10 6.49s 0.02 6.43s 0.05
CCSemExpr.cc 6.10s 0.09 7.14s 0.02 7.18s 0.41
CCSemVisitor.cc 5.40s 0.07 6.58s 0.02 6.44s 0.03
CCSemantic.cc 6.85s 0.01 7.66s 0.03 7.42s 0.04
CCSyntax.cc 6.16s 0.03 7.70s 0.85 6.76s 0.04
InstantiationParser.cc 6.15s 0.04 7.19s 0.29 6.86s 0.02
InstantiationSyntax.cc 5.95s 0.05 7.17s 0.56 6.66s 0.00
CBuilder.cc 5.82s 0.08 7.43s 1.31 6.64s 0.02
CTree.cc 5.74s 0.04 7.02s 0.34 6.76s 0.04
CSemExpr.cc 5.90s 0.04 7.15s 0.19 6.90s 0.04
CSyntax.cc 6.02s 0.06 7.22s 0.44 6.81s 0.03
CSemantic.cc 6.26s 0.03 7.51s 0.48 7.21s 0.01
CSemVisitor.cc 5.75s 0.16 7.15s 0.43 6.72s 0.02
CSemDeclSpecs.cc 5.62s 0.04 7.01s 0.41 6.70s 0.02
CProject.cc 5.63s 0.13 6.97s 0.31 6.76s 0.02
CPrintVisitor.cc 5.68s 0.05 7.18s 0.47 6.70s 0.00
Syntax.cc 5.72s 0.07 6.91s 0.31 6.83s 0.23

Parser.cc 5.72s 0.02 7.02s 0.34 6.73s 0.03
CSemDatabase.cc 5.86s 0.08 7.02s 0.24 6.88s 0.01
CFunctionInfo.cc 5.73s 0.04 7.06s 0.26 6.83s 0.03
ACTree.cc 5.24s 0.03 6.83s 0.19 6.67s 0.05
PreExprParser.cc 5.51s 0.02 7.41s 0.68 6.85s 0.02
PreParser.cc 5.94s 0.04 7.75s 1.05 6.99s 0.02
Generating headers 7.96s 0.23 8.58s 0.20 8.38s 0.07

Table 6.2: Weaver timings. PUMA phase 1&2 (P1P2), Clang phase 1 PuMA phase 2
(C1P2), Clang phase 1&2

20

6.2 FEvaluation

6.2.2 Phase 2

Even though phase 2 is not yet complete? it can weave all of PumA. Call advices
are missing from the output so the result is non-functional. Profiling shows that a
majority of the weaving time is spent preprocessing and parsing C++ code, so the actual
transformation time is negligible.

As the data in table 6.2 shows, ac++ with both phases converted to Clang takes about
1.17x as much time as the original AspectC++ weaver. This is a small improvement
over the 1.22x of the hybrid Clang phase 1 PUMA phase 2 version. The tokenization
steps are now as following.

1. The first tokenization to insert a preamble is still in place.
2. Now Clang tokenizes and preprocesses the code.
3. For phase 2 Clang tokenizes the code a second time.

4. For writing the transformed source code to disk PUMA’s Project is used. It uses
tokenized data so the code must be sent through the scanner one more time.

The first and the last step is unnecessary and could be removed as an optimization.
Clang also performs more thorough semantic analysis checking for errors and possible
mistakes than PUMA does. This could contribute to another minor slowdown. During
the weaving of PUMA many warnings are shown for dubious constructs in PUMA’s code
base.

Profiling shows that a lot of time is still spent in PUMA. There are some obvious
hotspots.

e Clang parsing for phase 2. This takes about 30% of the overall runtime.

e IncludeExpander, which runs the preprocessor again. This takes about 15% of
the overall runtime.

e Switching to PUMA, this reads all input files and turns them into tokens. This
takes about 15% of the overall runtime.

4SVN revision 340

ol

Evaluation 6.3

6.3 Discussion

The evaluation showed examples where AspectClang shines but also some if its dark
corners. Some questions were left open that are discussed in this section.

What was not tested?

Emitted code for aspects
The Clang-based AspectC++ weaver is not yet in a state where it can correctly
weave complex examples making use of different types of advice. Basic examples
using only execution advice work but not much else.

C++11 support
While it is not unlikely that many C++11 constructs will work out of the box
with a Clang-based weaver the interactions with advice code are complicated and
beyond the scope of this thesis.

How well does AspectClang support C++47

The test results were very promising. All of the reported PuMA bugs regarding C++
conformance are no longer observable with a Clang-based weaver. The new weaver also
works well with code bases that were supported by PUMA and significantly expands upon
its capabilities. New code bases like Qt 5 are supported without any further work needed
and even intricate code bases like boost can be supported with only minor tweaks to the
weaver.

This is a significant improvement over PUMA which aging code base has often problems
with newer code like Qt 5 or even Clang’s source code.

What impact has Clang on the time spent weaving AspectC++47

With the testing performed on the PUMA code base AspectClang was slower on average,
taking about 1.17x the time the old weaver did. There is still potential for optimization
though so it might be possible to remove this performance regression or even get an
improvement over PUMA. Clang’s parser has proved to be very fast but only accounts for
about 60% of the time spent in the weaver. The rest is still taken up by the remaining
Puma parts and the weaver itself, evaluating pointcuts and doing code transformation.

o2

7 Conclusions and Future Work

In this thesis the structure of the AspectC++ weaver was thoroughly analysed and a
design was proposed on how to move the existing PuMa-based weaver to the Clang
C++ front end. Many similarities between the two C++ parser implementations were
found but also significant differences that made extensive changes to the weaver itself
necessary. All design challenges could be overcome, bringing a complete picture of what
a Clang-based AspectC++ weaver could look like.

The proposed design was later implemented, which resulted in the AspectClang weaver.
The existing AspectC++ was adapted in an incremental fashion, so a mostly working
weaver was available at all times and PuMA- and Clang-based components could coexist in
the same binary. This allowed testing parts of the weaver before everything is completed.

Not everything in the weaver was ported to Clang in the scope of this thesis, but all
major components are working and went through significant testing.

e The aspect discovery phase is complete. It successfully parses all AspectC++ code
that was tried with it and detects aspects using Clang’s preprocessor. The output
with aspect code removed can be fed into a PuMA-based transformation phase and
passes all AspectC++ regression tests and can weave a working PUMA, which itself
is a heavy user of AspectC++.

e The model building component that translates syntax trees into a simplified model
to be consumed be the code transformations had to be significantly changed to fit
into Clang’s model of processing a syntax tree. Nevertheless it works flawlessly for
many inputs producing a model that is very close to the one emitted by the old
weaver.

e The slice introduction mechanism also had to undergo exhaustive reworking to
inject code into Clang’s parser while it is processing source code. This turned out
to be the most error-prone piece of AspectC++ and a cornucopia of subtle bugs.
This was tested by running it on the PUMA code base and, after many hours of
debugging, it seems to work correctly on this use case.

e The actual code transformations only include support for basic execution advice.
The more complex call advice are not implemented yet due to time constraints.
Since all the foundations have been laid out there should not be any major problems
finishing it though.

53

Conclusions and Future Work 7.1

e There are still some parts of PUMA used by the AspectClang weaver. Some are not
yet fully replaced such as the final include expansion step. Others require moving
existing code from the PUMA project into the AspectC+-+ source tree to remove
the dependency on the PUMA framework.

Even though the AspectClang weaver does not yet cover all of the features the
PuMmaA-based weaver had, many tests could be performed evaluating its performance
characteristics and conformance with C++ standards.

e C++ conformance is better across the board. All known PuMA bugs regarding
rejection of valid C++ code were tested and not a single one of them persists
with Clang. Code bases like SystemC that worked with PUMA still work with the
new parser and of other tested code bases like Qt or some subsets of boost work
without much additional tweaking needed. This is a significant improvement over
the existing weaver.

e Performance regressed slightly over the PUMA-based weaver. Profiling showed some
areas where low-hanging optimization opportunities remain; other inefficiencies
require in-depth modifications of the design.

e C++11 support was not yet evaluated in depth. Some of the tested code bases,
like Qt, make use of C++11 features and those seem to work fine. The weaver
itself was not extended to support new C++11 constructs.

In conclusion, AspectClang provides a large improvement over PUMA, both in the
amount of maintenance required and in C++ conformance. There are still rough edges
that have to be fixed before AspectClang can fully replace the existing weaver.

7.1 Future Work

After the implementation of AspectClang is finished, new opportunities that were opened
up by the Clang parser can be pursued. Clang provides a wealth of libraries that
AspectC++ can take advantage of. This includes things like the GCC-compatible Clang
driver which can be used to simplify AspectC+-+’s ag++ driver and a rich diagnostic
system which the weaver could make use of to improve its error reporting.

Novel ways to handle on the fly injection of code could be explored, including handing
aspects more like templates to remove the fragility of manipulating parser state when
it does not expect it. With Clang it would also be possible to have the results directly
turned into machine code using the LLVM code generator, speeding up the process. This
has to remain an option though, as woven AspectC++ should stay compatible with other
compilers for various embedded platforms and Microsoft Windows.

Then there is the new C++11 standard, which, according to C+-+ creator Bjarne
Stroustrup, feels “like a whole new language” [23]. Tts impact on AspectC++ is yet to be
determined. Clang provides the parser foundations that can now be used in the weaver.

o4

Bibliography

[1]

Clang - Features and Goals. http://clang.llvm.org/features.html, Last
checked: August 19, 2013

SPINCZYK, Olaf ; GAL, Andreas ; SCHRODER-PREIKSCHAT, Wolfgang: AspectC++:
An Aspect-Oriented Extension to C++. In: In Proceedings of the 40th International
Conference on Technology of Object-Oriented Languages and Systems (TOOLS
Pacific 2002, 2002, p. 53-60

KiczALESs, Gregor ; HILSDALE, Erik ; HUGUNIN, Jim ; KERSTEN, Mik ; PALM,
Jeffrey ; GRISWOLD, William G.: An Overview of AspectJ, Springer-Verlag, 2001,
p. 327-353

SPINCZYK, Olaf ; LOHMANN, Daniel ; URBAN, Matthias: Advances in AOP with
AspectC++. In: Proceedings of the 2005 conference on New Trends in Software
Methodologies, Tools and Techniques: Proceedings of the fourth SoMeT W05, Ams-
terdam, The Netherlands : 1OS Press, 2005. — ISBN 1-58603—-556—8, 33-53

URBAN, Matthias ; SPINCZYK, Olaf: AspectC++ Language Reference, April 2011 .
http://www.aspectc.org/fileadmin/documentation/ac-languageref.pdf

URBAN, Matthias ; LOHMANN, Daniel ; SPINCZYK, Olaf: The aspect-oriented design
of the PUMA C/C++ parser framework. In: Proceedings of the 9th International
Conference on Aspect-Oriented Software Development. New York, NY, USA : ACM,
2010 (AOSD ’10). — ISBN 978-1-60558-958-9, 217-221

URBAN, Matthias ; LOHMANN, Daniel ; SPINCZYK, Olaf: Puma: An Aspect-
Oriented Code Analysis and Manipulation Framework for C and C++. Version: 2011.
http://dx.doi.org/10.1007/978-3-642-22031-9 5. In: KATZ, Shmuel (Hrsg.)
; MEzINI, Mira (Hrsg.) ; SCHWANNINGER, Christine (Hrsg.) ; JOOSEN, Wouter
(Hrsg.): Transactions on Aspect-Oriented Software Development VIII Bd. 6580.
Springer Berlin Heidelberg, 2011. — ISBN 978-3-642-22030-2, 141-162

PUMA TODO. https://svn.aspectc.org/repos/Puma/trunk/T0ODO, Last
checked: August 27, 2013

ISO: Information technology — Programming languages — C++ / International
Organization for Standardization. Version:2011. http://www.iso.org/iso/
home/store/catalogue_ics/catalogue_detail ics.htm?csnumber=50372. 2011

(ISO/IEC 14882:2011)

%)

http://clang.llvm.org/features.html
http://www.aspectc.org/fileadmin/documentation/ac-languageref.pdf
http://dx.doi.org/10.1007/978-3-642-22031-9_5
https://svn.aspectc.org/repos/Puma/trunk/TODO
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=50372
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=50372

Bibliography 7.1

[10] SmiTH, Richard: Turing machine implementation in constexpr. http://1llvm.
org/svn/llvm-project/cfe/trunk/test/SemaCXX/constexpr-turing. cpp, Last
checked: August 27, 2013

[11] GREGOR, Doug ; LATTNER, Chris ; KREMENEK, Ted: State of Clang, Presented at
the third general meeting of LLVM Developers and Users, 2009

[12] CUDA LLVM Compiler. https://developer.nvidia.com/cuda-1lvm-compiler,
Last checked: August 27, 2013

[13] Clang++ Builds Boost! - LLVM Project Blog. http://blog.11lvm.org/2010/05/
clang-builds-boost.html, Last checked: August 22, 2013

[14] freebsd-current: Clang now the default on x86. http://lists.freebsd.org/
pipermail/freebsd-current/2012-November/037610.html, Last checked: Au-
gust 27, 2013

[15] LLVM Users. http://11lvm.org/Users.html, Last checked: August 27, 2013

[16] C++98, C++11, and C++14 Support in Clang. http://clang.llvm.org/cxx_
status.html, Last checked: August 19, 2013

[17] Clang vs GCC (GNU Compiler Collection). http://clang.1llvm.org/comparison.
html#gcc, Last checked: August 27, 2013

[18] How To Release LLVM To The Public. http://11vm.org/docs/HowToReleaseLLVM.
html, Last checked: August 20, 2013

[19] ENGEL, Michael ; SPINCZYK, Olaf: Aspects in hardware: what do they look like?
In: Proceedings of the 2008 AOSD workshop on Aspects, components, and patterns
for infrastructure software. New York, NY, USA : ACM, 2008 (ACP4IS "08). — ISBN
978-1-60558-142-2, 5:1-5:6

[20] GCC Bugzilla — Bug 33558 'mutable’ incorrectly accepted on reference members.
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33558, Last checked: August
21, 2013

[21] C++11 in Qt5. http://woboq.com/blog/cppll-in-qt5.html, Last checked: Au-
gust 23, 2013

[22] Pretokenized Headers (PTH). http://clang.1lvm.org/docs/PTHInternals.html,
Last checked: August 20, 2013

[23] STrOUSTRUP, Bjarne: The C++ Programming Language, 4th Edition. 4th. Addison-
Wesley Professional, 2013. — ISBN 978-0321563842

[24] 'clang" CFE Internals Manual. http://clang.1llvm.org/docs/InternalsManual.
html, Last checked: August 20, 2013

o6

http://llvm.org/svn/llvm-project/cfe/trunk/test/SemaCXX/constexpr-turing.cpp
http://llvm.org/svn/llvm-project/cfe/trunk/test/SemaCXX/constexpr-turing.cpp
https://developer.nvidia.com/cuda-llvm-compiler
http://blog.llvm.org/2010/05/clang-builds-boost.html
http://blog.llvm.org/2010/05/clang-builds-boost.html
http://lists.freebsd.org/pipermail/freebsd-current/2012-November/037610.html
http://lists.freebsd.org/pipermail/freebsd-current/2012-November/037610.html
http://llvm.org/Users.html
http://clang.llvm.org/cxx_status.html
http://clang.llvm.org/cxx_status.html
http://clang.llvm.org/comparison.html#gcc
http://clang.llvm.org/comparison.html#gcc
http://llvm.org/docs/HowToReleaseLLVM.html
http://llvm.org/docs/HowToReleaseLLVM.html
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33558
http://woboq.com/blog/cpp11-in-qt5.html
http://clang.llvm.org/docs/PTHInternals.html
http://clang.llvm.org/docs/InternalsManual.html
http://clang.llvm.org/docs/InternalsManual.html

List of Figures

2.1
2.2

3.1
3.2
3.3

3.4

4.1
4.2
4.3
4.4

5.1

6.1

Overview of PUMA’s features. [6] 6
Overview of Clang’s libraries. 7
High-level overview of the AspectC++ weaver. 11
Dependencies from ac+4 to PUMA components 13
Class diagram for syntactic and semantic objects describing a class defini-

tion in PUMA 19
Class diagram for objects describing a class definition in Clang 19
Clang phase 1 in a PUMA world. 25
Flow of tokens in a PUMA-based phase 1. 27
Interaction between model and introducer. 29
Tree of IntroductionUnits. Insertion starts at the leaf nodes of the tree. . 33

Modified classes in AspectC++. New classes are printed with dark back-
ground. Obsolete classes are printed in . Related classes are
grouped together and inner classes call classes at the edges of the diagram. 35

Weaver timings on PUMA with the original ac++, Clang phase 1 and Clang
phase 2. L 49

List of Tables

2.1
5.1

6.1
6.2

Examples of functions available in advice code 5
Implementation status of various AspectC++ components 41

Status of AspectC++ bugs with PuMA and Clang as of August 15, 2013 45
Weaver timings. PUMA phase 1&2 (P1P2), Clang phase 1 PUMA phase 2
(C1P2), Clang phase 1&2 50

57

Listings

2.1

2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1

Name pointcut that matches all member functions of the class C that

return anint L L L 3
Expression pointcut that matches all subclasses of Queue 4
Execution advice to print a string every time the function login is entered. 4
Call advice to print a newline before all calls to printf 4
Slice that adds a new integer member to all nested classes named Nested 5
Base class introduction which adds NewBase as a base class to all nested

classes named Nested 5
Example C++ code with multiple calls in one position 16
Example code for nested insertion 17
First iteration of insertions 17
Second iteration of insertions 18
Introduction of first base classes 30
Introduction of second base class 30
Introduction of inline member 31
Introduction of non-inline member 31
Statistics for AspectC++ and Clang changes 36

99

	Introduction
	Motivation and Goals
	Thesis Structure

	Background
	The AspectC++ Language
	Puma
	Clang
	Other C++ Parsers
	Summary

	Analysis
	Structure of the Weaver
	Use of Puma Components in the Weaver
	Project
	Preprocessor
	Units and Tokens
	Parser
	AST
	Code Manipulation
	Summary

	Design
	Code Manipulation
	Changes to Phase 1
	Changes to Phase 2
	Summary

	Implementation
	Build System
	Phase 1
	Phase 2
	Summary

	Evaluation
	C++ Conformance
	Compatibility with Other Code Bases: SystemC
	Compatibility with Other Code Bases: Qt
	Compatibility with Other Code Bases: L-Y-X

	Performance
	Phase 1
	Phase 2

	Discussion

	Conclusions and Future Work
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Listings

