
Bachelorarbeit

Improving the real-time
properties of interrupt

handlers by cache
preloading

Phillip Alexander Goldap
25th September 2015

Betreuer:
Prof. Dr.-Ing. Olaf Spinczyk
M.Sc. Hendrik Borghorst

Technische Universität Dortmund
Fakultät für Informatik
Lehrstuhl Informatik 12
Arbeitsgruppe Eingebettete Systemsoftware
http://ess.cs.tu-dortmund.de

http://ess.cs.tu-dortmund.de

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst, keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich
gemacht habe.

Dortmund, den 25. September 2015

Phillip Alexander Goldap

Abstract

Today the industry offers a variety of modern common out of the shelve multi-core sys-
tems which provide high computational power for a low cost. However, the industry
aims to improve the average case execution time by introducing architectural complex
designs like branch prediction or shared caches. Therefore their timing behaviour is
hard to predict. In a real time system the average case is not of interest, only the worst
case execution time is of importance. Research tries to identify the different sources of
unpredictability and searches for solutions to make them more predictable.

This work evaluates a proposed way to counter the unpredictability by using an op-
erating system based cache management to preload and lock data in the level 2 cache.
The proposed cache aware operating system has been implemented as a prototype and
the impact on the execution time is examined and compared.

Contents
1 Introduction 1

2 Previous Work 3
2.1 Real-time Properties . 3
2.2 Sources of Unpredictability . 3
2.3 Impact of Shared Resources . 4
2.4 Proposed Techniques . 6

3 Operating System 7
3.1 Hardware Platform . 7
3.2 OSC Segmentation . 8
3.3 OS Cache Management . 9
3.4 Interrupt Handler . 10

4 Evaluation 13
4.1 Benchmarks . 13

4.1.1 Assumptions . 14
4.2 Software Generated Interrupt . 14

4.2.1 Setup . 15
4.2.2 Results . 15

4.3 Overhead of the Cache-Aware Operating System 19
4.3.1 Setup . 19
4.3.2 Results . 19

4.4 OSC Eviction . 21
4.4.1 Setup . 21
4.4.2 Results . 21

4.5 UART Hardware Interrupt . 23
4.5.1 Setup . 23
4.5.2 Results . 23

4.6 Digital Protective Relay . 28
4.6.1 Setup . 28
4.6.2 Results . 28

5 Summary and Conclusion 33

6 Ongoing Work 35

Literature 35

i

Contents

List of Figures 39

ii

1 Introduction
In our modern world we rely more and more on computer systems which have to comply
with real-time constraints and must show a predictable behaviour. This may be a
computer which will trigger air-bags in case of an accident or fly-by-wire systems, where
the computer must calculate, respond and react to external influences in real-time.
Modern commercial off-the-shelf (COTS) multi-core hardware often does have low cost
computational power, but lacks in predictability to ensure the real-time behaviour due
to e.g. concurrent access to shared hardware resources. Thus, special and expensive
hardware is often necessary.
The aim of this thesis is to improve the predictability of interrupt service routines

on COTS hardware by implementing a software mechanism which reduces the parallel
access on shared hardware resources.
The proposed idea is to transfer the control of the level 2 cache to the operating

system and preload parts before use to avoid the slower and unpredictable shared bus
level 3 DRAM memory access. To achieve this, the operating system is divided in small
preloadable operating system components (OSCs) which will be preloaded and locked
in the cache as long as they may be used.

This thesis consists of 4 sections and is structured in the following way: Section 2
explains real-time properties, gives an overview about the sources of unpredictability in
modern multi-core systems and introduces previous work on cache preloading to coun-
teract the unpredictability. In section 3 a proposed operating system model, which uses
the cache preloading functionality, will be introduced and the hardware platform of an
prototype implementation described briefly. This section is followed by an evaluation of
a prototype implementation of the operating system model. Additionally the impact of
the preloading functionality will be compared. In the end will be a short summary, a
conclusion and an outline of possible future work.

1

2 Previous Work

2.1 Real-time Properties
The correctness of a computation in a real-time system depends not only on the correct
result, but also on the time when the results are produced [1]. In a soft real-time system
it is acceptable that a deadline occasionally can be exceeded. On the other hand, if
the requirements of the system cannot tolerate any passing of a deadline, because this
could lead to a catastrophe, it is a hard real-time system. This could for example be an
emergency system of a nuclear power plant.
The key problem of a (hard) real-time system is now to define a maximum execution

time in which the computation must be completed. Due to various sources of unpredict-
ability, which will be explained in detail in the next section, the execution time cannot
be determined and fluctuates. This fluctuating deviation is called jitter and must be
reduced to a minimum. The average execution speed, on the other hand, does not mat-
ter. It is rather important to give the real-time system engineer the ability to calculate
the worst-case execution time (WCET). A distinction is made between a complex and
precise WCET analysis and an estimation.

2.2 Sources of Unpredictability
Todays COTS hardware is optimized for a good average case, whereas in real-time
systems only the WCET matters. A previous work by Dakashina et al. [2] collected
sources of unpredictability in multi-core systems. This work concentrates to tackle the
following sources:
The first bottleneck is the shared front-side bus. Every memory access request which

results in a level 2 cache miss must go over the bus. It is impossible to know when
the bus is free or, when concurrent requests occur, which one will be prioritized by the
memory controller.
Another important source of unpredictability are shared caches between CPU cores

as simultaneously running tasks may mutual evict data from the other cache. This data
must then be fetched from the front-side bus, which is also shared on COTS.
The DRAM architecture is also highly unpredictable, particularly because the data

path is bi-directional and it takes several CPU cycles to switch from read to write mode.
A refresh of the DRAM memory must occur in defined cycles, which will delay a read
or write request. And although different DRAM banks can be accessed parallel, a row
inside a bank must be opened before access.

3

Previous Work 2.4

2.3 Impact of Shared Resources

The impact of shared resources on different modern COTS multi-core architectures has
been analysed by Radojković et al. [3]. For that purpose they designed benchmarks
which stressed a single shared resource like the front end of the pipeline, the level 1 data
cache, the level 1 instruction cache, the level 2 cache or the main memory. To evaluate
the slowdown three benchmarks have been executed together with the resource stressing
benchmarks on different Intel processors, like the Atom Z530, the Pentium D and as
well on the Core2Quad. The first of the three benchmarks is the Space Time Adaptive
Processing Radar, which detects moving objects with the data of an echo, the second
is the CoreMark, a benchmark to measure the CPU performance, and at last, is the
encoding with the H.264 compression standard.
The results show a notable impact when the level 2 cache and memory stressing

benchmarks have been executed, with a slowdown of up to 15.3 times for the Atom and
14.4 times for the Core2Quad. On the Pendium D , however, the slowdown was only 10%
for the level 2 stressing and 30% when the main memory has been accessed intensively.
The impact of the level 1 cache is only notably on the Atom, which, however, is only
capable of simultaneous multithreading, a form of hardware multithreading, where also
the level 1 cache is shared. This work focuses on multi-core systems with a dedicated
level 1 cache for each core.
The impact of a stressed memory bus on the Pandaboard ES, the hardware is described

in section 3.1, has been analysed by Borghorst et al. [4] and can be seen in figure 2.1.
It shows the access time without advanced preloading to a data array in CPU cycles.
Four tasks accessed 12,000 words randomly. The bottom line shows level 1 cache hits
with a stable access time of 7 cycles. All words that have been in the level 2 cache
can be found in the second line, also with stable access times between 33 and 37 cycles.
However, all other words are located in the level 3 DRAM and have therefore an access
time of more than 100 CPU cycles. Most are around 140, but some are even higher
than 250 cycles and thus make the data access unpredictable for systems with real time
constraints. 566834 CPU cycles have been necessary in total to access the 12,000 words.
On the other hand, if the data is preloaded in the level 2 cache as we can see in figure

2.2, we get better access times. Because all data is preloaded, there is always a cache
hit and no level 3 DRAM access. The level 1 cache access time is now between 7 and
10 CPU cycles instead of just 7, which is still a good result. The level 2 access time
is still between 33 and 37 cycles. In total there were 262,361 cycles needed instead of
566,834 cycles without preloading, which is more than half the time. So the preloading
guaranteed that every memory access is a level 2 cache hit, no more than 37 CPU cycles
were necessary for one access.
A crucial assumption for an efficient cache preloading is a stable preload time per

byte. It has also been shown that the preload time in CPU cycles per byte is stable with
8 CPU cycles. The results can be seen in figure 2.3 for a bulk transfer from a preload
size of 1024 bytes on if only one CPU is preloading at a time .

4

2.4 Previous Work

0 2000 4000 6000 8000 10000 12000

0

50

100

150

200

250

access number

A
cc
es
s
ti
m
e
in

cy
cl
es

Figure 2.1: The figure shows the random access of 10,000 values. The access number is
depicted on the x-axis and the y-axis shows the time for an access in CPU
cycles. Source: [4]

0 2000 4000 6000 8000 10000 12000

0

50

100

150

200

250

access number

A
cc
es
s
ti
m
e
in

cy
cl
es

Figure 2.2: The figure shows the random access of 10,000 values which have been pre-
loaded and locked in the level 2 cache. The access number is shown on the
x-axis and the time for an access in CPU cycles on the y-axis. Source: [4]

0

5

10

15

20

25

p
re

fe
tc

h
 t

im
e
/b

y
te

 (
cy

cl
e
s)

prefetch size in bytes

Figure 2.3: The x-axis is the preload size in bytes and the y-axis represents the preload
time per byte in CPU cycles. Source: [4]

5

Previous Work 2.4

2.4 Proposed Techniques
Different solutions have been proposed in the literature to counteract the unpredictab-
ility caused by the memory in multi-core systems with the level 2 cache. According
to Mancuso et al. cache partitioning, page colouring and cache lockdown are three
categories for solutions today [5].
Cache partitioning uses features of the cache controller to prevent mutual eviction

and give tasks or cores an exclusive access to parts of the cache. It is also possible to
implement the method in software, but it is very complex. Plazar et al. [6] presented a
technique to partition the instruction cache in software and a method to determine the
optimal partition size for each task.
Page colouring influences the mapping of virtual memory to physical. Because caches

use physical instead of virtual addresses today, it tries to ensure that virtually contigu-
ous pages are also adjacent in the physical address space. Otherwise the page could
cause an eviction of a whole cache way with already relevant data inside. Proposed solu-
tions improved the average case performance, but cannot guarantee worst-case execution
times.
Cache lockdown, on the other hand, uses features of the cache controller to lock a

cache way or cache line and except them from the replacement policy. So it is possible
to statically preload lock important data at system startup in the cache or dynamically
preload necessary parts before use, e.g. the scheduler always preloads and locks the next
task in the cache. The next section introduces an operating system model which uses
the dynamic and static cache lockdown technique.

6

3 Operating System
The ARM prototype implementation of the cache-aware operating system model presen-
ted by Borghorst et al. [4] has been extended with the proposed cache management
functionality at operating system level, which allows to dynamically preload necessary
parts in the cache. The operating system takes therefore control over the level 2 cache
replacement policy at way level.
Today a common level 2 cache consists of lines which are grouped in ways of the

same size, where the count of the ways is called associativity. So each memory address
can only be cached in one of the ways and there only in one of the lines. In other
words, the memory is divided in parts with the size of a way and all of the parts can
be mapped in the cache. The cache controller decides for every cache miss with a
replacement strategy, which way will be mapped to the newly accessed memory part.
For the operating system it is possible to lock and unlock cache ways and except them
from the replacement strategy and controls in the end which data gets evicted or cached.
So when every but one way is locked and data from the main memory is accessed, it
will be preloaded in the specific unlocked way. The way will be locked right after the
preloading process and the data cannot be evicted anymore.
The operating system will be separated in operating system components (OSCs), a

highly modular and fine granular component. To achieve the separation, the data of
each OSC which has to be preloaded, must be isolated and each OSC will have its own
code, data and stack segment. However, a separate stack for each component requires
major changes of the prototype operating system and is not implemented here. Right
now the system has one system-wide stack for each core which will be locked in the cache
permanently. Additionally, important parts of the operating system, like the interrupt
handling and interrupt handlers, will be grouped in OSCs and a way will be implemented
to dynamically preload the interrupt handlers in the level 2 cache right before use.

3.1 Hardware Platform
A Pandaboard ES, based on an OMAP4460-SoC from Texas Instruments, with two
Cortex-A9 cores and 1GB DDR2 RAM, has been used as a test platform for the proto-
type operating system. Additionally to the 32KB data and 32KB instruction cache it
features a L2C-310 level 2 cache controller with 1MB in total. The cache is divided in 16
ways with 64KB each and supports different methods to influence the cache replacement
policy, specificly locking by line and way. It is also possible to lock a way or line for a
specific CPU core, so the specific locked core cannot cause any eviction.
The L2C-310 cache controller features two replacement strategies. The default one is

7

Operating System 3.2

round-robin, but it is possible to use a pseudo-random replacement linear feedback shift
register (LFSR) algorithm instead [7]. LFSR consists of a chain of bits, which represent
the pseudo random output, and the bits will be shifted from the left to the right or the
other way round. The new input bit is calculated every shift from the last state of the
bits. Because the alternation of the bits is finite, the cycle will repeat itself. For the
evaluation the default round-robin strategy has been used, which will choose the next
unlocked way when there is no more invalid available. The pseudo-random LFSR al-
gorithm, on the other hand, chooses, if no invalid way can be used, a pseudo random way
instead. However, it has been shown that caches with a pseudo-randomized replacement
have a worse hit rate probability [8].

3.2 OSC Segmentation
The operating system is designed for embedded systems, so the complete behaviour,
like all running tasks, is well known at compilation time and no dynamic changes occur
later on and thus the linker can be used to group and separate the data and instruction
segments of an OSC. For that purpose the operating system has custom data structures
named preload_information, which contain all information about the data and code
segments of the OSCs that should be preloaded as it is shown in figure 3.1.

preload_information

Instructions

Data

Stack

preload_information

Instructions

Data

Stack

OSC

...
0x80810000
...
0x80812390
...
0x80820000
...
0x80821218
...
0xBE000000
...
0xBE01000
...

preload_information

Instructions

Data

Stack

preload_information

Instructions

Data

Stack

System Memory

Figure 3.1: An example of an OSC with references to two prelaod_information data
structures, which hold information about the place where the data and in-
structions of the OSC are located in the memory. As this work does not
provide that each OSC has its own stack, it is marked red.

Every preload_information structure represents one cache way, so the addresses must
be way aligned and have a maximum size of one way. If an OSC does not fit in one
cache way, the component must be structured in the linker script to use as many pre-
load_information structures as necessary. The instruction section is way aligned and
the data sections is directly after the instruction section. Both sections must not exceed

8

3.3 Operating System

the size of a way in total. To get the addresses and size of those sections, we define
symbols in the linker script which are also defined as external variables in the source.
Figure 3.2 contains a possible definition of an OSC in the linker script.

1 . t ex t . preloadTemporary0 :
2 {
3 . = ALIGN(0 x10000) ;
4 temporary0CacheInst ruct ionsStart = . ;
5 OSCCacheInstruct ionsStart = . ;
6 . / bu i ld / ob j e c t_ f i l e 0 . o (∗ t ex t ∗)
7 . / bu i ld / ob j e c t_ f i l e 1 . o (∗ t ex t ∗)
8 OSCCacheInstructionsEnd = . ;
9 }
10 . data . preloadTemporary0 :
11 {
12 OSCCacheDataStart = . ;
13 . / bu i ld / ob j e c t_ f i l e 0 . o
14 . / bu i ld / ob j e c t_ f i l e 1 . o
15 OSCCacheDataEnd = . ;
16 ASSERT(. − temporary0CacheInst ruct ionsStart <= 0x10000 ,

" Pre loading0 ␣ s e c t i o n ␣>64k ") ;
17 }

Figure 3.2: Example excerpt from the linker script which defines and groups a cache way
aligned OSC. The script contains two sections, the first one is for instructions
and the second one for data, and they must not exceed the size of a cache way,
here 0x10000 bytes or 64KB. All symbols are declared as external variables
in the source code to determine the start and end address of the sections.
All object files which have dependencies with the OSC must be included.

3.3 OS Cache Management
As every preload_information represents data and instructions that fit exactly in one
way, the cache management provides a method to check whether the corresponding
data and instructions pointed to by the preload_information are already preloaded and
locked in the cache. If not, the best suitable way will be chosen by a cache replacement
algorithm and the preloading process starts. LRU has been chosen as the replacement
algorithm, because it provides good results and is fast and easy to implement. It is also
possible to preload and lock critical OSCs permanently in the cache, so they are exempt
from the replacement policy.
LRU has been implemented as a linked list with the least recently used way as the

tail and the recently used as the head. A stable execution time is guaranteed because
the linked list is manipulated without dynamic loops. The only pitfall is a spinlock to
prevent mutual access to the linked list. The preloading process occurs per definition
only on one core at the same time, but a way must been marked as used for every

9

Operating System 3.4

interrupt. So without the spinlock it would be possible that two interrupts occur at the
same time on two cores and corrupt the linked list by trying to move the used item to
the head.
Critical parts are indispensable OSCs, which are always involved in the interrupt

handling and a negative performance would impact the real-time behaviour of the in-
terrupt handling. In the current prototype the interrupt handling system and the cache
management itself, which will be descriped in the next section, have been grouped in
two OSCs and will be preloaded and locked permanently in the cache at boot time. Ad-
ditionally two OSC have been created which only reference the stacks of the two cores
and will also be preloaded at boot time. The size of each stack is equally to one cache
way, here 64KB.
It has been shown and can be seen in figure 2.3, that the preload time is stable as

long as only one core is accessing the main memory. Thus it must be guaranteed that
only one preload process takes place at the same time. Right know the software does
not prohibit two simultaneous preload processes. However, the interrupts are configured
to only target one core. It is possible to lock the preloading function, so only one
preload process can start and the others have to wait, and the WCET will be adjusted
accordingly. But this is a waste of CPU time.
The ARMv7 architecture supports memory hint instructions, which tell the CPU that

a specific part of the memory will be used. As the instructions are only a hint to the
memory system they may be ignored and treated like a NOP, but the previous work
had shown that this is not the case on the Pandaboard ES and the data will actually be
preloaded in the cache. For an instruction prefetch, the operating system uses the PLI
instruction and for a data prefetch the PLDW instruction.

3.4 Interrupt Handler
Like the cache management functionality, the OSC, which holds the general first stage
interrupt handling part of the operating system, is an essential and critical part, hence
it must reside in the cache permanently and will be preloaded at boot time. The second
level interrupt handler is an OSC of the operating system model called gate and may
have of one or more preload_information structures.
Figure 3.3 gives an overview of the first stage interrupt handler. Whenever an interrupt

occurs, the small assembler subroutine guardian asm handler will be invoked, which calls
a handler written in c. This handler calls the plugbox, which is basically an interrupt
vector table, to get the approprieate gate OSC to handle the interrupt. Before the
plugbox returns the gate OSC, the preloading controller will be invoked to preloade and
lock the OSC in the cache.

10

3.4 Operating System

Guardian
asm handler

Guardian
c handler

Interrupt

Timer

UART

Button

...

Gate OSCs / Interrupt Handler

Plugbox

Task Task

Preloading
Controller

way0 way1 wayn

Int-Handler
Cache-Manager

way2

. . .Stack Core 0 UARTStack Core 1

Level 2 Cache

Gate OSC

Figure 3.3: The figure gives an overview of the interrupt handling in the operating sys-
tem. The level 2 cache is managed by the preloading controller, where the
ways with the red stripes are locked permanently at boot time and the con-
tent of the other way is only locked temporarily and may be replaced.

11

4 Evaluation
As the previous work suggests a significant improvement of the real-time properties,
the presented cache-aware prototype operating system has been used to perform various
benchmarks on the Pandaboard ES. This section describes the benchmarks which have
been executed, postulates assumptions and evaluates the results.

4.1 Benchmarks
To analyse the impact of the cache management functionality of the operating system,
three interrupt handlers have been evaluated:

1. A pseudo software generated interrupt handler

2. An UART interrupt handler

3. A digital protective relay algorithm in combination with the UART interrupt hand-
ler

Each benchmark has been executed under three different scenarios, where no preload
functionality stands for a hardware based cache management and preload functionality
for the proposed operating system based cache management:

1. Operating system with no preload functionality and no interferences to get an
impression of the fastest possible execution time.

2. Operating system with no preload functionality, where the hardware controls the
cache replacement strategy, and interferences to outline the impact of unpredict-
able behaviour of multi-core systems.

3. Cache-aware operating system with preload functionality and interferences to show
improvements of the real-time properties.

The cache controller has been configured to use round-robin as the replacement strategy
as it has been described in section 3.1.
To analyse the impact of the interference that occur on shared resources in multi-core

systems as described in section 2.2, it is necessary to simulate system load. This can be
achieved by either stressing several resources at once or put a maximum of load on a
single one as it has been presented by Radojkovic et al. [3]. However, the main focus
of this work is to counteract the impact of shared resources with the level 2 cache, so it
does make sense to focus on the caches and the DRAM. The benchmarks did also not

13

Evaluation 4.2

access the memory all the time, so it is not desired that the interference task stresses
another resource at that time. Therefore a task copied 2MB of data in a loop from one
address to another and the data size is large enough to cause an eviction of the level 1 as
well as the level 2 cache and main memory access. The task which triggered the software
interrupt, on the other hand, ran together with the interference task on one core. Due
to the non pre-emptive scheduler, it has also been guaranteed that the interference task
will complete the copy of the 2MB and cause an eviction if the cache is unlocked.

4.1.1 Assumptions
It is to assume that the results will fulfil the following expectations:

1. The jitter of the execution time should be lower in the cache-aware system than
the one with hardware cache management due to the stable access time of the
level 1 or level 2 cache as it has been evaluated in section 2.3. This results in a
better predictability of the interrupt handlers, because it is possible to narrow the
execution time.

2. The average execution time of the interrupt handler should be significantly better
than the one where the cache management is under hardware control, because it is
not necessary to access the slower and shared main memory with all unpredictable
side effects [2.2]. For interrupt handlers which just have few data accesses and
do calculations most of the time, the improvement may be smaller. Due to the
overhead of the cache-aware operating system, the dynamic cache management
may also increase the average execution time of OSCs with few memory accesses
if it is not locked permanently in the cache.

3. It is to be expected that the average execution time increases if the OSC spans
across multiple ways and is not locked permanently. On the one hand, the cache-
aware operating system works on a way basis, so additional ways increase the
overhead. On the other hand, if the hardware controls the cache replacement
strategy, it is more likely that one cache way will be evicted and the impact is
more extreme.

4. If the hardware takes control and no interferences occur, the behaviour will be
similar to a uniprocessor system and have less unpredictable influence. So it is
assumed that this constellation will provide the best results and therefore defines
an optimal boundary.

4.2 Software Generated Interrupt
A good way to outline the impact of a cached interrupt handler is the use of a pseudo
software interrupt. Therefore a task runs on one core alternating with the interference
task, generates software interrupts and measures the CPU cycle count directly before

14

4.2 Evaluation

and after the interrupt will be triggered. The OSC of the interrupt handler is preloaded
once in the cache when the first interrupt occurs and will not be evicted, because in this
scenario, there are more available ways than OSCs which could cause a mutual eviction.
The interrupt handler accesses the memory 1,000 times in random way confined to later
specified data ranges. A linear access would cause the automated preloader of the cache
controller to preload a cache line, which has here a size of 256 bits and results in a cache
hit in 7 of 8 accesses.

4.2.1 Setup
To compare the performance of the pseudo software interrupt handler in the cache-
aware operating system with the non cache-aware system, three different set-ups have
been chosen. Each of them has been run three times with the configurations described
above in section 4.1, so there are nine benchmarks in total and each of them triggered
the interrupt handler 10.001 times. That is, because the OSC is not preloaded in the
cache on the cache-aware operating system and has been preloaded when the interrupt
has been triggered the first time. But as the preload functionality would increase the
execution time dramatically, the first run has not been considered. Whether the jitter
of the execution time is still lower when the OSC must be preloaded every time, will
be evaluated later. All in all there are 10.000 measurements and the interrupt handler’s
OSCs have been configured in the following way:

• Uses one cache way, 63KB data

• Spans across two cache ways, 127KB data

• Spans across three cache ways, 191KB data

So the interrupt handler’s OSC fits in exactly one, two or three cache ways. The way
size is on the Pandaboard ES 64KB, the OSC’s instruction size is 1KB and is in the
first part of the way, so 63KB are left for the data field.

4.2.2 Results
The results are promising and the standard deviation, see table 4.1b, and the average,
see table 4.1a, of the execution times for each benchmark have been calculated for
comparison. Additionally the plots in figure 4.1 and the histograms in figure 4.2 give
a good graphical representation of the results and the assumptions from earlier can be
confirmed:

1. Lower jitter:
Table 4.1b supports the first assumption. The standard deviation of the benchmark
with interferences and preloading is with 249, 215 and 212 for the data field size of
63KB, 121KB and 191KB significantly lower than without preloading. Without
preloading the standard deviation varies between 1,466, 1,721 and 1,799, which
increases with the size of the data field.

15

Evaluation 4.2

Benchmark 1 way 2 ways 3 ways
no interference, no preloading 32,769 33,368 33,568
interference, no preloading 63,741 79,554 86,877
interference, preloading 36,721 37,225 37,450

(a) Average

Benchmark 1 way 2 ways 3 ways
no interference, no preloading 127 139 171
interference, no preloading 1,466 1,721 1,799
interference, preloading 249 215 212

(b) Standard deviation

Table 4.1: The average and standard deviation of the benchmarks with the software
generated interrupt. The OSC with the interrupt handler has 1KB instrucions
and either 63KB data, 127KB data or 191KB data, so it fits in either one,
two or thee cache-ways.

2. Better average execution time:
The execution time is significantly better if the interrupt handler has been pre-
loaded. Table 4.1a shows that the average for the not cache-aware system is 63,741
CPU cycles for the OSC which uses one way, 79,554 for two ways and 86,877 for
three ways. In contrary the execution time of the cache-aware operating system
is stable with an average of 36,721, 37,225 and 37,450. The plots in figure 4.1
illustrate the improvements.

3. OSCs which span across multiple ways:
Table 4.1a shows that the average case of the preloaded scenario is more than
half the time if the OCS spans over two or three cache ways compared to the not
preloaded one. Even if the data field is only 63KB in size, the execution is 74%
slower if the OSC is not locked in the cache. The cost to check if an OSC is in the
cache increases with each cache way the component spans across, which explains
the higher execution time of the cache-aware.

4. Optimal results:
The best results have been measured when no interferences occurred, so it defines
a good upper boundary.

16

4.2 Evaluation

0 2, 000 4, 000 6, 000 8, 000 10, 000
0

20, 000

40, 000

60, 000

80, 000

100, 000

interrupt call

ti
m
e
in

cp
u
cy
cl
es

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

1

(a) 1 cache way and 63KB data

0 2, 000 4, 000 6, 000 8, 000 10, 000
0

20, 000

40, 000

60, 000

80, 000

100, 000

interrupt call

ti
m
e
in

cp
u
cy
cl
es

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

2

(b) 2 ways and 127KB data

0 2, 000 4, 000 6, 000 8, 000 10, 000
0

20, 000

40, 000

60, 000

80, 000

100, 000

interrupt call

ti
m
e
in

cp
u
cy
cl
es

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

3

(c) 3 ways and 191KB data

Figure 4.1: Results of the software generated interrupt benchmarks, where the x-axis
represents the 10,000 triggered interrupts and the y-axis the execution time
in CPU cycles. The three plots show the results for the three different set-ups
of the experiment. Plot a) shows the results when the OSC uses one cache
way and accessed 63KB of data, b) shows the results when the OSC spans
across two cache ways and the data range is 127KB and c) shows the results
when the OSC spans across three cache ways with a data range of 197KB.

17

Evaluation 4.2

25
,0
00

30
,0
00

35
,0
00

40
,0
00

45
,0
00

50
,0
00

55
,0
00

60
,0
00

65
,0
00

70
,0
00

75
,0
00

80
,0
0
0

85
,0
00

90
,0
00

95
,0
00

1
·1

05

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

time in cpu cycles

co
u
n
t
of

in
te
rr
u
p
t
ca
ll
s

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

1

(a) 1 way and 63KB data

25
,0
00

30
,0
00

35
,0
00

40
,0
00

45
,0
00

50
,0
00

55
,0
00

60
,0
00

65
,0
00

70
,0
00

75
,0
00

80
,0
0
0

85
,0
00

90
,0
00

95
,0
00

1
·1

05

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

time in cpu cycles

co
u
n
t
of

in
te
rr
u
p
t
ca
ll
s

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

2

(b) 2 ways and 127KB data

25
,0
00

30
,0
00

35
,0
00

40
,0
00

45
,0
00

50
,0
00

55
,0
00

60
,0
00

65
,0
00

70
,0
00

75
,0
00

80
,0
00

85
,0
00

90
,0
00

95
,0
00

1
·1

05

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

time in cpu cycles

co
u
n
t
of

in
te
rr
u
p
t
ca
ll
s

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

3

(c) 3 ways and 191KB data

Figure 4.2: The figures show the distribution of the results from the benchmark of the
software generated interrupts [4.2], where a) shows the distribution of the
experiment which used one way and a 63KB data range, b) shows the distri-
bution of the experiment which spanned across two ways with a data range
of 127KB and c) shows the distribution of the experiment which spanned
across three ways and had a data range of 191KB. The x-axis represents the
execution time in CPU cycles and the y-axis the count of the triggered in-
terrupts. All measured execution times are greater than 30,000 and smaller
than 95,000 and have been binned into 50 groups with a range of 1.300 CPU
cycles each.

18

4.3 Evaluation

4.3 Overhead of the Cache-Aware Operating System
A crucial function of the cache-aware operating system is to check, whether an OSC is in
the cache or not. Hence, this function is executed every time when an interrupt occurs
and causes a major overhead. It is assumed here that the OSC has already been in the
cache, so the overhead is the check and to mark the OSC as used in regards of the LRU
replacement algorithm. As the check is for every possible interrupt handler the same,
the software generated interrupt with the same handler from the previous benchmark
has been used again. The question here is how this function will behave and big the
overhead is.

4.3.1 Setup
The setup is also like the previous one of the software generated interrupt benchmarks.
The only difference is, that only the part of the cache-aware operating system has been
measured, which checks whether the OSC is preloaded or not. Therefore the CPU cycle
counter has been read in the plugbox right before and after the call to the preloading
controller, see figure 3.3 for details.

4.3.2 Results
The results in table 4.2 show a very low standard deviation of around 60 CPU cycles
and an average of 400, 601 and respectively 740 CPU cycles. So the overhead can be
considered insignificant, because a pseudo interrupt handler with 1,000 memory accesses
already needs around 33,000 CPU cycles in the best case.
The average execution time does not increase linear with more cache ways, which

may be caused by level 1 cache hits. A level 1 cache eviction happened between the
interrupt calls, so the check of the first way results in a level 2 cache hit because the
interrupt handling system is locked permanently in the cache. After the first check the
appropriate data and instructions have been stores in the level 1 cache and the check
for more ways is accordingly faster.

Benchmark 1 way 2 ways data 3 ways
Standard deviation 59 59 63
Average 400 601 740

Table 4.2: Results of the overhead of the cache-aware operating system. The standard
deviation and average over 10.000 values in CPU cycles.

19

Evaluation 4.3

0 2, 000 4, 000 6, 000 8, 000 10, 000
0

200

400

600

800

1, 000

interrupt call

ti
m
e
in

cp
u
cy
cl
es

check of 1 cache way
check of 2 cache ways
check of 3 cache ways

1

(a) Results of the overhead benchmark. The
interrupt calls are represented on the x-axis
and the execution time in CPU cycles on
the y-axis.

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

time in cpu cycles

co
u
n
t
of

in
te
rr
u
p
t
ca
ll
s

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

1

(b) Distribution of the results. The x-axis rep-
resents the execution time in CPU cycles
and the y-axis the count of the triggered
interrupts. All measured execution times
are greater than 300 and smaller than 800
and have been binned into 40 groups with
a range of 20 CPU cycles each.

Figure 4.3: Results of the overhead of the cache-aware operating system. a) shows the
plot and b) the distribution of the execution time for the check, whether the
OSC is already cached.

20

4.4 Evaluation

4.4 OSC Eviction
The first experiment evaluated the performance of the software generated interrupt
handler without the preloading time. In a realistic scenario it is likely that the size
of the operating system is larger than the cache and preloaded OSCs get evicted from
time to time. So this benchmark used the same interrupt handler as in section 4.2 and
evaluated the scenario when the OSC gets preloaded every time.

4.4.1 Setup
The setup has been like the other one of the software generated interrupt with two
differences. Firstly, all ways which cached parts of the benchmarked OSC have been
cleand and the OSC marked as not in the cache, so it has been preloaded again on the
next interrupt. And secondly, the interference task has been modified to only access data
that is at least in the level 2 cache and was necessary, because the preloading process can
only be done on one core per definition. So the task causes only level 1 cache evictions
and load on the level 2 cache.

4.4.2 Results
Table 4.3 shows the results which support the assumption of a stable preloading and
execution time. The standard deviation with 344, 313 and 315 is negligible in comparison
with the average of more than 200, 400 and 600 thousand CPU cycles. And if it is
compared with the results from the first experiment without the preloading functionality,
the standard deviation only increased by around 100 cycles. In comparison with the
standard deviation of the non cache-aware operating system from the first benchmark,
the results here are still around 4 times better. If the measured execution time of the
interrupt handler of around 37,000 CPU cycles from the first benchmark is subtracted
from the average here, there is a preloading time of slightly less than 200,000 cycles per
way. So the cache-aware operating system may have a worse average execution time,
but it is possible to provide a more precise WCET estimation due to the lower jitter.

Benchmark 1 way 2 ways 3 ways
Standard deviation 344 313 315
Average 235,159 433,942 631,942

Table 4.3: Results of the overhead of the cache-aware operating system. The standard
deviation and average over 10.000 values in CPU cycles.

21

Evaluation 4.4

0 2, 000 4, 000 6, 000 8, 000 10, 000
200, 000

300, 000

400, 000

500, 000

600, 000

interrupt call

ti
m
e
in

cp
u
cy
cl
es

preloading of 1 cache way
preloading of 2 cache ways
preloading of 3 cache ways

1

Figure 4.4: Results of the OSC eviction benchmarks, where the x-axis represents the
count of interrupt calls and the y-axis the execution time in CPU cycles.
The cache has been cleaned after every interrupt which caused a preloading
process every time. The experiment has been done for an OSC which uses
one, two and three ways.

22

4.5 Evaluation

4.5 UART Hardware Interrupt
The UART has been chosen to measure a hardware initiated case. Therefore the UART
has been configured to trigger an interrupt for every character that arrived and the
handler stored the received data in a buffer.
An eviction of the OSCs from the cache, like in the first benchmark of the software
generated interrupt, also did not happen here.
Interesting will be the impact of the cache-aware operating system, because the interrupt
handler is very small and does not perform massive memory accesses. It may be possible
that the overhead of the check, whether the OSC is locked in the cache or not, is far
greater than the benefit of guaranteed level 2 cache hits.
Another question is the impact of the delay between interrupts. If the characters are
send as fast as possible, it is likely that the interrupt will be triggered right after the end
of the last one, which could reduce the impact of the interference on the level 1 cache,
as every core has a private one.

4.5.1 Setup
The UART interrupt handler and all necessary dependencies have been grouped in a
OSC which fits in one cache way. To evaluate the performance of the interrupt handler,
10.001 characters with 1 byte each have been sent via to the UART with 115.200Bps
from an external device. Each character triggered an interrupt, so there are 10.000
measurements beside the first one, when the cache-aware operating system performs a
preload operation.
The CPU cycles have been read once at the beginning and once at the end of the

function in the guardian c handler of the interrupt handling system, as presented in
figure 3.3. So a handful of assembler instructions in the guardian asm handler function
have not been included in the measurement, but they can be considered as irrelevant
and not influential.
The measurement has been repeated three times with different delays between the

interrupts:

• The characters have been sent as fast as possible

• The characters have been sent with a delay of 0.1 seconds

• The characters have been sent with a delay of 0.2 seconds

As described in section 4.1, there are nine benchmarks in total.

4.5.2 Results
The standard deviation and the average of the execution times for each benchmark are
in table 4.4a and 4.4b, whereas figures 4.5 and 4.6 give a good graphical representation
with plots and histograms for the results.

23

Evaluation 4.5

1. Lower jitter:
The data, especially visualized in figure 4.5 as well as 4.6, shows clearly that the
preloaded OSC has a notably smaller standard deviation, which results also in a
smaller jitter, in the two configurations with interferences.

2. Better average execution time:
The average execution time of the benchmarks with the cache-aware operating
system is lower compared to the benchmarks where the hardware takes control
when the interrupt has been triggered every 0.1 and 0.2 seconds. Though the
cache-aware system has been slower when the characters have been sent as fast
as possible, so the same interrupt occurred very fast or consecutively. That may
caused the task, which causes the interferences, to be interrupted a lot and makes
eviction from the level 1 cache unlikely. Another major impact is the check whether
the OSC is preloaded or not. This increases the average execution time about a
more or less constant time [4.3] and is especially notable when the interrupt handler
is small and compact like this one.

3. OSCs which span across multiple ways:
No OSCs span across multiple ways in this setup.

4. Optimal results:
The results support clearly assumption 4, that the configuration with no inter-
ferences behaves most predictable, as the standard deviation is, in this case, the
lowest and is also the fastest with the lowest average in all three set-ups. Only
the first interrupt call has a significantly higher execution time for accessing the
DRAM, because the OSC has never been used and cached before.

24

4.5 Evaluation

0

2,
0
00

4,
0
00

6
,0
0
0

8
,0
0
0

10
,0
00

0

200

400

600

800

1, 000

1, 200

1, 400

1, 600

1, 800

2, 000

interrupt call

ti
m
e
in

cp
u
cy
cl
es

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

1

(a) UART triggered as fast
as possible

0

2,
0
00

4,
0
00

6
,0
0
0

8
,0
0
0

10
,0
00

0

200

400

600

800

1, 000

1, 200

1, 400

1, 600

1, 800

2, 000

interrupt call

ti
m
e
in

cp
u
cy
cl
es

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

2

(b) UART triggered every
0.1 seconds

0

2,
0
00

4,
0
00

6
,0
00

8
,0
0
0

1
0
,0
0
0

0

200

400

600

800

1, 000

1, 200

1, 400

1, 600

1, 800

2, 000

interrupt call

ti
m
e
in

cp
u
cy
cl
es

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

3

(c) UART triggered every
0.2 seconds

Figure 4.5: Results of the UART hardware interrupt benchmarks, where the x-axis rep-
resents the 10,000 triggered interrupts and the y-axis the execution time in
CPU cycles. The three plots show the results for the three different set-ups
of the experiment. Plot a) shows the results when the interrupt has been
triggered as fast as possible, b) shows the results when the interrupt has
been triggered every 0.1 seconds and c) shows the results when the OSC has
been triggered every 0.2 seconds.

25

Evaluation 4.5

Benchmark fast 0.1 seconds 0.2 seconds
no interference, no preloading 735 735 736
interference, no preloading 1,014 1,603 1,602
interference, preloading 1,253 1,355 1,250

(a) Average

Benchmark fast 0.1 seconds 0.2 seconds
no interference, no preloading 15 14 15
interference, no preloading 120 100 100
interference, preloading 49 49 24

(b) Standard deviation

Table 4.4: The average and standard deviation of the benchmarks with the software gen-
erated interrupt. The OSC with the interrupt handler has 1KB instructions
and either 63KB data, 127KB data or 191KB data, so it fits in either one,
two or thee cache-ways.

26

4.5 Evaluation

60
0

70
0

80
0

90
0

1,
00
0

1,
10
0

1,
20
0

1,
30
0

1,
40
0

1,
50
0

1
,6
00

1
,7
00

1
,8
00

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

time in cpu cycles

co
u
n
t
of

in
te
rr
u
p
t
ca
ll
s

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

1

(a) UART triggered as fast as possible

60
0

70
0

80
0

90
0

1
,0
00

1
,1
00

1,
20
0

1,
30
0

1,
40
0

1
,5
00

1,
60
0

1,
70
0

1,
80
0

1,
90
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

time in cpu cycles

co
u
n
t
of

in
te
rr
u
p
t
ca
ll
s

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

2

(b) UART triggered every 0.1 seconds

60
0

70
0

80
0

9
00

1
,0
00

1
,1
00

1,
20
0

1,
30
0

1,
4
00

1
,5
00

1,
60
0

1,
70
0

1,
80
0

1,
90
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

time in cpu cycles

co
u
n
t
of

in
te
rr
u
p
t
ca
ll
s

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

3

(c) UART triggered 0.2 seconds

Figure 4.6: The figures show the distribution of the results from the benchmark of the
external triggered UART hardware interrupts [4.5]. Histogram a) shows the
distribution of the experiment in which the interrupt has been triggered as
fast as possible, b) shows the distribution of the experiment in which the
interrupt has been triggered every 0.1 seconds and c) shows the distribution
of the experiment in which the interrupt has been triggered every 0.2 seconds.
The x-axis represents the execution time in CPU cycles and the y-axis the
count of the triggered interrupts. All measured execution times are greater
than 700 and smaller than 1.800 and have been binned into 24 groups with
a range of 50 CPU cycles each.

27

Evaluation 4.6

4.6 Digital Protective Relay
The evaluation of the software and the UART interrupt handler has shown good results.
However, it is in that configuration not a realistic application. For a more realistic bench-
mark the software of a digital protective relay has been implemented in the prototype
operating system.
A digital protective relay is a power-system protection, which detects faulty parts

and separates them from the rest of the system to keep it stable. Hence, the system
constantly gets an input of the amperage and voltage from various meters and calculates
the phasor, which indicates if there is a short circuit or not.
Björn Keune developed such a system for his master thesis [9]. The software part has

been implemented in C++ and the aspect-orientated hard real-time operating system
CiAO [10] has been chosen with two tasks running on it. The first task runs for 250µs
and constantly receives the amperage and voltage of the power-system over an ethernet
bus, whereon the second tasks runs for 1000µs and tries to calculate the phasor. For
that the algorithm needs enough value pairs. The execution time increases strikingly
when enough values are available to determine the phasor due to intense calculations.
For testing purpose, he also developed a random input data generator.
It is to assume, that the benefit of the preloading will not be so drastic, because the

algorithm does not perform many memory accesses but rather does heavy computation
in the phasor part.

4.6.1 Setup
As the digital protective relay algorithm has been programmed in C++, it was possible
to extend the UART OCS with some minor changes. However, the prototype operating
system for the Pandaboard does lack an ethernet driver, so the UART has been used as
the data source. The random data generator has been used to generate the amperage
and voltage data, 80 values each, for the benchmarks. One pair of the amperage and
voltage data has been send over the UART every 0.2 seconds and the time in CPU
cycles has been measured for those interrupts, where the transmission of the pair has
been complete and the algorithm has been called. The 80 value pairs have been sent
two times, always in the same order, and the measurement has been repeated five times
for each benchmark, so the algorithm has been invoked 800 times in total for each of
the configurations described in section 4.1. All floating point calculations have been
emulated in software because of problems with hardware floating point support.

4.6.2 Results
The threshold, after which the algorithm is able to calculate the phasor, is past the
first 79 value pairs. Due to the fact that the execution time is notably higher when the
algorithm was able to calculate the phasor, to the results will be referred as pre-phasor
and phasor results.

28

4.6 Evaluation

1. Lower jitter:
On the pre-phasor algorithm calls is the standard deviation of the cache-aware
operating system according to table 4.5a slightly lower than the system with hard-
ware cache management. In contrary to all benchmarks before, is the standard
deviation with the phasor results with 64,477 to 64,362 slightly higher, but the dif-
ference is with 115 CPU cycles insignificant. But it is not clear why the standard
deviation, and so the jitter, is worse. Theoretically it should at least be the same
or better.

2. Better average execution time:
The average execution time of the cache-aware operating system is lower than the
system with hardware cache management. For the pre-phasor results, the execu-
tion time is in the average 149 CPU cycles or 12.5% faster. The phasor results on
the other hand, have been calculated 7,252 CPU cycles faster on average, which
is not that much as the average execution time is over 29 million cycles. This can
be explained with the intensive calculations that have primarily been done and
almost no memory access occurred. The instructions and data for the calculations
have probably been in the level 1 cache, so the interference from the other core
had no effect. Figure 4.7 gives a nice graphical representation. Interesting is the
dent in figure 4.7b, with a sudden decrease of the execution time. It is probably
caused by the calculations of the algorithm, because there it is unlikely that the
cache causes this phenomenon as it appears on the cache-aware as well as on the
not cache-aware operating system.

3. OSCs which span across multiple ways:
No OSCs span across multiple ways in this setup.

4. Optimal results:
The configuration which behaves like a single-core setup has again achieved the
best results. However, the phasor results are quite alike, the average and standard
deviation is just slightly better. This supports the assumption from above that
extensive mathematical operations with almost no data access are not affected by
interferences.

29

Evaluation 4.6

0 50 100 150 200 250 300 350 400
0

1, 000

2, 000

3, 000

4, 000

5, 000

6, 000

interrupt call

ti
m
e
in

cp
u
cy
cl
es

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

1

(a) Before the calculation of
the phasor.

0 50 100 150 200 250 300 350 400

29, 700, 002

29, 750, 002

29, 800, 002

29, 850, 002

29, 900, 002

29, 950, 002

interrupt call

ti
m
e
in

cp
u
cy
cl
es

interferences, not cache-aware
interferences, cache-aware

no interferences, not cache-aware

2

(b) With the calculation of
the phasor.

Figure 4.7: Results of the digital protective relay benchmarks, where the x-axis repres-
ents the count of algorithm calls and the y-axis the execution time in CPU
cycles, whereas the execution time of the algorithm depends on the calcula-
tion of the phasor and the results will be compared independently. Plot a)
shows the results when the phasor could not be calculated because of too few
input values and b) shows the results of the experiment with the calculation
of the phasor. The algorithm has been called five times with the same 160
amperage and voltage pairs as input and to get a better overview, the res-
ults have been reordered: The execution time of the first five algorithm calls
on the x-axis correspond to the execution time of the first calls of the five
different runs, the second five to the second calls and so forth. Where the
first 79th calls are shown in a), are the other calls, where the phasor could
be calculated, shown in b).

30

4.6 Evaluation

Benchmark Standard deviation Average
no interference, no preloading 226 1736
interference, no preloading 375 3007
interference, preloading 349 2630

(a) Results of the execution time before the phasor could be calculated.

Benchmark Standard deviation Average
no interference, no preloading 64.298 29.756.230
interference, no preloading 64.362 29.766.565
interference, preloading 64.477 29.759.313

(b) Results of the execution time once the phasor could be calculated

Table 4.5: The standard deviation and average in CPU cycles of the results of the dis-
tance protective relay benchmarks. They have been calculated over the 400
measurements from before and after the phasor could be calculated.

31

5 Summary and Conclusion
The sources for unpredictable behaviour in COTS multi-core systems and a proposed
operating system model to counteract these with cache preloading have been described.
Later the interrupt handling of the cache-aware operating system has been intensively
evaluated with software and hardware triggered interrupts and the results have been
compared with a not cache-aware version of the operating system. The interrupts have
been handled by a realistic application like the digital protective relay algorithm and
pseudo handlers.
The evaluation has shown that there is indeed an improvement of the real-time prop-

erties. The jitter has been reduced extensively compared to the not cache-aware system
and it was also possible to measure a notably better average execution time. However,
the effects are not so drastic when the interrupt handler does not perform intensive
memory accesses but rather calculations. Additionally it has been shown that the per-
formance of interrupt handlers which are locked in the cache permanently respectively
do not get evicted, is comparable to a uniprocessor system. Just the average execution
time is slightly increased. It was also possible to show that the jitter of an interrupt
handling is better on the cache-aware system for OSCs of different size. This makes it
easier to provide a more precise WCET estimation, as long as a higher average execution
time can be tolerated.
All in all it is possible to use the advantages of modern COTS multi-core systems

for real-time applications as a low cost alternative to expensive custom hardware. But
therefore it is necessary to consider the pitfals like the unpredictability and counter them
with for example a cache-aware operating system.

33

6 Ongoing Work
Several interesting questions for a future research arise. Various hardware platforms
lack for example a functionality to affect the cache replacement policy of the controller,
like locking data inside the cache and prevent it from eviction. It has been shown
that it is complex but possible to implement software based cache partitioning [6] and
the operating system concept could be adjusted to support such software based cache
partitioning.
According to the cache-aware operating system concept, every OSC should have a

separate stack which will be preloaded too. As this has not been implemented and
evaluated here, and can be done in the future.
It is also interesting for research how the preloading behaviour is when multiple cores

preload at the same time. Additionally, it is not necessary to preload a complete OSC
if only a small subroutine will be required. So an intelligent preloader could determine
which part of the OSC is actually going to be used and preloads just that part. This
would reduce the possible WCET time if the parts which are really used are significantly
smaller then the whole OSC.
The cache replacement policy is also a critically part. Other policies may have a serious

impact on the system behaviour and the resulting WCET, so it should be evaluated
which policy is the best suitable for which setup.

35

Bibliography
[1] Kopetz, Hermann: Real-time systems: design principles for distributed embedded

applications. Springer Science & Business Media, 2011

[2] Dasari, Dakshina ; Akesson, Benny ; Nelis, Vincent ; Awan, Muhammad A.
; Petters, Stefan M.: Identifying the sources of unpredictability in cots-based
multicore systems. In: Industrial Embedded Systems (SIES), 2013 8th IEEE Inter-
national Symposium on IEEE, 2013, S. 39–48

[3] Radojković, Petar ; Girbal, Sylvain ; Grasset, Arnaud ; Quiñones, Eduardo
; Yehia, Sami ; Cazorla, Francisco J.: On the evaluation of the impact of
shared resources in multithreaded COTS processors in time-critical environments.
In: ACM Transactions on Architecture and Code Optimization (TACO) 8 (2012),
Nr. 4, S. 34

[4] Borghorst, Hendrik ; Spinczyk, Olaf: Increasing the Predictability of Modern
COTS Hardware through Cache-Aware OS-Design. In: Proceedings of the 11th
Workshop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT ’15), 2015

[5] Mancuso, Renato ; Dudko, Roman ; Betti, Emiliano ; Cesati, Marco ; Cac-
camo, Marco ; Pellizzoni, Rodolfo: Real-time cache management framework for
multi-core architectures. In: Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19th IEEE, 2013, S. 45–54

[6] Plazar, Sascha ; Lokuciejewski, Paul ; Marwedel, Peter: WCET-aware
software based cache partitioning for multi-task real-time systems. In: Proceedings
of the International Workshop on Worst-Case Execution Time Analysis, 2009, S.
78–88

[7] ARM: AMBA Level 2 Cache Controller (L2C-310) Technical Reference Manual.
r3p1. 3 2010

[8] Reineke, Jan: Randomized caches considered harmful in hard real-time systems.
In: Leibniz Transactions on Embedded Systems 1 (2014), Nr. 1, S. 03–1

[9] Keune, Björn: Realisierung eines Distanzschutzes mit Methoden der Industrieauto-
matisierung. Germany, TU Dortmund, Masters’s Thesis (Diplomarbeit), September
2012

37

Bibliography 6.0

[10] Lohmann, Daniel ; Hofer, Wanja ; Schröder-Preikschat, Wolfgang ;
Streicher, Jochen ; Spinczyk, Olaf: CiAO: An Aspect-Oriented Operating-
System Family for Resource-Constrained Embedded Systems. In: USENIX Annual
Technical Conference, 2009

38

List of Figures
2.1 Random data access without preloading. 5
2.2 Random data access with preloading. 5
2.3 Stable preload time. 5

3.1 OSC structure in the proposed operating system model. 8
3.2 Grouping and definition of an OSC in the linker script. 9
3.3 Interrupt handling of the operating system. 11

4.1 Results of the software generated interrupt benchmarks. 17
4.2 Distribution of the results of the software generated interrupt benchmarks. 18
4.3 Results of the overhead benchmark. 20
4.4 Results of the OSC eviction benchmarks. 22
4.5 Results of the UART hardware interrupt benchmarks. 25
4.6 Distribution of the results of the UART hardware interrupt benchmarks. 27
4.7 Results of the digital protective relay benchmarks. 30

39

	Introduction
	Previous Work
	Real-time Properties
	Sources of Unpredictability
	Impact of Shared Resources
	Proposed Techniques

	Operating System
	Hardware Platform
	OSC Segmentation
	OS Cache Management
	Interrupt Handler

	Evaluation
	Benchmarks
	Assumptions

	Software Generated Interrupt
	Setup
	Results

	Overhead of the Cache-Aware Operating System
	Setup
	Results

	OSC Eviction
	Setup
	Results

	UART Hardware Interrupt
	Setup
	Results

	Digital Protective Relay
	Setup
	Results

	Summary and Conclusion
	Ongoing Work
	Literature
	List of Figures

