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1 Introduction
In the history of computers the requirements for efficiency in programming and
computing has increased rapidly. The first step of simplifying programming in ma-
chine code was the invention of the Assembler Code. The first Assembler Code was
written by the American Computer pioneer Nathaniel Rochester in the late 1940s
[14]. It allows to write human readable instructions that are directly translated
into the machine opcodes. Just a short time later it was not longer sufficient to
run just one single program - the operating systems were invented to manage the
processes on a computer. The first operating systems were written in Assembler
Code. When the first high-level programming languages were developed the op-
erating systems haven been written in these languages. Nevertheless there is still,
70 years after the first Assembler Code has been written, need to use Assembler
Code in operating system code, especially at the start up. The operating system
also has to deal with hardware-specific properties and optimization depending on
the hardware architecture.
In the context of this master thesis a language has been implemented, which

allows to separate the hardware description from hardware-dependent software.
Here the focus is on Assembler Code as an important representative of hardware-
dependent code. The basic idea is to find the hardware-independent intersection
of assembler instructions, add the hardware information and finally generate the
hardware-dependent code instead of implementing it. Figure 1.1 shows this pro-
cedure.

1.1 Motivation
Using operating systems on various hardware platforms cause the problem, that
it has to be developed for various platforms. The first and obvious fact is the
usage of Assembler Code. The different hardware designers use diverse instruction
architectures. Some use more instructions, some less and others use different
names for semantically identical instructions. That is why the Assembler Code
has to be written for each supported platform. When supporting a new platform
a precise knowledge about this code is necessary to reproduce it for the new
hardware. This might be a problem, because the initial code was written a long
time ago or the responsible programmer is not even available any longer. In this
case the code might be too old for a proper use and has to be rewritten.
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Introduction 1.2

Hardware
Specifi-
cation

Abstract
ASM

Generator ASM

Figure 1.1: Basic idea of generating hardware-dependent code

When deciding to rewrite the whole code this often has to be done for all sup-
ported platforms so the programmer probably decides not to support old platforms
anymore. Even then it is a lot of work. The first objectives that result from this
problems are to maintain sustainability, provide platform-independency
and reduce complexity by not just copy and paste Assembler Code but reuse
the same code for all supported architectures. This will also reduce the error
rate.

The other point why it is useful to eliminate hardware-dependency is in the na-
ture of the architectures. A modern hardware consists of several processors, with
various cores, memories and caches. The different elements might be connected
with each other with buses of different speeds. The task of the operating system is,
beside others, to organize the cooperation between those components, like doing
the memory management and therewith optimize the hardware. The objective,
especially in real-time operating systems is to reduce latency by reducing transfer
ways of data. This might be done by using a cache or a memory which is directly
connected to the current processor than using some other. Therefore an exact
knowledge about the architecture the system is operating on is necessary. The
derived objective for this task is to make it possible to describe an Architec-
ture Model from which needed information for the operating system code are
extracted.
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1.3 Introduction

1.2 Analysis
Before a concept for fulfilling the objectives can be developed, the tasks have to
be determined. To split the hardware-specifications from the hardware-dependent
code, a model of the hardware is needed. This model needs to contain frequently
used values like addresses of different hardware components, cache-line sizes or
the word size of the architecture to implement efficient loops (e.g. during data
prefetching). More and detailed requirements on the hardware model are described
in subsection 3.2.2.
The second aspect that makes the Assembler Code a hardware-dependent lan-

guage is the usage of specific instruction sets. These differ among each other,
nevertheless they are sometimes similar to each other. These similarities can be
utilized to develop a language, which uses abstract instructions that can later be
translated to concrete instructions of the corresponding architecture. Therefore it
is necessary to define an instruction set for the different architectures.
The instruction sets are defined independent from the hardware models. Each

hardware model uses one specific instruction set, thus it is resusable for later
revisions of similar hardware platforms.

1.3 Concept
To fulfill the targets there are three main components necessary:

• Definition of an Architecture Model

• Definition of an Instruction Set

• Definition of Abstract Assembler Code

For each of these components a domain-specific language is developed. An intro-
duction about domain-specific languages and tools for development, as well as an
introduction about architecture models are given in chapter 2. The modeling of
the three components is described in chapter 3, chapter 4 concerns the generation
of Assembler Code. In chapter 5 the solution is evaluated and the probabilities of
future work is discussed.
This master thesis focuses on generating Assembler Code. It is however possible
to insert new code generators any time, e.G. generating C/C++ Code or even
prose (maybe to write a documentation for the developed operating system).
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2 Fundamentals
In this chapter some basic fundamentals are introduced. At first (section 2.1) two
related projects which cover both main aspects of this work are presented. After
that the used tools including the domain-specific language development frame-
work is discussed (section 2.2). The last section (section 2.3) covers the testing
environment (hardware and operating system) the project is tested in.

2.1 Related Work

The implemented project covers two aspects to maintain hardware independency.
The first one is the development of a hardware model that provides on demand
information about the hardware. The idea of modeling an architecture is already
implemented with the Linux Devicetree (subsection 2.1.1) but there are still some
drawbacks that the new architecture model tries to avoid. The next aspect is the
automatic generation of Assembler Code which is also covered with the QEMU
Tiny Code Generator (subsection 2.1.2). However its purpose is different.

2.1.1 Devicetree
The devicetree is a data structure to describe the hardware configuration of a
system. It is used by the Linux Kernel to find devices and register them in the
system [5]. Figure 2.1 shows an example from the Devicetree Specification [6].
It describes the computing, evaluation and devolepment platform MPC8572DS
using Power Architecture technology [12]. Naturally it occurs as a binary and
therefore non human-readable file. As this is only readable by the Linux Kernel it
is obviously not useful to generate operating system code. For now it is also just
usable for some selected platforms.
It is possible to make changes on the devicetree by decompiling it into the hu-

man readable code, modifying it and compiling it again. However, if there are any
mistakes the system might get unbootable. The idea of the project implemented
in this master thesis is to use the information from the hardware model to gen-
erate some operating system code. Therefore it is always possible to recheck the
implementation and the decision about success or failure is made by the operating
system implementation itself.
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Fundamentals 2.1

Figure 2.1: Example representation of a simple devicetree [6]

2.1.2 QEMU Tiny Code Generator
The QEMU Tiny Code Generator (short TCG) is part of the QEMU project -
an open source machine emulator. To use the hardware specific Assembler Code
for the platform which has to be emulated it is translated into Assembler Code
for the platform on which the other is emulated. This is done in two steps: First
the given CPU instructions from the emulated platform are encoded and used as
an input for some given predefined operands. Then CPU instructions for another
platform are generated.
To give an example, the Power PC instruction

addi r1,r1,1

causes the execution of the C-Function

tcg_gen_addi_tl(cpu_grp[rD(ctx->opcode)], cpu_gpr[rA(ctx->opcode)], simn);

which has been implemented in the TCG translation engine. Same colors indicate
matching parts of the original instruction and the TCG instruction. The result of
the function is

add $0x1,%ebx

which is the same instruction for x86 architectures (AT&T syntax). The idea
of generating specific instructions from an abstract code is used in this project.
While QEMU is using a given set of operands [7] that also just work for some
architectures in this project all operands can be defined by the developer himself
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2.2 Fundamentals

Figure 2.2: Alexander Graf: QEMU’s recompilation engine [13]

for every platform he likes. The input is also defined by the user and not by
other assembler code. There are some other features that are described in the
chapter below like a dynamic register allocation, defining control structures and
using loops.

2.2 Tools
In this part a brief introduction about domain-specific languages is given (subsec-
tion 2.2.1) and the framework described (subsection 2.2.2).

2.2.1 Domain-specific language
"Domain-specific language (noun): a computer programming language of limited
expressiveness focused on a particular domain."[9] This definition about domain-
specific languages was made by Martin Fowler in his book of the same title.
A domain-specific language serves a particular domain. Mostly it is integrated as

a small part in a larger system, like a part of operating system code. The language
is focused on this particular part. It requires expertise, because it can just be used
for a small number of tasks, but it reduces the complexity and therefore error-
proneness because it is customized for the domain.

2.2.1.1 How a domain-specific language works

There are two different kinds of domain-specific language: Internal and external.
While internal ones are embedded in a host language and use its principles, an

7



Fundamentals 2.2

external domain-specific language has an own syntax and semantic. Examples for
external domain-specific languages are regular expressions or SQL, examples for
internal domain-specific languages are Lisp or the Ruby framework Rails. The
domain-specific languages written as part of this master thesis are all external
domain-specific languages.
Some source code written in the domain-specific language is parsed and popu-

lates a semantic model. It is possible to write an own parser or use an existing
one provided by a framework. There are many possibilities to proceed with this
model:
The model - and thereby the source code - can (and must) be verified. Even

if it is syntactical correct (otherwise the model cannot be created) there might
be semantic issues. These must be determined by the developer. The validation
step is very important to avoid unexpected results or crashes during the further
processing.
The model can be used by other models. This is useful if there are more than one

languages which are dependent on each other. Circular dependencies should be
avoided here, e.g. by a layered overall model used in this project (see section 3.1).
The model can generate new files. These can be all kinds of files which can be

represented textual such as textfiles, source code for general-purpose languages or
source code for the domain-specific language represented by the model.

2.2.2 Xtext Framework
"Xtext is a framework for development of programming languages and domain-
specific language" [11] and is originated by itemis [17]. It is part of the Eclipse
Modeling Framework and probably the most popular framework for developing
domain-specific languages. Xtext creates a full infrastructure which contains a
parser and other language elements. It is sufficient to create a grammar file and
run a Workflow which is already basically defined by a template when a new dsl-
project is created. It is also possible to create a Plug-In for Eclipse which already
contains an Editor when building the project. That Editor can be customized by
extending and implementing given classes written in Xtend (see subsection 2.2.3).

2.2.3 Xtend
"Xtend is a statically-typed programming language which translates to compre-
hensible Java source code." [15] It is a dialect of the Java language and is said to
improve some aspects. Some examples are that Xtend goes without semicolons,
simplify the getters and setters (instance.getName() becomes instance.name
and instance.setName("name") becomes instance.name = "name"). An ex-
haustive list of improvements is given in the documentation [15]. In the Xtext
framework Xtend is used to write the generator and validator and customize the
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2.2 Fundamentals

Listing 2.1: Example Grammar Rule from the Architecture DSL
EComponent :

type = CType name = ID ( ’ : ’ parents = ParentL i s t ) ?
’{ ’

p r op e r t i e s += Property ∗
’ } ’

;

editor (e.g. Content Assist and Outline). These files are immediately translated
into java files.

2.2.4 EMF Metamodel and Xcore
As described above in subsubsection 2.2.1.1 a domain-specific language populates
a model. To describe this model a metamodel is created from the given grammar.
The EMF metamodel consists of two description files. The ecore file contains
information about the language components (Classifiers) and their properties
(Structural Features). From this metamodel java code is created [8]. The gen-
erator metamodel contains information about the imported models
(usedGenPackages), Metainformation (e.g. copyrightText) and the informa-
tion from the ecore model in a parent-child-relation. The listings below show the
same language component from the architecture model in the ecore- (Listing 2.2)
and generator (Listing 2.3) - Description File. The base component has been
defined as a grammar rule (Listing 2.1). All names describing another grammar
element (type, name, parents, properties) can be found as names of structural
features in the ecore model (<eStructuralFeatures name="..." .../>). The
generator model refers to these features (<genFeatures ecoreFeature="..."
.../>). The types of the features are attributes of the ecore features called
xsi:type. Primitive datatypes like the terminal rule ’ID’ (terminal rules are
always Strings) or the rule ’CType’ which is an enum rule (enum rules are Strings
as well) are called ecore:EAttribute. References to other rules are called
ecore:EReference. The third attribute of the ecore features are called eType.
If they refer to other implemented grammar rules the eType is this type (e.g.
eType="#//Property"). Primitive types are already implemented in ecore
(ecore:EEnum and ecore:EDataType).
To edit these metamodels, like adding properties or define some methods, it is

useful to transform the metamodel into a textual, editable and clearly layouted
one. The created metamodels can also be edited and have a textual representation
(XML) but they are not created to be edited. The better solution is to transform
it into an xcore-model. "Xcore is an extended concrete syntax for Ecore" [16].
The xcore model can be transformed to an ecore model any time, but this is

9



Fundamentals 2.3

not necessary. The manifest file defines which model will be used to generate the
domain-specific language. Listing 2.4 shows the transformed model code, extended
by a method getSize() shown in red.

2.2.5 ANTLR Parser Generator
Because it is a lot of work to write a parser for a whole language (even if it is "just"
a domain-specific language), the Xtext Framework contains a parser generator.
Everytime the grammar of the language is changed the parser is automatically
updated to these changes. This framework uses the ANTLR Parser Generator.
ANTLR generates recursive decent parser for LL(k)-grammars. A tool which
has become very handy to detect left-recursion and non-deterministic rules is the
ANTRLR GUI Development Environment ANTLRWorks.

2.3 Testing Environment
To test the implementation of the project later it is integrated into the research
operating system CyPhOS [4] which is then run on the ODROID-U3
The ODROID-U3 is a development platform which contains of a Samsung

Exynos 4412 Prime Cortex-A9 Quad Core processor. The Cortex-A9 Processor
[3] has four coherent cores using a 32 bit ARMv7 CPU, a 32 kB instruction cache
and a 32 kB data cache. The cores share an 1 MB L2-Cache. The LPDDR2 RAM
has a size of 2 GB.
The research operating system CyPhOS is a real-time operating system that is

running on commercial off-the-shelf hardware. It uses an operating system con-
trolled cache management, therefore it needs a detailed knowledge about the used
hardware. The purpose of this work is to determine these information from a hard-
ware model. These includes the configuration of caches and the bus connections
between memory units as well as the access time on memory.

10
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Listing 2.2: Ecore
<eClassifiers xsi:type="ecore:EClass" name="EComponent" eSuperTypes="#//Component

#//BlockContent">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" eType="ecore:EEnum

platform:/resource/edu.udo.cs.ess.libs/model/lib.ecore#//CType"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

eType="ecore:EDataType
platform:/resource/org.eclipse.emf.ecore/model/Ecore.ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="parents"
eType="#//ParentList" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="properties" upperBound="−1"
eType="#//Property" containment="true"/>

</eClassifiers>

Listing 2.3: Genmodel
<genClasses ecoreClass="Architecture.ecore#//EComponent">

<genFeatures createChild="false" ecoreFeature="ecore:EAttribute
Architecture.ecore#//EComponent/type"/>

<genFeatures createChild="false" ecoreFeature="ecore:EAttribute
Architecture.ecore#//EComponent/name"/>

<genFeatures property="None" children="true" createChild="true"
ecoreFeature="ecore:EReference Architecture.ecore#//EComponent/parents"/>

<genFeatures property="None" children="true" createChild="true"
ecoreFeature="ecore:EReference Architecture.ecore#//EComponent/properties"/>

</genClasses>

Listing 2.4: Xcore
class EComponent extends Component , BlockContent {

CType ^type
String name
contains ParentList parents
contains Property[] properties
refers BlockInstance BContainer

op long getSize() {
//...

}
}
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3 Model

The defined domain-specific language actually consists of five individual languages
resulting in five separate models that interact with each other. The structure
of the overall architecture is shown in section 3.1 and described detailed in the
section 3.1. Models within the same layers do not communicate with each other
and only components on a lower level can refer to a component on a higher layer.

3.1 The three layers

The five separate models are part of a bigger overall model which consists of
three layers. The top layer is constituted by a shared instance, called Lib which
acts as an interface between the elements of the second layer. It mostly declares
Enums that the underlying models can refer to, as adapters for different com-
ponents. To give an example, the ISA Description File declares two types of
symbols: Symbols and Symbol Pointers. The Abstract Assembler Code can then
make use of these two types of symbols. Now for both language elements the
method getType():SymbolType is implemented. SymbolType is an enum which
is defined in the shared Lib containing the values SYM and PTR. If a symbol is used
in the Abstract Assembler Code, the corresponding definition made in the ISA
Description File can simply be found by comparing this SymbolType.
The second layer consists of the different submodels (Architecture, ISA, Reg-

ister and Abstract Assembler). While the Register Model is always part of a
certain ISA, the remaining submodels are independent from each other. The ISA
provides information about the active Register Set to the Generator , but further
processing is handled exclusively by the Generator . The Architecture Model on
this second layer is not directly necessary to create Assembler Code. It provides
values for certain variables that can be used by Abstract Assembler Code. In such
cases, the Generator creates new Abstract Assembler Code where those variables
are replaced by their values and the result is then directed back to the Gener-
ator . The Generator is the bottom layer of the entire system. It generates the
Assembler Code from the upper models and is covered in detail in chapter 4.
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Lib

Architecture Abstract
Assembler Code

Register ISA

Generator

Abstract
Assembler Code ASM

Figure 3.1: Architecture of the generation process using the models populated by
the different DSLs

3.2 Architecture-Model
Describing the architecture is an important step towards the creation of architec-
ture specific code. The objective is to create a model with which most common
architectures can be described with and from which all relevant properties of the
architecture can be extracted. First of all the requirements of such a model have
to be determined. For that purpose several different architectures have been in-
vestigated, two of them are described in section 3.2.1.

3.2.1 Examples of Architectures
Two different architectures are shown in Figure 3.3 (Exynos4412) and Figure 3.4
(IBM x3850 X5). Figure 3.2 shows the Cortex-A9 Processor, which is used with
the Exynos4412 and other ARM-Architectures. By analyzing the architectures
several objectives that have to be met by the model can be determined. These
objectives are described in detail in subsection 3.2.2.

3.2.2 Objectives
From these different architectures some important objectives can be developed:
The first one is the Reusability. Both architectures contain components (like

14



3.2 Model

Figure 3.2: Cortex A9

Figure 3.3: Exynos 4412 as the ODROID-U3 Application Processor

15
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Figure 3.4: IBM x3850 X5
in

the CPU ), that are used several times within one architecture as well as in other
architectures. As these components can occur in different variants[1] these com-
ponents have to be described with variable properties, which leads to the next
objective. Components contain Properties. For now the project supports the fol-
lowing component-specific properties: base-address (the first address of the hard-
ware component), size (from the base-address and the size the end-address of
the address range can be calculated), cacheline size (for caches). The property
wordlength is defined architecture-wise. Not all components have to and may not
define all of these properties. To figure out which component define which prop-
erty the components must be distinguished by a type, the Component Type.
For now three different component types can be used: Process Units (pu), Mem-
ory Units (mu) and I/O-Devices (io). Memory Units can be either memories (like
RAM) or Caches. They are not distinguished by their label, but by their prop-
erties: A Memory must not contain a cacheline size, the cache does not contain
a base-address. If the base-address of the cache is accessed, the cache provides
the one of the memory it belongs to. Therefore a Hierarchy between single
components is necessary. Each component can be a subcomponent of another
(e.g. L1 and L2-Caches). Either a single component or a Group of components
can be such a subcomponent. To handle objectives like reusability or hiearchy,
components have to be grouped. A group can be defined once and may contain
variables. It is also possible to declare a group in a different architecture which
is implemented by the current one. To give an example the Cortex-A9 Processor
is described as an own architecture which is used by other architectures. It is a
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3.2 Model

Figure 3.5: QPI links fo a two-node x3850 X5

quad-core processor with four identical cores. The caches of this core have vari-
able sizes, therefore the core as a group has to be variable, too. Each architecture
which uses the Cortex-A9 processor can now use these cores with a certain cache
size.
The other way to connect components beside defining the hierarchy are Links.

Figure 3.5 shows the two ways components can be linked. Either components in
the same group can be linked (black lines) or components from different groups
(brown lines).

3.2.3 Source Code
On top of the Architecture Description File there can be defined includes. This
is necessary, if references to components of parent architectures are made. If the
Eclipse plugin for the created domain-specific language is used references to other
files can be made without the include. However the generation process is not
part of this plugin, therefore the referenced resource must be made known to the
current one (see section 4.2 for details). The include is just the filename without
a path. Therefore it can be found within the whole project, but the filenames
should be unique.

#include parent.arch

The next part of the source code is the architecture container. It must have a
unique name and may inherit another architecture which must defined in one of
the included files. Each architecture may, at least the most top architecture must
define the word length of the architecture by adding # and the size to the name.

SubArch#4:Arch{ · · · }
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The word length is fixed-sized characteristic of an architecture. If an architecture
is marked abstract it does not need to define the word length, but all of the
implementing architectures need to define the word length. Inside of this con-
tainer the components are described. There are two types of components. The
explicit components describe a real hardware component, which is described with
a type (for now these types are mu, pu and io for memory units / caches, process
units and i/o-devices) and a name. Like the containers these components can
refer to another component. This defines a hierarchy between the components.
The explicit components contain properties regarding to their types as described
in Section 3.2.2. The block components define a group of explicit components
and instances of other block components. They are used like constructors with a
name and a set of parameters. As a difference to object orientated general-purpose
language, they contain the object information directly within this constructor-like
block component: The body contains other objects, explicit or as an instance.
An instance of a component is created with the new-operator. Listing 3.1 shows
two block components. The second one (OtherComponent) contains a cache (in-
dicated by the keyword mu and the definition of the accessSize). The first block
component Component also contains an explicit component (a memory component
with a baseAddress) and an instance of the second component, delegating its own
variable Size b to it.

Listing 3.1: Block Components
Component ( S i z e a , S i z e b) {

mu mem {
s ize : a
baseAddress : 0x1

}

new OtherComponent (b)
}

OtherComponent ( S i z e a ) {
mu cache {

s ize : a
accessSize : 4

}
}

When new components are instantiated, they get an increasing ID, starting from
zero, by which they can be referred. This ID is needed if the components are linked.
To link several components they need to be instantiated first. Each component can
be linked with one or more other components, even with subcomponents. To link
components within the same group, there are just links added after instantiating
the needed components. The links are unidirectional and each component can
link more than one other component.
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Listing 3.2: Link different blocks
1 a r c h i t e c t u r e :#4 {
2 Socket ( ) {
3 new Core ( ) //Core : 0
4 new Core ( ) //Core : 1
5 }
6
7 Core ( ) {
8 / / . . .
9 }

10
11 new Socket ( ) { // Socket : 0
12 l ink ( Core : 0 , [ Socket : 1 . Core : 1 ] )
13 l ink ( Core : 1 , [ Socket : 1 . Core : 0 ] )
14 }
15
16 new Socket ( ) { // Socket : 1
17 l ink ( Core : 0 , [ Socket : 0 . Core : 1 ] )
18 l ink ( Core : 1 , [ Socket : 0 . Core : 0 ] )
19 }
20 }

C0 C1

Socket0

C0 C1

C0 C1

Socket1

C0 C1

Figure 3.6: Implementation (left) and graphical representation (right) of a simple
two socket system

link(comp:0,[comp:1,comp:2,comp:3])

To link to subcomponents of other groups the link is defined inside the instance new
comp( ) { link(...)}. The links refer to instances defined in the declaration
of the component. To link to subcomponents of other group the referenced scope
is the container of the instance. This might be the declaration of another group
or the architecture itself. The subcomponent is found by defining a link to its
container and the subcomponent appended to it with a dot. An example of a
simple two socket system is shown in Listing 3.2. The architecture consists of
two sockets with two cores each. These cores are wired cross-wise. The socket
as a hardware component is declared in line 2. They consist of two instances
of the hardware component Core which is a blackbox component (line 7) in this
example. The sockets are instantiated two times (line 11 and line 16). Within
these instances the links are defined. Each core (Core:0 and Core:1) of the first
Socket is connected with the opposite core (Core:1 and Core:0) of the other
Socket (Socket:1). The cores of the second Socket are connected with the cores
of the first socket in the same manner.
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3.2.4 Validation
In this section it will be shown, that the objectives of Section 3.2.2 are fulfilled with
the domain-specific language implemented to model the hardware-architecture.
The examples (Section 3.2.1) have been implemented. To show the Reusability
two architectures that both contain a CortexA9 Processor have been implemented
in the Architecture Description File. The Cortex Architecture is an abstract one,
it is not possible to use it on its own. It consists of an Process Unit and two L1
Caches. When iterating over the caches of each implementing architecture, these
architectures also contain these L1-Caches.
For each component there can be defined some Properties. By implementing the
validator for the domain-specific language it can be made sure, that each hardware
component of a certain type can just define some specific properties (e.g a cache
must define a cacheline-size, but must not define the base address which is inherit
by the corresponding memory).
In most cases the Component Types are directly defined. Memories and Caches
(both labeled with mu) are differentiated by their properties. Iterating over the
different types of components show that each component is correctly associated
with its type.
The correctness of the Hierarchy of components can easily verified by calling the
methods getChildren() and getAllParents() (this returns a list of all parents
and their parents up to a root element)
It can be shown, that all components of a Group can be found in the hardware
model with their correct variables.
It is possible to create Links within the same group as well as between components
of different groups. For now the links have no further use. (See section 5.3.2).

3.3 Registers
Registers are one of the most important components of the hardware. They are
used to store values. They have different sizes, different purposes and are usually
accessed as a whole and sometimes the high or low half. As a special case of the
modeling the registers always belong to an Instruction Set.

3.3.1 Examples
There are two important examples of Register Sets that will be considered here:
ARM-Registers [2] and x86-Registers [10]. The classic ARM Register Set
contains 16 32 bits wide registers (R0 - R15). The last three registers are special
registers (stack pointer, link register and program counter). The Register Set can
be extended by other registers like floating point registers (single and double).
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RAX
EAX

AX
AH AL

63 31 15 7 0

Figure 3.7: The Accumulator Registers of the x86 register set

Figure 3.8: Register Set x86 [10]

All registers can be accessed by aliases when using Assembler Code. To give an
example the stack pointer can either be accessed by sp or r13. The names are
case insensitive.
The x86 Register Set (extended to 64 bits) is shown in Figure 3.8. There are

also general purpose registers (top left) and floating point registers (bottom left).
The registers of the 64 bit extension are marked in gray.
A property of the x86-Architecture is the downwards compatibility. It is always

possible to access the lower parts of the register. Figure 3.7 shows an example for
the x86 Accumulator Registers. RAX is the 64bit-extension of the EAX (32 bits).
Its lower part can be accessed by AX (16 bit). This contains the higher part (AH)
and the lower part (AL), each is 8 bits wide.
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3.3.2 Objectives
The two main objectives for generating code which make it necessary to have a
model of the registers are on one hand to verify the use of registers, on the other
hand to allocate and release registers automatically. Therefore it is necessary to
differ the purpose of the registers and the size. In case of the ARM-Registers
the aliases are an important point: The registers can be accessed by a valid alias
(e.g. stack pointer R13 alias SP). Another purpose of the aliases is to handle the
switch of CPU mode. R13 is valid for USR mode and SYS mode, but not for
the other modes. To reduce this variety these registers should also be accessed by
R13 but automatically substituted by e.g. R13_fiq.
Since there can be a large number of similar registers (like R0-R15) it should be
possible to declare these registers as a single group.

3.3.3 Register Description File Source Code
A register Set in the Register Description File always starts with its name and
has its contents embraced by curly brackets

registerSetName { · · · }

The register defined inside are grouped by their purposes (gp for general purpose,
sp for special purpose, flags, float for floating point registers) and the size in bits
of the registers in this group.

purpose:64 { · · · }

Registers can be defined as single registers, or as a group by using wildcards and
a range. If wildcards are used, this group also needs a name to access them. For
example

general:R%[0..15]

defines the first 16 registers R0-R15 of the ARM-Register Set. Each register
consists of a higher and a lower half, which might be or might not be accessed.
This is done as followed:

Register(high,low)

The high or low part may be empty. Even both parts, but there is no need to add
the parentheses then anyway. As a high or low part there may be accessed either
an explicit range of registers (the range must match the parent register range), a
group of registers (the size of those registers must be half of the parent register
size), or a single register of half size). Registers that are defined directly as a part
of other registers may also contain a high or low part. Registers can be accessed
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Listing 3.3: Floating Point Registers in ARM
Reg {

f l o a t : 32 {
s i n g l e : S% [ 0 . . 3 1 ]

}

f l o a t : 64 {
double :D% [ 0 . . 1 5 ] ( f l o a t : 3 2 . s i n g l e . even , f l o a t : 3 2 . s i n g l e . odd )

}
}

by their purpose, their size and their name or group name. The following example
shows the access of x86 Stack Point Register (32 bit) as lower part of the 64 bit
Stack Point Register.

RSP(,gp:32.ESP)

It is also possible to access just a part of a register group by adding even or
odd. This is needful for registers like the ARM floating point registers. As shown
in Listing 3.3 there are single (32 bit) and double (64 bit) floating point registers.
Two consecutive single floating point registers constitute one double floating point
register. Therefore the higher part of the double register is even, the lower part
the next even register. The double registers are called D, the single registers S.
As a result each register Dn consists of the higher half S(2n) and the lower half
S(2n + 1). This can be realized with the usage of even and odd.

3.4 ISA
The ISA Description File is one of the core elements of the generating process. In
this file the abstract instructions are defined with their corresponding architecture-
specific instruction.

3.4.1 Objectives
In this description file the user defines abstract instructions. The way these in-
structions are called should be the same for each architecture. Defining function-
like code is an easy understandable way of doing this. The function head looks
the same for each architecture, the content differs. The content might be explicit
code (ADD r1, r1, r2) or contain other architecture functions to realize more
complicated structures. As an example the x86 instructions allow much more
addition-instructions, like directly adding a memory address to a register or add
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a constant to a memory address location in one instruction. To realize such be-
havior in the ARM instructions, two or more instructions are needed, like load,
add and store. To later use the abstract assembler code on every ISA, every ISA
Description File should implement all instructions the other do without limiting
the possibilities of any architectures. Therefore it must be possible to implement
instructions that consist of two or more other instructions.
The next point to realize is the handling of operands. An example is to load

the content of a memory address location into a register. The memory address
can be of different natures: Direct addressing with a hexadecimal value (0x...)
or the address of a register (e.g. [R1]). Inserting offsets or register updates can
even change the amount of operands.
The third objective the description file will cover is the definition of control

structures, like simple loops.

3.4.2 Parts of the ISA

These objectives lead to a structure that divides the description file into different
parts: The register definition (Section 3.4.2.1), that structures the declared regis-
ters in a way the instruction set architecture description file can use them. The
definitions (Section 3.4.2.2) that allow to define parameter types more detailed.
The instructions (Section 3.4.2.3), that define the instructions themselves and the
control structure part (Section 3.4.2.1).

3.4.2.1 Registers

At the head of the ISA Description File there is a referenced to the used register
file. As the other description files the ISA Description File is of the structure
name { //content }. Here, one register description file has to be included:

isa_name use register_file.rg { · · · }

This position of the include points out that one and only one Register Description
File is part of this ISA. The registers that can be used a defined in are special
register block. There the registers defined in the Register Description File can
be grouped for own special purposes so that they can be accessed in a most
possible hardware independent way. Two examples are shown in the listings 3.4
and 3.5. In both cases the registers can now be accessed with <reg> but contain
the architecture dependent registers. The keyword any can be replaced by even,
odd or a range(a..b) to access just a part of the registers if it is used for any
purpose.
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Listing 3.4: Isa ARM Register Definition
#register {

<reg_f> any f l o a t : 32
<reg_g> any gp :32
<spe c i a l > any sp :32
<reg> {

<reg_f >; <reg_g>
}

}

Listing 3.5: Isa x86 Register Definition
#register {

<reg32> any gp :32
<reg16> any gp :16
<reg8> any gp : 8
<reg> {

<reg8 >; <reg16 >; <reg32>
}

}

3.4.2.2 Definitions

In the definition section of the ISA Description File #define { } used parameters
can be defined in detail. An important example is the usage of the memory
address. It is not necessary, but common that the memory address consists of two
or even more operands, e.g. a register and an immediate value, e.g. to add an
offset to an address. At this point it is also possible to add additional characters,
like squared brackets. If the memory parameter is defined as followed

<mem> { [<reg>,#<imm>] }

and a register and a constant is passed where a memory variable is expected the
memory variable in the instruction will be distributed by the expression defined
above. The load instruction

load(<reg> r, <mem> m) {LDR r, m}

called with two registers and a constant will create

LDR r, [m0,#m1]

This procedure works in most cases, but there are some limitations: Listing 3.6
shows a scenario where it is not possible to decide which of the addition instruc-
tions will be used. The first step of the code generation regarding to the ISA
Description File is to populate new instructions from such that use operands
declared in the definition section, that can directly be called from the Abstract
Assembler Code with the right parameters. The details are described in subsec-
tion 3.4.3. In this scenario the first addition instruction will remain the same,
because register operands are final, that means they cannot be replaced by any
rules of the definition section. The second addition instruction will populate a
new instruction addition(<reg> r, <reg> m0). This new instruction uses the
same operands as the first one, but creates different content. This new instruction
is shown in the box next to the original code. To avoid using the wrong instruc-
tion the instruction in the Abstract Assembler Code can explicitly be called with
a memory operand as described in section 3.5.
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Listing 3.6: Scenario for non-deterministic instruction definitions
#define {

<mem> {
[<reg >] ;
/ / . . .

}
}

#instructions {
add i t i on (<reg> r1 , <reg> r2 ) {

ADD r1 , r1 , r2
}
add i t i on (<reg> r , <mem> m) {

r2 = new <reg>
load ( r2 ,m)
add i t i on ( r2 , r1 )
s t o r e ( r2 ,m)

}
}

addition(<reg> r, <reg> m0) {
r2 = new <reg>
LDR r2,[m0]
ADD r2,r2,r1
STR r2,[m0]

}

Listing 3.7: Defining Addition for the ARM Instruction Set
1 add i t i on (<mem> m, <reg> r ) {
2 r2 = new <reg_g>
3 load ( r2 , m)
4 add i t i on ( r2 , r )
5 s t o r e ( r2 , m)
6 }

3.4.2.3 Instructions

In this part the instructions themselves are defined. They are like functions con-
sisting of the head, which should be the same in every ISA Description File used
by a project, and a body. The body can be an explicit assembler instruction where
just the parameters are replaced, or a group of one or more other instructions.
These instructions must refer to explicit ones, so the maximum depth is two. This
limitation is made to avoid loops and other unexpected behavior and maintain
the clearness of the code.
An example why it must be possible to group two or more instructions was

given in section 3.4.1. Listing 3.7 shows an example for implementing the addition
instruction. In line 2 a new register is defined. This is an internal register. A
free register (in this case a general purpose register) will be allocated to store
temporary data and will be released afterwards.
There are some situations when it might be useful to just wrap one instruc-
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Listing 3.8: Pattern of a Control Structure
1 #control_structures
2 name(<... > par1 , <...> par2 , . . . ) {
3 //pre−i n s t r u c t i o n
4 CONTENT
5 // post−i n s t r u c t i o n
6 }
7 }

tion into another. As an example x86 does not support Store and Load like
ARM does, the corresponding instruction here is Move. An x86 programmer
uses move(<reg>,<mem>) which wraps store(<reg>,<mem>) in the ARM ISA
Description File, while the ARM programmer uses store(<reg>,<mem>)) which
wraps move(<reg>,<mem>) in the x86 ISA Description File. To get a full hard-
ware independency the defined instruction sets should be equal. Let A be the set
of instructions used for the ARM Architecture and X be the set of instructions
used for the x86 Architecture the optimal instruction sets fulfills

A = A ∩X = X

However each single instruction set can contain special architecture specific in-
structions that are just used for internal purposes, e.g. in control structures or
inside other instructions.

3.4.2.4 Control Structures

There are procedures that are used in a similar way at different parts of the
Assembler Code. An example is a loop structure: The start and the end value are
loaded into registers, a jump mark is set, some instructions are executed, the value
in the start register is increased with a certain step and until a break condition is
reached the execution steps back to the jump mark. The x86 instructions already
implement a loop instruction that can be used in a limited way but in the control
structure part it is possible to define such a procedure just in the way it is needed
by using variable stepsizes and conditions. Listing 3.8 shows the basic-pattern for
defining a control structure. They are similar to ordinary instructions, but contain
the keyword CONTENT. Different to the ordinary instructions the control structures
in the Abstract Assembler Code have some content (see subsection 3.5.2). The
keyword CONTENT is later replaced by this content.

3.4.2.5 Symbols

The last definitions that are made in the ISA Description File are Symbols. The
structure is very strict, there are two types of symbols that have to be defined: The
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Listing 3.9: Isa ARM Register Definition
#symbols {

symbol { "@" }
symbolPtr { "=@" }

}

Listing 3.10: Isa x86 Register Definition
#symbols {

symbol { "SYM␣ (@) " }
symbolPtr { " $␣SYM␣ (@) " }

}

symbol itself defines the syntax of the access to a variable. The symbol pointer
defines the syntax of the access to the address of such a variable. The listings 3.9
and 3.10 show possible implementation for the ARM and x86 ISA. Whenever a
variable is used as a symbol it will be replaced by the content of the symbol, the
@ is a placeholder for the variable name.

3.4.3 Implementation Details
To use the model that is populated by the ISA Description File, there is some
preprocessing necessary. The first step is to extend the implemented instructions
to such instructions, that can be called with real parameters. In the implementa-
tion of the instructions there might be parameters, that cannot be called, but are
defined in the section Definitions. Those parameters have to be resolved before
the instructions can be used. The extension of an instruction is be done in several
steps:
First of all it has to be determined if the instruction is final (the instruction can
directly translate given parameters to operands) or needs to be extended. This
is the case if it uses parameters, that are defined in the section Definitions. The
parameter in this section is defined with one or more rules. For each of these rules
a new instruction is created. An instruction definition consists of two parts: The
head, which contains the parameter, and the body, which contains the instructions
executed when called. Both parts need an update, because the type, and amount
of parameters might differ. In the body some extra characters that might be de-
fined in the rules have to be inserted. The procedure is quite simple: In the head
of the instruction the parameter which needs an update is removed and replaced
by the one or more parameters defined in the current rule. To avoid duplicate
identifiers the position number of the new parameter in the rule is added. The
following example shows the replacement of parameters in the ARM Instruction

load(<reg> r, <mem> m) {...}

which is defined in the #instruction section, with the <mem>-rule

[<reg>,<con>]

and the <con>-rule
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#<imm>

which are both defined in the #definition section, which results in the Instruction

load(<reg> r, <reg> m0, <imm> m10) {...}

At second step the contents of the instruction have to be replaced. The most
easy case is, that the content is the creation of a new register. There are no rules
applied on this register, therefore this instruction remains the same. The second
case is that the content is a direct instruction, e.g.

LDR r, m

Here, the parameter that needs to be updated is replaced by the content of the
rule.

LDR r, [<reg>,#<imm>]

Each reference in the rule to another rule is replaced by the name of the parameter
(including the counter).

LDR r, [m0,#m10]

The third and most complicated case is the replacement of an instruction call.
To simplify the task and to avoid circular dependencies this call must always
refer to a direct instruction. The parameters need to be delegated to this direct
instruction. By using the extension method for this direct instruction, a matching
candidate can easily be found.
When finishing the instruction extension all instruction bodies just contain of
direct instructions.

3.4.4 Validation
To validate the ISA Description File domain-specific language, basic ARM and
x86 instructions are implemented. By translating the ISA Description File to a
new one with extended instructions instead of using the instructions directly there
are two advantages: A visual check of the correctness of the extension is possible
and there is no need to do the extension everytime code is generated. The new
ISA Description File can be used if it is newer than the original file.

3.5 Abstract Assembler Code
The Abstract Assembler Code is the code from which the hardware-specific Assem-
bler Code is generated. Here the defined instructions or control structures from
the ISA Description File are called with some specific parameters.
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3.5.1 Objectives
The Abstract Assembler Code must fulfill the same expressiveness as Assembler
Code. The basic idea is to translate the Abstract Assembler Code directly to
hardware-specific Assembler Code. Every Assembler Code, independent from the
architecture it belongs to, consists of a sequence of instructions to execute. A
sequence of instructions can be accessed by referencing an entry point. This
reference is entered by (conditional) jumps within the Assembler Code, or from
external code.
The objectives of this domain-specific language are quite clear: It must be

possible to call the defined instructs with some parameters. These parameters
can be of different kind:

• constants (mostly Integers or Hexadecimal Values, but also Strings)

• free variables used for automatic register allocation

• existing registers

• symbols

• pointer on symbols

• variables referring hardware specific values

The name of this container is later used as the entry point of the explicit Assembler
Code.

3.5.2 Source Code
The structure of the Abstract Assembler Code is simple. There are containers

container_name { · · · }

which contain instructions

instr_name (par1, par2, ...)

and control structures

cs_name (par1, par2, ...) { // some instructions }

To differ symbols from other parameters they are marked with a dot (.symbol)
or a double dot (..symbol_pointer)
Listing 3.11 shows abstract profiling code that measures the time for executing

a load instruction which loads the content of each memory address within the ad-
dress range of a hardware component into a general purpose register. Listing 3.12
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Listing 3.11: Profiling in Abstract Assembler Code
1 measure_mem {
2 load ( reg i s t e rA , .BENCHMARK_RESULT_ARRAY_START)
3 f o r ( i , baseAddress , endAddress , " l o " , a c c e s s S i z e )
4 {
5 add i t i on ( r eg i s t e rB , r eg i s t e rA , wordLength )
6 readCCStart ( r e g i s t e rX )
7 load ( r eg i s t e rC , i )
8 readCCEnd( r e g i s t e rB )
9 add i t i on ( r eg i s t e rB , r eg i s t e rB , wordLength )

10 add i t i on ( r eg i s t e rB , r eg i s t e rB , wordLength )
11 }
12 }

Listing 3.12: Generated Profiling Code in ARM Assembler
1 measure_mem_RAM_DCache :
2 LDR R3 , BENCHMARK_RESULT_ARRAY_START
3 LDR R11 , #0x40000000
4 LDR R6 , #0x40040000
5 0 :
6 CMP R6 ,R11
7 LDR R5 , [ R3,#4]
8 ADD R4 ,R4 ,R5
9 MRC p15 , 0 ,R2 , c9 , c13 , 0

10 DSB
11 STR R2 , [ R3 ]
12 LDR R8 , [ R11 ]
13 MRC p15 , 0 ,R10 , c9 , c13 , 0
14 DSB
15 STR R10 , [ R4 ]
16 LDR R7 , [ R3,#4]
17 ADD R3 ,R3 ,R7
18 LDR R12 , [ R3,#4]
19 ADD R3 ,R3 , R12
20 ADD R11 , R11,#256
21 BLO 0b

Figure 3.9: Abstract and Generated Code for the ARM profiling code
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shows the generated Assembler Code for a Data Cache of an ARM Architecture.
Even this small example shows the effectiveness of the Abstract Assembler Code:
The Assembler Code is nearly as twice as long, corresponding registers are hard
to see and recurring variables like wordLength are just defined once (in the archi-
tecture description).

3.5.3 Specific features
Even though the Abstract Assembler Code should be directly translated into As-
sembler Code one simplification is made. Frequently recurring structures (e.g. for
loops) are defined as control structures within the instruction set, therefore a two-
step translation is made: A resolution of the control structure to its containing
instructions with given parameters and the generation of Assembler Code itself.
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4 Code Generation
The final goal of this work is to generate Assembler Code that is used as Operating
System Code. It is also possible to generate any Assembler Code with hardware
specific components (e.g. profiling). For this purpose, the domain-specific lan-
guage framework provides a generator which can easily create any text file. The
input of this file is generated from the description files declared before. In a special
generator file (see Section 4.1) a setup for which code should be generated is done.

4.1 The Generator File
The generator file is a configuration file which can be (for now) of two forms:
XML and JSON. To add new configuration types easily this has been implemented
intern as a new domain-specific language. It is possible to add new types just by
modifying the grammar file. The grammar elements

XArchitecture returns GenArchitecture:{ · · · }

and

JArchitecture returns GenArchitecture:{ · · · }

create the Meta-Model Class GenArchitecture. There is no need to define some-
where which of these configuration types is used, the generator-configuration can
just be implemented in the favorite style. The structure of the configuration is
shown in Figure 4.1. Attributes of components are shown in squared brackets,
the asterisk indicate that there are more than one component possible. Using an
architecture for code generation is optional.
The detailed usage of the architecture model is described in Section 4.2.3 All files
in this configuration files are only referenced by their names. There are no relative
of absolute paths. Therefore every filename must be unique.

4.2 Preprocessing
Before the code is actually generated there is some preprocessing necessary. First
of all, all required resources must be loaded. When starting the generator outside
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generate[name]

asm

file[filename]

isa

file[filename]

architecture

components

component[name][block]*

file[filename]

Figure 4.1: Configurate the Generator

from Eclipse, the generator does not know about any resource than the genera-
tor file itself. To every resource belongs a resource-set which carries information
about which resources are known to the current one. This is necessary to resolve
cross-references between different resources. The generator needs to know about
the Architecture Description File, the ISA Description File and the Abstract As-
sembler Code. An Architecture might include other Architecture Description Files
and the ISA Description File needs to know about the Register Description File.
After loading all resources, they need to be validated. Every domain-specific lan-
guage needs to provide its own resource. All domain-specific language have to
implement the interface defined in the Libinstance to create a resource from a
given path and validate this resource. The problem of this procedure is that a
resource can only be validated, after all its subresources have been loaded. Be-
cause this resource may be corrupt there should be as less access on its contents
as possible before validating. The only operation made on a resource before this
validation is to find the filenames of its possible subresources to load and validate
them. The validation of the resource is then done as soon as all subresources have
been loaded and validated. It is therefore useful not to create too deep hierarchies.
The framework provides three methods for preprocessing, processing and postpro-
cessing: beforeGenerate(), doGenerate(), afterGenerate(), but only the
first two are implemented now. Possible postprocessing might be the deletion
of no longer needed temporary files or a further processing of results created by
the execution of generated assembler code (for future work see section 5.3).
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4.2.1 ISA-Preprocessing
The first operation which is done in the preprocessor is the creation of a new ISA
Description File. It is possible to do the ISA preprocessing without creating a
new file, but there are two advantages to do so: First there is no need to run the
ISA preprocessing everytime the generator is started and second the generated
file can be used again until it is older than the original ISA resource in which
case it has to be regenerated. This saves up to 40% of preprocessor runtime (See
subsection 5.2.1). The details of the ISA preprocessing have been described in
Section 3.4.3.

4.2.2 Register Allocation
To have an overview which registers are free for use and which contain important
information, the predefined registers need to be allocated. First the registers
are ordered in the groups the ISA Description File uses. They are stored in
a map with the register itself as the key and a list of the groups as its value.
The AllocatedRegister-Class provides several methods to access registers by
their name, their group or their alias. The next step is to allocate directly used
registers. They are directly used, if the Abstract Assembler Code uses the name
of a register or its alias. For each allocated register now or later a new instance of
a InternalRegister is created and stored in a list of the AllocatedRegister-
Class. The InternalRegister contains the name, the alias or aliases and the
scope in which this register is used. As a scope the hashcode of the containing
object is used. It prevents from wasting registers so they can be allocated in
different contexts. All other registers, which are not used explicitly are allocated
on demand while generating the code.

4.2.3 Using the Architecture Model
If the generated code is dependent on a hardware architecture the configuration
component architecture must be defined. It is now possible to use parameters
defined by the architecture description (e.g. wordlength) within the Abstract As-
sembler Code. Further usage is the iteration over hardware components. Therefore
the components are defined within the configuration. It contains a name, which
is one of cache, mu, pu or io. If using them a concrete Assembler Code block
which must be inside the Abstract Assembler Code file used in the configuration is
executed for each component of the given type. For each instance of a component
of this type a new temporary Abstract Assembler Code file is generated which
contains the same code of the origin Abstract Assembler Code file with concrete
values for possible variables. With this technique special Assembler Code which
refers to a concrete hardware component can easily be generated. This is espe-
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cially then useful, if similar code (e.g. which just differs in address ranges) for a
large amount of different hardware components is needed. The new name for this
block is of the structure

orginalName_[muName_]componentName.

Special types require special processing. Caches always belong to a memory unit,
therefore a new block is generated for each memory unit. All blocks are stored in
the same file. The generated files (for all types) can be found at

tmp\architectureName\type\orignalName_componentName.aS.

Each of these files creates an own Assembler Code file of the same name.

4.3 Processing
After the preprocessing is done, the Assembler Code can be generated. All instruc-
tions in the Abstract Assembler Code (also the new created) need to be replaced
with the real instructions. The class ParameterMapper provides some methods
to determine a matching instruction from a group of candidates and finally build
the instruction by replacing parameters and allocate registers. Candidates are at
first all instructions provided by the updated ISA Description File with the same
name as the calling one. Then all candidates with non-matching amount and type
of parameters are eliminated. It is possible that more than one candidate is left.
For now two rules of choosing the right one is implemented. The first one prefers
the candidate with less replacement steps. Replacements using rules with final
operands are referred to those which are using rules that need replacements again.
The second rule prefers the candidate with less replacements. Here instructions
with less non-final operands are preferred to those with (originally) more non-final
operands. Currently the first one is used. After finding one candidate, the final
instruction is built. First of all all new created registers within the instruction
must be resolved: The next free register of the right type is found in the register
list and is allocated. The register name is replaced in the final instruction. After
finishing the processing of the instruction it is released again. For each parameter
the corresponding parameter in the instruction code must be replaced by the given
value. If this value is a symbol, it is also necessary that the symbol-code defined
in the ISA Description File is used. If the value is a register which has not been
allocated before, because it creates a new register, it is also necessary to allocate a
new and free register. The allocation process is the same as in the preprocessing,
the variable name is used as an alias so the same register is always used for the
same variable. Finally the register names are replaced with the given values.
Figure 4.2 shows the interaction between the single components, the prepro-

cessor and the generator. Preprocessor actions (extract the resources from the
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GenConf PP PP
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Figure 4.2: Interaction between the components and the generator / preprocessor

Generator Configuration File, resolve the instructions and include the architec-
ture) are marked with PP, the generation of the final Assembler Code (asm) is
marked with G. Underlined names mean that more than one resource can be cre-
ated. The red path is optional. In the first step of preprocessing (first PP block on
the left) the ISA Description File and Abstract Assembler Code file (and optionally
the Architecture Description File) that are defined in the Generator Configuration
File are loaded. The ISA Description File is directly processed and passed to the
generator. The Abstract Assembler Code is also directly passed to the generator.
If there is an architecture defined in the generator the corresponding Abstract As-
sembler Code files are generated by the preprocessing process visualized by the
red PP block and passed to the generator. For each of the Abstract Assembler
Code files one hardware dependent Assembler Code file is generated.

4.4 Examples
To show the process of an instruction through the generation a minimal example
has been implemented. The setup is an architecture with one RAM and one L1
cache, 16 registers (R0-R15) with their aliases R_alias0 - R_alias15, and an ad-
dition and a load instruction. There are only the registers with an even number
used by the ISA Description File.

4.4.1 Creating Code without including the Architecture
In the first scenario the architecture is not used, the only instruction called is
add(<reg> r, <mem> m), where <mem> is defined as [<reg>,#<imm>]. The pro-
cedure (graphical representation of the preprocessing in Figure 4.3) is the following

1. load and validate necessary resources

2. extend ISA Description File (see subsubsection 4.4.1.1)
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Create
ISA De-
scription

File

#i n s t r u c t i o n s {
l o a d (<reg> r ,<mem> m)
{

LDR r , m
}

}

#i n s t r u c t i o n s {
l o a d (<reg> r ,<SYM> m)
{

LDR r , m;
}

l o a d (<reg> r ,< reg> m0,<imm> m1)
{

LDR r , " [ "m0" ,#"m1 " ] " ;
}

l o a d (<reg> r ,< reg> m0)
{

LDR r , " [ "m0 " ] " ;
}

}

make
Registerlist

R0 as R_a l i a s0 −> [< reg >]
R2 as R_a l i a s2 −> [< reg >]
R4 as R_a l i a s4 −> [< reg >]
R6 as R_a l i a s6 −> [< reg >]

. . .

allocate
Registers

R8 as R_a l i a s8

Figure 4.3: Flowchart of the preprocessing of a minimal platform.

3. group registers as defined in ISA Description File (see Figure 4.3 middle):
In this example there is only one group with all 32bit-wide general purpose
registers with an even number (R0, R2, ..., R14).

4. allocate directly used register (see Figure 4.3 bottom):
The only directly accessed register (R8 as R_alias8is allocated as described
in Section 4.2.2.

5. end of preprocessing

When processing the code a new Assembler Code-File with the name given in
the generator is created. The Abstract Assembler Code is the following:

example { load ( r , r_al ias8 , 0) }

From all instructions defined in the new ISA Description File those with the name
load are possible candidates.

1. eliminate all candidates with a wrong amount of parameters
One candidate left: load(<reg> r, <reg> m0, <imm> m1)

38



4.4 Code Generation

2. check type of parameter: All parameters (two registers and one immediate
value) are matching

3. build the assembler instruction. For each parameter in the instruction there
must be a corresponding parameter when calling the instruction
a) non-allocated, non-defined register

The variable in the final instruction is replaced with the recently allo-
cated register. Allocated registers can differ from generation to gener-
ation

b) allocated register
The register is used with a predefined alias and replaced with the name
of its real register

c) immediate value
remains the same

With the following the steps above the Abstract Assembler Code
example { load ( r , r_al ias8 , 0) }

and the instruction definition
load(<reg> r , <reg> m0, <imm> m1) { LDR r , " [ "m0" ,#"m1 " ] " }

with the following replacements

r ⇒ some random free register, e.g. R2
m0 ⇒ R8
m1 ⇒ 0

finally creates the Assembler Code
example :

LDR R2 , [ R8,#0 ] .

4.4.1.1 extend ISA Description File

When creating the extended ISA Description File there are two modifications
made.

1. Insert symbols:
The definition of symbols are necessary for the processing. If they are not
defined they are declared to just provide the variable itself by inserting the
symbols block

#symbols {
symbol { "@" }
symbolPtr { "@" }

}

39



Code Generation 4.4

2. Include resolved instructions:
For every rule (in this example 2) in the definition of <mem> a new instruction
is created. (See details in Section 3.4.3). The original instruction is kept with
changing the <mem> to <SYM>: It is always possible to use the instruction
with a symbol instead. The original and extended instructions are shown in
the top middle and top right block of Figure 4.3.

3. Delete the definition section. There is no further use for it

4.4.2 Creating Code including the Architecture
To include the Architecture into the Code Generation the following modifications
are made: The Architecture-Configuration is added to the Generator Configura-
tion File.

<ar ch i t e c t u r e>
< f i l e>plat form . arch</ f i l e>
<components>

<component name = " cache " block = " example " />
</components>

</ a r ch i t e c t u r e>

Second the constant "0" in the Abstract Assembler Code is replaced by the variable
"size".

example { load ( r , r_al ias8 , s i z e ) }

The Architecture Description File platform.arch is the following:
Platform#4 {

mu L1 :RAM {
s i z e : 32K
ac e s s S i z e : 8

}

mu RAM {
baseAddress : 0 x1
s i z e : 2G

}
}

When starting the generator the preprocessing is done as in the former example,
just the generation of the extended ISA Description File is skipped because there
were no changes in the original ISA Description File. Now for all components
defined in the generation there are new temporary files with Abstract Assembler
Code generated as described in Section 4.2.3. In this example there is only one file
created, because there is only one cache L1 defined in this minimal architecture.
The name of the new file is example_L1.aS, the generated code-block (just one
for one memory belonging to the cache) is now example_RAM_L1. Instead of size,
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the size of the cache is inserted. It is 32 kB which results in a size of 262.144 bit.
In the generation process itself there is first Assembler Code for these new files
created. The code contains specific architecture-specific variables, otherwise there
would also be the standard-code of the former example created.
The modified instruction now results into the Assembler Code

example_RAM_L1 :
LDR R2 , [ R8,#262144 ] .
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5 Conclusion

In this chapter it will be shown that the previous work fulfills the set targets.
Therefore the Architecture Models of two different platforms are implemented
and integrated into the operating system CyPhOS. It will be evaluated how much
effort is required to integrate the system on the one hand and how much effort
of coding is saved on the other hand. It will also be evaluated how much the
additional runtime which is used to generate the code influences the total runtime
of compiling the whole operating-system code. In the end of this chapter and this
thesis some possibilities of future work are worked out.

5.1 Including the code into an environment

The testing environment is described detailed in section 2.3. The project itself
consist of two parts: The Generator on one hand and the Architecture Description
File, ISA Description File, Register Description File and Abstract Assembler Code
on the other hand. The Generator is packed into an executable jar-File, the
editors which the framework creates from the other domain-specific languages
are added to an update-site and can be used as an Eclipse Plugin. While using
the editors the xtext-nature has to be enabled for the project. The Description
Files can be put anywhere in the project. There are two generator files, one
for the Exynos4412 architecture and one for the PowerEdge R820 Rack-Server.
In both configurations the output name is profiling. This profiling code is
executed for all caches, the corresponding block in the Abstract Assembler Code
profiling.aS is called measure_mem. In this piece of Assembler Code a whole
cache line is measured across the whole address range of the cache or the RAM.
The Generators are executed from theMakefile with both Generator configuration
files as its arguments. The name of the generator Figure 5.1 shows the hierarchical
structure of the output files.
The generated files have to be integrated into the build infrastructure of the

used system. This system needs to know the entry points of the generated As-
sembler Code and execute it on the corresponding CPU. This takes minimal effort
depending on the system in which to integrate.
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src-gen profiling

exynos4412

m_m_DCache.S

m_m_ICache.S

m_m_L2.S

r820 m_m_smartCache.S

Figure 5.1: Hierarchy of the Output Files

5.2 Evaluation of target objectives

5.2.1 Runtime
The runtime of the project is analyzed under three different aspects:

1. External vs. Internal Code Generation
The external code generation is a stand-alone solution. The generator is
packed into an executable jar archive that is executed external. For the in-
ternal code generation the same code is executed from the Eclipse Launcher.

2. Dedicated vs. Embedded Generator Code
The dedicated generator code is an Eclipse project which just contains the
files of the domain-specific languages. In the embedded generator these files
are part of a bigger project, the Operating System Code of CyPhOS. This
scenario will test how much time the recursive resource search (section 4.1)
will cost on large projects.

3. Reusing the precreated ISA File (subsection 4.2.1)
Reusing the extended ISA Description File saves time. It is analyzed how
much time it saves.

To measure the runtime on the aspects above, each aspect is combined with each
other and analyzed for the generation of ARM -specific and x86 -specific Assembler
Code. Therefore there are 24 = 16 different scenarios. It is measured how much
time is used to load the used resources, to do the preprocessing and the code
generation itself.
Table 5.1, Table 5.2, Table 5.3 show the results of the different measurements.

Each aspect (internal, external, dedicated, embedded, reuse isa and create isa) is
part of eight scenarios. The values in the table are the average times in millisec-
onds. Calculated values (Σ and saves) are calculated from non rounded values,
therefore they might differ from calculating with rounded values.
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intern extern saves
load 890.45 8942.19 90.04%
pp 1186.78 2071.21 42.70%
gen 457.14 5636.16 91.89%
Σ 2534.36 16649.56 84.79%

Table 5.1: intern vs. extern

ded. emb. saves
load 4953.34 4879.30 -1.52%
pp 1625.00 1632.99 0.49%
gen 3075.65 3017.65 -1.92%
Σ 9653.99 9529.94 -1.30%

Table 5.2: dedicated vs. embedded
reuse create saves

load 4873.85 4958.78 1.71%
pp 1466.02 1791.96 18.19%
gen 3056.78 3036.51 -0.67%
Σ 9396.66 9787.26 3.99%

Table 5.3: reusing isa file

From Table 5.1 one can see it is obviously better to keep the generator integrated
in Eclipse. This has to be considered when creating a plugin (subsection 5.3.3).
Against the assumption it takes longer to find files in a large project (see Ta-

ble 5.2, row load), the dedicated generation is a bit slower. There is no difference
where in the file hierarchy of the os code the domain-specific language files are.
However the differences between the runtime of the dedicated and embedded sce-
nario are so little that they can be said the same under consideration of a certain
variance.
As expected the reuse of the extended ISA Description File (Table 5.3) saves

runtime: 4% in average, 18% during the preprocessing. Running the x86 code
generator embedded in the operating system code intern from Eclipse saves 15%
of total runtime and more than 39% during the preprocessing.

5.2.2 Complexity
A main target of the project is to reduce the complexity. It is hard to compare the
costs of writing an ISA Description File to writing Assembler Code. To simplify
the calculation of complexity some simple assumptions are made:

• all tasks implemented by Assembler Code (e.g. clearing the bss segment
on startup or the profiling code (Listing 3.11 and Listing 3.12) are of same
complexity

• implementing an ISA Description File for an architecture is as k as complex
as implementing one task in Assembler Code.

• implementing a task in Assembler Code is as complex as implementing it in
Abstract Assembler Code.
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Let n be the number of different architectures and m be the number of tasks which
have to be generated, then the complexity of writing Assembler Code for each of
these architectures is n+m. If the code generation is used instead, the complexity
is k · n + m. The complexity of code generation is smaller than the complexity of
handwritten Assembler Code if

k · n + m < n ·m

For a constant number of architectures the code generation is profitable if

m >
k · n
n− 1

For a constant number of tasks the code generation is profitable if

n >
m

m− k

It must apply that m > k to achieve feasible results here, however this is obvious.

5.3 Future Work
Working with domain-specific languages offers a large variety of possibilities to
implement. These are the expressiveness of the domain-specific language itself, the
processing of the generated models and the IDE for the domain-specific language.
In this section possible future work on each of these three aspects are discussed.

5.3.1 Extending the domain-specific language
Because the domain-specific language is set on top of the populated model, an
extension of it means an extension of this model.
For now the Architecture Description File is able to differ between three types

of hardware components: Caches, Memory Units and Processor Units. More
component types (e.g. i/o) can be implemented in the future. (For now it is
possible to use the keyword io but with no effect). The Generator Configuration
File has to be extended for a more efficient code generation. For now just one file
of Abstract Assembler Code can be processed at once. New types of configuration
files can also be simply added with no big effort.
The expressiveness of the Abstract Assembler Code is very limited. It is not

possible to use loops to execute an instruction or a group of instructions several
times. Neither it is possible to use arithmetic options. These operations can
become quite complicated to implement. It should be reflected on building the
Abstract Assembler Code as an internal domain-specific language to use existing
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language elements, but even then it is not common to use language elements
like loops and conditions. The danger is to turn the domain-specific language to a
general-purpose language and it is not necessary to create more expressiveness than
the Assembler Code itself. The Abstract Assembler Code is directly translated to
Assembler Code and in principle it is possible to translate it directly into machine
code. (For debugging purposes this option is set aside.)

5.3.2 Extending the model
As described in the previous section, the extension of a domain-specific language
already means the extension of the model. This section covers the aspects which
can not be described by the grammar which is designed for the language like
adding new methods to the metamodel and extending the generator.
A big aspect which can be described in the architecture model precisely but

are not considered any further now are the links and buses between components.
The research operating system CyPhOS needs detailed knowledge about these
connections between components, but it is currently not possible to use these
information while generating code.
To use these information it is probably not any more sufficient to generate some

Assembler Code. When extending the generator it will become possible to generate
any source code and transfer the hardware model into a C++ class hierarchy.

5.3.3 Creating an Eclipse Plugin
The framework Xtext (subsection 2.2.2) already supports the basic implementa-
tion of an Eclipse Plugin. The correct representation of the outline for the editors
is mostly implemented by now, but there are still a lot of possibilities for features
that can be implemented. Some are provided by the framework already such as
the outline (structure as well as labeling), code validation (the syntax validation
has been created by the grammar, the semantic validation is partly implemented
but not exhaustive now) and a proposal provider. Other features can be imple-
mented with all known tools from the Eclipse Plugin Development Environment.
Sensible features will be wizards for new files or a group of files and a debugger.
As described in former chapters the path of an abstract instruction to an assem-
bler instruction is long, winded and it is possible to implement non deterministic
instruction sets.

5.3.4 Performance
The runtime measurements show that it is necessary to integrate the generation
process into the Eclipse environment. Different changes are not necessary. There
are surly some parts of the code that can be optimized but this will only speed
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Figure 5.2: Backpropagation of operation results

up the generation process for some milliseconds. The code generation is not used
anywhere at runtime, but within the compiling process of operating system code.
The average time for the code generation (internal) is about 2.5 seconds on a 32
core machine (Intel Xeon CPU E5-4640 at 2.4 GHz clock speed). As a comparison
the build of a minimal configured Linux Kernel takes about 1 minute on the same
machine. A save of some milliseconds in the generation process will not change
much about it.

5.3.5 Further aspects of future work
To avoid the usage of instructions that have not been defined in the instruction
set (which is hard to validate, because the ISA Description File and the Abstract
Assembler Code are on the same layer and do not know each other) this validation
has to be made on the Generator level. A simple validation is already made,
but it only respects the keywords of the instruction, not the parameters. The
missing instructions are neither marked in the Abstract Assembler Code editor.
As a possible feature a list of subsets of instructions which are defined in every
ISA Description File can be created to find out which instructions are safe to use
in the Abstract Assembler Code.
The research operating CyPhOS needs information about the access time on

memory. For this purpose profiling code has been implemented in the Abstract
Assembler Code. In the future, the results of such measurements have to be
automatically fed back into the hardware model. A possible solution (Figure 5.2)
is added to the generator interaction graph of Figure 4.2. When executing the
Assembler Code (e.g. time measuring), the resulting values (measured time) is
inserted to the architecture model and can be used for further processing.
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