
Masterarbeit

Laufzeitüberwachung eingebetteter
Systeme zur Detektion von

Softwarefehlern mit AspectC++

Software-Fault Detection in Embedded
Systems by Runtime Monitoring with

AspectC++

Simon Dierl
21. August 2018

Betreuer:
Prof. Dr.-Ing. Olaf Spinczyk
M. Sc. Ulrich Thomas Gabor

Technische Universität Dortmund
Fakultät für Informatik
Lehrstuhl 12
Arbeitsgruppe Eingebettete Systemsoftware
https://ess.cs.tu-dortmund.de

Abstract

In the development and maintenance of software, the localization of the root cause
of bugs is challenging and time-consuming. Spectrum-based fault localization
automates identification of root causes by analyzing a set of test runs. Execution
of the runs has to be triggered manually.

To automate the process, this thesis employs automation to gather relevant in-
formation from a single continuous execution. The automation is extended to
operate without domain knowledge by inferring models from well-behaving software
and detect deviant behavior by runtime model checking. To this purpose, driver
interaction models are introduced to describe the interactive behavior of drivers
and peripheral components.

Empirical examination demonstrated the feasibility of the approach. Driver in-
teraction models were able to detect over 50% of the introduced defects and
spectrum-based fault localization was subsequently able to identify the defect’s
location with near-perfect accuracy. Domain-agnostic approaches appear to be a
useful extension to spectrum-based fault localization, while the technique itself is
applicable in embedded scenarios. The applications of driver interaction models
warrant further study.

Contents

1 Introduction 1
1.1 Objectives . 3
1.2 Contributions . 3
1.3 Structure of this Work . 4

2 Spectrum-Based Fault Localization 5
2.1 Standard Terminology for Defects 5
2.2 Basic Concepts . 7
2.3 Suspiciousness Metrics . 8
2.4 Method Call Sequence Hit Spectra 10
2.5 Parameter Classification . 11
2.6 Thread-Aware Analysis . 12

3 SBFL in Long-Running Systems 13
3.1 Oracles and Transaction Detectors 13
3.2 Software Behavior Graphs . 14
3.3 Driver Interaction Models . 15
3.4 Learning DIMs . 18
3.5 Timer-Based Transactions . 21
3.6 Failure-Specific Analysis . 21

4 AOP-Based Instrumentation 23
4.1 Basic Concepts . 23
4.2 AspectC++ . 24

5 Implementation 27
5.1 Architecture . 27
5.2 Framework Architecture . 28
5.3 Communication Protocol . 35
5.4 Data Structures . 36

6 Deployment on CyPhOS 41
6.1 Host Platform . 41

Contents ii

6.2 CyPhOS-Specific Oracles and Transaction Detectors 44
6.3 Generic Oracles and Transaction Detectors 45
6.4 Issues and Workarounds . 46

7 Evaluation 49
7.1 Informal Observations on DIMs 49
7.2 Basic Concepts . 50
7.3 Fault Synthesis . 51
7.4 Experiments . 53
7.5 Memory Requirements . 59
7.6 Threats to Validity . 60

8 Related Work 63
8.1 Model-based Diagnosis . 63
8.2 Optimal Suspiciousness Metrics 64
8.3 Fault Localization in Embedded Devices 64
8.4 Energy Consumption Models . 65
8.5 Learning Cache Replacement Policies 65

9 Conclusion 67
9.1 Results . 67
9.2 Future Work . 68

Glossary 71

Acronyms 75

Bibliography 77

Appendix 85

List of Figures 93

List of Listings 95

List of Tables 97

Eidesstattliche Versicherung 99

Chapter 1

Introduction

Since the first program was written, bugs have been a steady companion to software
developers. In her notes accompanying a 1842 translation of Menabrea’s paper on
the subject, Ada, Countess of Lovelace, famously proposed a set of computations
that could be run by Charles Babbage’s analytical engine, a mechanical, Turing-
complete computer that only existed as a set of sketches [Men42]. Since her work
predates the first operational computer by about a century, she is regarded as the
first computer programmer.

In her Note G, a program to compute Bernoulli numbers is described. The program
is reproduced in Figure 1.1. In the “Statement of Results” column, it can be seen
that step 4 is supposed to compute 2n−1

2n+1 . However, the operation in the third
column interchanges the source registers, accidentally computing 2n+1

2n−1 .

After computers came into widespread use, a plethora of approaches to avoid
the introduction of bugs or reduce their severity were tried, but either fell short
of their goal or have not yet gained widespread adoption. In the meantime, an
immense corpus of software has been developed that most certainly does contain
bugs. Newer software builds on older solutions, relying on their correctness. This
amplifies the impact of bugs in these foundations.

While the idea of rewriting all legacy software, “doing it right this time”, might be
appealing to debug-weary software developers and users worrying about the safety
of their data, it is most definitely not feasible. However, it might be possible to
reduce the amount of bugs in existing software to achieve the same goal.

Techniques to identify and eliminate bugs already exist. Commonly, debuggers
are used during the development of software to observe the execution of programs,
attempting to discover bugs in the process. The discovery of bugs during production
use is often aided by the creation of log files that might reveal both an error and
its cause during later analysis.

Unfortunately, these approaches consume scarce developer time. A human either
has to operate a debugger or interpret log files, and then delve into source code to

Introduction 2

Figure 1.1: Ada, Countess of Lovelace’s program to compute Bernoulli numbers1

locate a bug. Additional roadblocks to debugging might be hard-to-read legacy
code, unusual coding conventions and lack of architectural knowledge.

Even without these obstacles, finding the bug is hardly guaranteed. A log file
might omit relevant information due to storage constraints. If the bug only occurs
in a specific environment, e.g., due to being triggered by a specific combination of
input data, debugging can only be performed in a faithful emulation of this setting.
Infrequently triggering bugs would require debugging sessions over a time span
of hours or even days. In the worst case, the presence of a debugger or detailed
logging might even suppress the bug.

Such hurdles to debugging and logging are more common in low-level software,
e.g., operating systems and software running on embedded devices, although they
are hardly exclusive to it. However, most approaches suited to embedded systems
can scale up to more forgiving environments.

This thesis presents a different approach to localizing bugs that can meet those
challenges. By automating monitoring of a system over long periods and automati-
cally suggesting likely causes of a bug, manual work can be reduced and developer
time saved.

1Digitization from The Erwin Tomash Library On The History Of Computing, https://
www.computer.org/cms/Tomash catalog web/index.htm.

3 Objectives

1.1 Objectives

A framework for the localization of bugs that implemented this approache was
developed for this thesis. It is capable of monitoring a system during its run time,
collecting information about it and creating a report from the processed data that
can be displayed to a human developer. To guide implementation and development,
four major objectives were defined, outlining the requirements the framework must
satisfy.

The first requirement is that the framework should assist in the localization of
bugs. By providing accurate suggestions on locations in a program’s source code
where a bug might originate, developers can focus their efforts on these locations,
skipping unrelated components. This objective was achieved using spectrum-based
fault localization. Some extensions to the process are investigated for the thesis.

Classic spectrum-based fault localization is not suited to localize bugs in long-
running system due to requiring occasional manual intervention. To save valuable
developer time, analysis should instead be performed autonomously over an
extended time period; human labor should only be required to analyze the results,
not gather them. Autonomy was achieved using generic analysis components,
oracles and transaction detectors, that were created using machine learning.

Since the framework explicitly targets existing and even legacy software, the
analysis framework must be retrofittable into preexisting software with little
effort. Ideally, the software under examination should require no modification, in
practice, small and localized changes might be unavoidable. Since certain bugs
might be obscured by invasive diagnostics, this gathering of information must be as
non-intrusive as possible. This requirement was satisified using aspect-oriented
programming techniques.

In privileged operating system code, a bug can easily corrupt unrelated data or
require a hardware reset to restore functionality. To facilitate analysis of such
bugs, the analyzing system must operate in isolation from the diagnosed system
to maintain integrity of the stored information. Since this isolation can not be
guaranteed on the same system, physical isolation – separation of examined and
analyzing system – was necessary.

1.2 Contributions

Three novel contributions to the state of the art are presented in this thesis:

1. The extensions to spectrum-based fault localization, with the exception of
method call sequence hit spectra, have not previously been discussed.

Introduction 4

2. The use of generic, machine-learned oracles and transaction detectors is a
new approach. The driver interaction models used as generic oracles are a
novel method for modeling the communications between a driver and the
managed periphery.

3. An autonomously operating fault localization framework using embedded
devices has not yet been investigated; past approaches were limited to fault
localization with major human involvement.

1.3 Structure of this Work

This thesis is structured into nine chapters. Chapter 2 describes the use of
spectrum-based fault localization to pinpoint bugs. These ideas are extended to
long-running systems in Chapter 3. Chapter 4 then outlines how analysis data can
be acquired using aspect-oriented programming.

These foundations having been laid, Chapter 5 describes the implementation of the
analysis framework using these concepts; Chapter 6 then outlines the integration
into the operating system CyPhOS and the issues encountered.

Chapter 7 details the experiments used to evaluate the work and outlines the
results, followed by a discussion on related work that was not adapted for this
thesis in Chapter 8. Finally, in Chapter 9, conclusions from these results are drawn
and an outlook on future work is given.

Chapter 2

Spectrum-Based Fault Localization

This chapter discusses the use of spectrum-based fault localization to the localize
bugs. First, a standard terminology to formalize the notion of “bugs” will be
introduced, then, the fundamentals of spectrum-based fault localization and how
it was applied in the scope of this thesis are described. Finally, three extensions to
the process are presented.

2.1 Standard Terminology for Defects

Avižienis et al. provide a standard terminology to formally describe “buggy software”.
Using this terminology, a system [Avi+04] is an entity (e.g., a program) that
interacts with other entities. These other entities might be other systems, human
users, hardware etc. A system can often be broken up into smaller systems,
components [Avi+04].

The intended operation, including functionality, performance, etc., of a system is
called its function [Avi+04]. In contrast to this, a system’s behavior [Avi+04] is
its actual operation, i.e., the implementation of the desired function. The part of
the behavior that can be perceived by a system’s users is called service [Avi+04].

As an example, assume that an array-backed list class for use in a collection library
is being implemented. In this case:

• the system is the list implementation,

• the list’s function comprises the intended semantics of the list’s operations,
e.g., adding and removing of elements, but also the storage implementation
hidden from a user,

• the list’s behavior comprises the semantics “as programmed”, including the
implementation of its operations, but also routines for on-demand storage
enlargement, and

Spectrum-Based Fault Localization 6

• the service comprises the semantics “as programmed”, except for the internal
state.

Having formalized a concept of “software” and its intended operation, the notion
of “bugs” can be replaced by more precise terms separating cause and effect. A
failure [Avi+04] occurs when a system’s service deviates from the service intended
in its function. Meanwhile, a fault [Avi+04] is the cause of a failure. Fault
localization [Avi+04] attempts to pinpoint the root cause of an observed failure,
i.e., find the underlying fault.

To continue the previous example, assume that the list implementation erroneously
ignores removal operations. Then,

• the fault is located in the code that is supposed to handle removals, but

• the failure only manifests when a client recovers an element from the list
that had previously been deleted, and

• fault localization would then try to locate a function or even line of code in
the removal code that causes this failure.

While this terminology is applicable to a many types of system, this thesis con-
centrates on programs that can be separated into components such as modules,
functions, lines of code or statements.

For added clarity, a program’s execution will be referred to as a run and the
program as running. A run begins with the program’s start and ends with its
termination, if at all. The term execution shall be reserved for components.
During a program’s run, some or all of its components are executed one or more
times.

If a program’s run is recorded, the chronological sequence of all component’s
executions1 is called the run’s trace [DLZ05]. A trace of the sequential executions
of the components A, B and C is written as

〈A,B,C〉.

As an additional convention, if a failure is observed during a program’s run, this run
is called failing, otherwise succeeding. These terms also apply to a corresponding
trace. Components that contain a fault are called faulty.

This terminology allows for a precise description of a “bug”, its cause, effect and
location.

1Considerations for multi-threaded programs will be discussed in Section 2.6.

7 Basic Concepts

2.2 Basic Concepts

Spectrum-based fault localization (SBFL) exploits the fact that if a failure
was observed during a program’s run, at least one faulty component must have
been executed and must therefore be present in the run’s trace.

A single trace only permits the conclusion that components that were not executed
can not have contributed to the failure. The combination of data from multiple
failing and succeeding runs allows to pinpoint the faulty component further. SBFL
assumes that, when examining a set of traces, the execution of a faulty component
is correlated with the observation of a failure.

To study this correlation, the components executed during a run need to be
recorded. Given a program separated into k components C0, . . . , Ck−1 that was
run a single time, a vector S ∈ {0, 1}k

Si = 1 ⇐⇒ Ci was executed

that records which components were executed at least once is called the run’s
spectrum [Rep+97]. Next, a recording of the failures is needed. If the program
was run ` times, a vector e ∈ {0, 1}` such that

ej = 1 ⇐⇒ run j is failing

is called the error vector [AZG08].

To visualize the correlation, spectra and the error vector can be written side by
side to form an observation matrix [AZG08]. Let Sj

i ∈ {0, 1} denote if Ci was
executed in the j-th run. Using the above notation, the matrix

O =




S0
0 S0

1 . . . S0
k−1 f 0

S1
0 S1

1 . . . S1
k−1 f 1

...

...
S`−1

0 S`−1
2 . . . S`−1

k−1 f `−1




would be the observation matrix of the running example. A row shows a single
run’s spectrum, while a column records a single component’s behavior over multiple
runs.

Since SBFL tries to identify a faulty component by high correlation of its execution
with failed runs, the columns in this matrix need to be compared to the error
vector. The i-th column of the observation matrix (a vector ci ∈ {0, 1}`) will be
called the i-th component vector.

Spectrum-Based Fault Localization 8

mBarinel = 1− A1,0

S + 1 (Barinel [AZG09])

mD∗ = (A1,1)∗
A1,0 + (F − A1,1) (D∗ [Won+14])

mOchiai = A1,1√
F · (A1,1 + A1,0)

(Ochiai [Och57])

mOp2 = A1,1 −
A1,0

S + 1 (Op2 [NLR11])

mTarantula =
A1,1

F
A1,1

F
+ A1,0

S

(Tarantula [JH05])

Figure 2.1: Implemented suspiciousness metrics

Given a large set of observations, fault localization can be performed by measuring
the similarity between each component vector and the error vector and ranking
all components by similarity. The faulty component should then be assigned a
high rank. Next, a developer would use the ranking to examine higher-ranked
components first, quickly finding the high-ranked faulty component.

2.3 Suspiciousness Metrics

After performing data acquisition, the measurement of similarity between a com-
ponent’s execution and the failed runs is used to derive the ranking of components.
This similarity is measured by a suspiciousness metric [Xie+13], a function that
maps a component vector and an error vector to a similarity score, with more
similar vectors resulting in greater score. This score is called the component’s
suspiciousness [JH05]; components can be ranked by it.

Most suspiciousness metrics do not examine every element of both input vectors.
Instead, for input vectors Si, f , they only use the counts for the four different
combinations of vector elements (component missing in succeeding run, component
present in succeeding run, component missing in failing run, component present in
failing run).

This allows for an extremely compact storage of information that scales logarith-
mically in the number of traces. Given the running example and a component i,

9 Suspiciousness Metrics

Input: A program P with components C0, . . . , Ck−1
Input: A suspiciousness metric using only aggregated data m
Input: Iteration count R

1 begin
2 Initialize aggregate matrices A for every component with entries := 0;
3 for i ∈ {0, . . . , R} do
4 Run P , record a spectrum S.;
5 if a failure occurred then f := 1 else f := 0;
6 for j ∈ {0, . . . , k − 1} do Aj

Si,f
:= Aj

Si,f
+ 1;

7 for C ∈ {C0, . . . , Ck−1} do compute the suspiciousness of C using m;
8 Cs(0), . . . , Cs(k−1) := the components, sorted by suspiciousness;
9 for C ∈ {Cs(0), . . . , Cs(k−1)} do manually check the component for faults;

Listing 2.1: The SBFL workflow [Abr+09]

the matrix Ai ∈ Z2×2
≥0 such that

Ai =

 |{j | S

j
i = 0, f j = 0}| |{j | Sj

i = 0, f j = 1}|
|{j | Sj

i = 1, f j = 0}| |{j | Sj
i = 1, f j = 1}|




is called an aggregate matrix [Abr+09]. Note that

Ai
m,n = |{j | Sj

i = m, f j = n}|.

The exact meaning of “more similar” is not defined in a general way, but individually
by metrics. The suspiciousness metrics that were implemented for this thesis are
shown in Figure 2.1, using the following shorthand: for all metrics, let A be the
aggregate matrix for the examined component and let

F = A0,1 + A1,1 S = A0,0 + A1,0

be the total failure and success counts.

The D∗ suspiciousness metric is parameterized by supplying a custom exponent ∗.
To keep the scores in a reasonable range, only ∗ = 2 and ∗ = 3 were examined.
In degenerated cases, some metrics might not be well-defined due to divides by
zero. In these cases, the implementation defaults to a sensible value, e.g., zero if
the component was never involved in a failing run and A∗1,1 if the component was
never involved in a succeeding run for D∗.

Combining the two building blocks yields the SBFL workflow for fault localization
outlined in Listing 2.1. The program is run multiple times and for every component,

Spectrum-Based Fault Localization 10

an aggregate matrix is created. Then, a suspiciousness score is computed for every
component; these are then ordered according to the score.

If failures persist, more iterations can be applied to discover a new fault in every
iteration [JHS02]. This repetition necessitates that the program can easily be run
multiple times and detection of failures is simple.

2.4 Method Call Sequence Hit Spectra

The first extension to the process is geared towards the use of methods as compo-
nents when performing fault localization for programs written in object-oriented
languages and was originally proposed by Dallmeier, Lindig, and Zeller for Java
programs. When implementing an SBFL-based approach, they employed the
aspect weaver AspectJ2 to instrument the target program.

Since AspectJ can only instrument methods, not statements, the former were the
only type of component available for SBFL. Generating a spectrum using the
program’s methods as components would result in very coarse data. To improve
upon this, method call sequences were examined instead. Instead of only
recording called functions, method call sequences are tuples containing the last k
calls in addition to the called function.

These sequences are then used as components to generate spectra [DLZ05]. The
resulting spectra were named method call sequence hit spectra (MCSHS)
by Wong et al. [Won+16]. For example, assume that during a run, the following
trace of method executions would be encountered:

〈f(), g(), h(), g(), f()〉.

Using methods as components, the following components would be recorded in the
spectrum:

{f(), g(), h()}.
In a method call sequence hit spectrum with a sequence length of k = 2, the set of
components

{(f(), g()), (g(), h()), (h(), g()), (g(), f())}
would be marked in the spectrum instead. The sudden appearance of (f(), f()) in
a failing run’s spectrum could then be flagged as suspicious, while the appearance
of f() in the simple spectrum would not.

This approach yields suspiciousness scores for sequences. To obtain a score for a
single method, an average over the scores of all sequences containing the method
is computed.

2https://www.eclipse.org/aspectj/

11 Parameter Classification

fintegral(x) =





0 if x = 0
1 if x > 0
2 if x < 0

ffloating point(x) =





0 if x ≡ +0
1 if x ≡ −0
2 if x > 0
3 if x < 0
4 if x ≡ +∞
5 if x ≡ −∞
6 if x ≡ NaN

fboolean(x) =




0 if x = false
1 if x = true

fpointer(x) =




0 if x = nullptr
1 if x 6= nullptr

Figure 2.2: All implemented classifiers

Dallmeier, Lindig, and Zeller noted that suspiciousness metrics are generally not
well suited for diagnosing faults of omission, i.e., elements missing from a spectrum.
Examples for omissions constituting a fault are a forgotten closure of a file handles
or the release of a lock. To mitigate this shortcoming, a custom suspiciousness
metric was devised, penalizing both abnormally high and low correlation of a
component vector with the error vector in an attempt to identify missing method
call sequences.

This thesis implements MCSHS with a configurable sequence length. A sequence
length of one is equivalent to disabling the feature. The custom metric described
by Dallmeier, Lindig, and Zeller was not implemented.

An empirical study using defects mined from two open-source software projects,
NanoXML and AspectJ, found that sequence lengths between 3 and 5 resulted in
promising fault localization accuracy. To facilitate use in debugging, the Eclipse
plugin ample3 was developed that automatically attempts to localize faults that
caused JUnit tests to fail [DLZ05].

2.5 Parameter Classification

The second extension is also designed to enable the use of functions and methods
as components by examining the parameters passed to them. The behavior of a
function often depends on its parameters. For example, passing a nullptr to a

3https://www.st.cs.uni-saarland.de/ample/

Spectrum-Based Fault Localization 12

C++ function might cause an out-of-bounds memory access and cause a failure,
while the function would perform as expected for any other input. Recording
parameters can result in deeper insight when using method call sequences, as a
sequence might show a parameter being passed between functions.

Transmitting the in-memory representation of every parameter in the examined
program to the analyzer is not feasible; the parameters might require excessive
storage or can be dependent on the examined program’s state (e.g., a pointer).
However, for some parameter types, classification can be applied by examining
the parameter and categorizing it according to characteristics of the original type.

Classification of values is performed by a classifier, a function that maps all values
belonging to a type to a limited numerical range. For the thesis, the range [0, 6]
was chosen, although larger ranges might be necessary for more complex types.
Effectively, the classified type was separated into 7 or less equivalence classes. For
a classified type, the values in the classifier’s image are called representatives.

For the analysis framework, the four classifiers shown in Figure 2.2 were developed
to handle most common C++ types. Integral types were classified using the signum
function; booleans and pointers were classified as 1 or 0 according to their truth
value. Floating point numbers were classified using their signum for common
values, while negative zero, infinity and NaN were represented with separate values.

2.6 Thread-Aware Analysis

The third extension facilitates analysis of multi-threaded systems in two different
ways. To analyze both empirically, the feature was made configurable in the
analysis framework.

Trace data can – independent of the originating thread of execution – be analyzed in
chronological order, i.e., the sequence of events as they were recorded. This should
uncover faults such as race conditions, especially when using MCSHS. However,
information about the actual flow of the program might be lost and non-faulty
components running in parallel to faulty ones will accumulate suspiciousness.

The alternative to that approach is separation of the concurrent threads of execution,
so-called thread separation. Each thread will be recorded into a separate
spectrum and the data is analyzed in isolation. This increases storage and CPU
load and might not reliably diagnose failures from multiple thread’s interactions.

Chapter 3

SBFL in Long-Running Systems

The traditional approach to spectrum-based fault localization presented in the
previous chapter is not suitable for every type of software. A restart may be costly
(e.g., a server in a production environment) or a single run exercises too many
components (e.g., an operating system during boot) to leave a useful spectrum.
These issues are endemic to long-running systems.

This chapter discusses an extension to SBFL that resolves such issues by implement-
ing automated analysis components, oracles and transaction detectors. Next, three
approaches to derive these components without domain knowledge are presented.
Finally, another extension to the SBFL process itself is discussed.

3.1 Oracles and Transaction Detectors

Oracles and transaction detectors were introduced by Casanova et al. to provide
self-diagnosis mechanisms for long-running server clusters in productive use. They
proposed a mechanism to separate a single long run and its trace into several smaller
sub-traces. These are then tested for failures. The non-overlapping, continuous
and finite sub-traces are known as transactions [Cas+11]; every element of the
trace belongs to exactly one transaction. A transaction again constitutes a trace.

A function that splits a trace into transactions is called a transaction detector
[Cas+11]. Two transaction detectors can be combined by pooling the demarcations
between transactions found by both detectors. Functions responsible for detecting
failures in a trace are called oracles [Cas+11]. By using transactions as runs in
an otherwise classic SBFL approach, analysis of long-running systems becomes
feasible. This workflow is illustrated in Figure 3.1.

As an example for transactions and oracles, a web server answering a single request
is suggested as a transaction; an oracle would examine the reply and flag a late or
missing reply as a failure. Neither the oracle nor the transaction detector needs

SBFL in Long-Running Systems 14

Detection Diagnosis

System(s) Transaction
Detector Oracle Window

Determinator
Fault

Detector
Report

Generator

System Events

Transactions

Transaction Evaluation (pass / fail)

Spectra Matrix

Fault Probabilities

Figure 3.1: The experiment framework used by Casanova et al. (illustration from
[Cas+11])

to be aware of the server’s implementation details, only of the protocol it uses to
communicate with other services. This system could scale to multiple transaction
types, such as clients communicating with a load balancer, the load balancer
forwarding requests to a web server, which in turn would use SQL to query one or
more database servers.

This thesis uses transactions to extract SBFL data from a long-running system,
however, its focus is on resource-constrained, embedded systems. Instead of domain-
aware oracles and transaction detectors, generic components were derived from
behavioral properties of a non-failing program using machine learning techniques.
The resulting components were therefore created without requiring knowledge
about the program’s function.

3.2 Software Behavior Graphs

The first generic oracle created for the framework observes the program’s function
and method calls. When running the program, invocations of its functions and
methods can be observed, although some caller-callee-pairs will not be encountered
during normal operation. The sudden appearance of a previously unseen call can
indicate a fault.

The observed calls can be stored in a software behavior graph (SBG) [Liu+05]

G = (V,E),

where the nodes V are the functions and methods of the program and an edge
(s, t) is contained in E if and only if a call from s to t was observed.

Software behavior graphs were introduced by Liu et al. for fault localization. In
their corresponding publication, the analysis was implemented using data mining on
the graph itself. Since this requires more computational power than an embedded

15 Driver Interaction Models

1 int read();
2 int one() { return 1; }
3 int two() { return 2; }
4 int f() {
5 return read() ? one() : two();
6 }
7 int g() {
8 return read() ? two() : one();
9 }

10 int main() { f(); g(); }

(a) program

mainf g

one tworead

(b) SBG

Figure 3.2: Sample program and a corresponding SBG

system can provide, the graphs can only be used to detect the presence of bugs on
such systems. This is, however, sufficient to drive a generic oracle.

An example of a program and its SBG is shown in Figure 3.2. Note that the
function int read() is an external one and the SBG only contains the control
flow for non-zero return values. The edges resulting from return values equal to
zero are missing.

A SBG can be acquired in two different ways. Either a version of the program
that is known not to contain faulty components is used or manual verification
is employed to ensure the absence of failures during a learning phase. The first
approach is only feasible when planning to modify a program (e.g., before a large-
scale refactoring), the second does require human effort. Graphs acquired from
different runs of the same program can be merged by uniting the edge sets. This
allows for incremental learning of an SBG.

The inference of software behavior graphs proved to be straightforward by enabling
the SBG oracle to operate in two modes, learning and enforcing. In learning mode,
a newly encountered edge was added to the adjacency matrix used to store the
graph, in enforcing mode, a failure would be detected. The resulting SBG could
then be emitted or the oracle set to enforcing mode. To persist the graph, a
code generator was developed that translated the textual representation into a
constructor for a pre-filled SBG.

3.3 Driver Interaction Models

The second generic oracle examines the interactions between a system and its
periphery. When a driver communicates with an external piece of hardware, this

SBFL in Long-Running Systems 16

interaction can be observed and used to infer a model describing the “normal”
communication between hardware and driver. Note that the model will not
necessarily match the complete protocol underlying such communication if the
partners only send a subset of valid messages. Interactions can be observed on
multiple levels of abstraction and using two different approaches.

The level of abstraction used for observation determines the amount of domain
knowledge used to decode the communication. On the lowest level, no information
about the communication’s contents is used. For example, if interactions using
electric signaling are observed, the collected data will be the level changes on the
line. On higher levels of abstraction, parts of the communication are decoded.
When analyzing communications using a TCP stack, the signals on the wire would
be decoded into Ethernet frames, IP datagrams, or TCP packets.

The generic approach to observation uses tools like logic analyzers or network
sniffers are used to observe the interactions. These tools might be costly, e.g., a
PCI sniffer. Alternatively, instrumentation is introduced into the driver stack that
records received and outgoing interactions; the driver is used to decode the signals.
However, this approach can not detect all faults inside the driver stack.

The observed interactions might follow complex and non-deterministic logic. This
complexity needs to be reduced to permit the inference of models. Finite state
machines (FSMs) have been studied extensively as targets for machine learning
(e.g., using LearnLib1 [RSB05]) and can be stored in compact representations.
Therefore, interactions were modelled using these. The resulting FSM

A = (Q,Σ, δ, q0, Q)

such that

• Q is the set of (inferred) states of the interaction,
• the input set Σ contains the possible communication messages,
• the transition function δ maps δ(q, s) 7→ q′ if and only if the model assumes
s is a valid message in state q and the next state is q′,

• the initial state q0 is the inferred initial state of the interaction, and
• all states are accepting

is called a driver interaction model (DIM).

While these models were developed to localize faults in drivers, the approach can
theoretically be generalized to any form of communication. Since a driver has no
final state, all states are assumed to be accepting. The states will not necessarily
match a “natural” state of the program or the peripheral component.

1https://learnlib.de/

17 Driver Interaction Models

(scan, . . .)

(connect, fail)

(connect, okay)

(send, okay)
(send, . . .)

(send, okay), (hasData, false)

(send, . . .)

(hasData, true)
(receive, . . .)

Figure 3.3: A fictional DIM for a wireless chipset driver

Since deterministic finite state machines do not differ in expression strength
from non-deterministic ones, DIMs can be represented in both forms. Because
deterministic FSMs are easier to handle, all DIMs were determinized for production
use.

Figure 3.3 shows the fictional results of high-level instrumentation of a wireless
chipset driver. The instrumentation has decoded most of the protocol and has
yielded request-response tuples that were used to learn a non-deterministic DIM.
Note that “. . . ” signifies “any value” to increase legibility. By examining the DIM,
some information about the driver can be inferred, e.g., data is only sent after a
connection to a network has been established. The learning process apparently
never encountered a situation where the network connection was lost; the behavior
in that situation is missing from the model.

A DIM can be used as an oracle by applying the transition function for all messages
encountered during a run. A trace is considered failing if it contains a message
that has no matching transition in the DIM.

Since the DIM can not make a valid transition in this case, normal operation
cannot continue and the DIM requires “resetting” to discover more than one failure.
A reset threshold i is passed to the oracle. After missing a transition, the oracle
remains in the previous DIM state. In this mode, transitions are attempted for new
messages, but no failures are reported. When i successive transitions succeeded,
the oracle returns to normal mode and starts reporting failures again.

Acquisition of a DIM can be performed using the same approaches as described
for SBGs. Either runs have to be manually verified as succeeding, or the DIM can
only be used for subsequent refinements to a program. However, since the DIM

SBFL in Long-Running Systems 18

Input: A non-deterministic driver interaction model A = (Q,Σ, δ, q0, Q)
Input: A parameter k
Output: A recuded driver interaction model

1 begin
2 repeat
3 m := 0;
4 for qs, qt ∈ Q, qs 6= qt do
5 if ∃s ∈ Σk : δ∗(qs, s) is defined , δ∗(qt, s) is undefined then
6 continue;
7 for q ∈ Q, x ∈ Σ do
8 if qs ∈ δ(q, x) then δ(q, x) := {qt} ∪ (δ(q, x) \ {qs});
9 for x ∈ Σ do δ(qt, x) := δ(qt, x) ∪ δ(qs, x);

10 Q := Q \ {qs};
11 m := 1;
12 until m = 0;
13 return A;

Listing 3.1: Modified k-tails algorithm

does not examine the program’s internal structure, it can remain usable even after
major rewrites to the program.

3.4 Learning DIMs

Inferring a driver interaction model is a CPU- and memory-intensive task that
requires multiple runs of the target program. Performing this inference was not
feasible using an embedded system, therefore, DIM learning was performed on a
desktop PC.

To infer a DIM from a set of DIM event sequences, a FSM has to be constructed
using passive positive-example learning. Active learning is impossible for the task
at hand since the system can not be queried for valid sequences – a valid sequence
is one generated by the fault-free system. Negative examples can not exist for the
same reason.

This excludes most advanced FSM inference algorithms. In a review of existing
algorithms, Murphy suggests the k-tails algorithm [BF72] for this scenario [Mur95].
k-tails attempts to iteratively merge equivalent states of the automaton. States
are considered equivalent if their k-tail, i.e., the set of words of length k that are

19 Learning DIMs

1 3 5

1 3 4 5 4

3 2

Figure 3.4: Initial FSM for three DIM event sequences

accepted starting from the state, are equal. When merging, all transitions to the
source state are moved to the target state, the source state is removed.

The equivalence condition was relaxed to a subset relation. As long as a source
state’s k-tail was contained in a target state’s k-tail, a merge was performed. The
resulting algorithm is depicted in Listing 3.1. Some edge cases are omitted: the
initial state can not be a merge source and states with no k-tail were exempted
from merging as both sources and targets.

To create an initial valid FSM, every DIM event sequence is transformed into a
chain of automaton states using the events as edge labels, with the initial state
being identical among all chains. The resulting models are valid, although not yet
useful as an oracle. The result for the event chains

〈1, 3, 5〉
〈1, 3, 4, 5, 4〉
〈3, 2〉

is illustrated in Figure 3.4.

The performance of this algorithm proved to be unacceptable. Real-world DIM
event sequences resulted in automatons containing millions of states to be created.
Pairwise checking subsequently caused merge rates to drop below one merge per
second.

However, the initial automata have several properties that permit an improved
version of the algorithm to be created. First, every state, except for the initial
state, has exactly one successor that is not the initial state. Therefore, the state
must have a single k-tail. (The final k states have none and are ignored.) When
merging, the target state’s k-tail can not grow due to the equivalence criterion.

Since the initial automaton is constructed from event chains, the k-tail for a new
state can efficiently be read from the next k elements in the input sequence. This
allows to efficiently decide when a new state would be merged into a previous one
and create an edge to the merge target instead. The k-tail of the initial state is
constructed differently and contains the first k elements of all input sequences.

SBFL in Long-Running Systems 20

Input: A set of sequences of DIM events {S1, S2, . . . , Sn} from an alphabet of
messages Σ

Input: A parameter k
Output: A recuded driver interaction model

1 begin
2 q0 := a new state;
3 Q := {q0};
4 K : Σk → Q ∪ {ε} and K(x) := ε for all x;
5 for i ∈ {1, . . . , n} do K(〈Si

1, . . . , S
i
k〉) := q0;

6 for i ∈ {1, . . . , n} do
7 q := q0 for j ∈ {1, . . . , len(Si)− k} do
8 t := 〈Si

j+1, . . . , S
i
j+1+k〉;

9 q′ := K(t);
10 if q′ = ε then
11 Q := {qi,j} ∪Q;
12 K(t) := qi,j;
13 q′ := qi,j;
14 δ(q, Si

j) = {q′} ∪ δ(q, Si
j);

15 q := q′;
16 for j ∈ {len(Si)− k + 1, . . . , len(Si)} do
17 Q := {qi,j} ∪Q;
18 δ(q, Si

j) = {qi,j} ∪ δ(q, Si
j);

19 q := qi,j;

20 return (Q,Σ, δ, q0, Q)

Listing 3.2: Optimized k-tails algorithm

The optimized algorithm in Listing 3.2 exploits these facts to create a k-tails-
reduced automaton directly from input sequences. The algorithm initially computes
the k-tail for the initial state since it can not be trivially derived (Line 5). Then,
the input sequences are read.

For every event, the k-tail of a potential next state is determined (Lines 9 and 10).
If a state with this k-tail already exists, a transition to it is added and it is set as
the current state (Lines 14 and 15). If not, a new state is created and stored as
canonical for the k-tail, then, a transition is added and the current state updated
(Lines 11 to 15).

Finally, the states with no k-tail are added as a sequence after the last regular
state (Lines 16 to 19). The resulting structure is subsumed into the remaining
FSM after determinizing the non-deterministic automaton.

21 Timer-Based Transactions

3.5 Timer-Based Transactions

A generic approach to determine transactions using a timer was presented by Abreu,
Zoeteweij, and Gemund. Every second, the current spectrum was exchanged for
a new one and scheduled for integration [AZG06]. This implicitly results in
transactions being 1-second-fragments of the trace.

For this thesis, the fragments were measured using a configurable interval and a
timer running on the system responsible for data analysis. The resulting transaction
detector is completely agnostic of the program being examined. As a minor
downside, if thread separation is active, transactions are not detected for a specific
thread, but for all active ones.

While more sophisticated approaches to transaction detection are certainly possible,
they were not investigated due to the successes achieved with this technique in the
literature.

3.6 Failure-Specific Analysis

Oracles can mitigate the inability of SBFL to reliably detect more than a single
fault in a single iteration. This is not an issue in classic SBFL: one fault will be
repaired, analysis will be repeated and the next fault will be located.

In long-running systems, repeated analysis-repair-cycles are difficult to implement
and require larger amounts of manual work than necessary. Therefore, it would be
preferable if good SBFL results for multiple failurescould be obtained in the hope
that they uncover multiple faults.

Failures detected using multiple oracles can easily be distinguished by the detecting
oracle. Additionally, the oracle can also provide extended information about the
failure. For example, an oracle detecting high reaction times might obtain the
identity of the slow component. This is called failure indexing; again, the feature
was made configurable and both settings were compared.

When distinguishing failures, a separate SBFL report per detected failure is
prepared. If several failures point to the same fault, this approach might dilute
the gathered data instead of improving the analysis process.

Chapter 4

AOP-Based Instrumentation

The previous chapters have left open the question of data acquisition. The examined
program needs to be instrumented to report on the executed components in order
to perform SBFL and acquire the additional data required by SBG and DIM
oracles.

For this thesis, instrumentation was performed using aspect-oriented programming
and the AspectC++ framework. In this chapter, both the concept of aspect-oriented
programming and AspectC++ itself are introduced in detail.

4.1 Basic Concepts

In many programming disciplines, parts of a system’s function can not cleanly be
encapsulated into a component. These parts are called aspects [Kic+97]. Aspect-
oriented programming (AOP) [Kic+97] extends programming disciplines to
allow the seperation of aspects into separate source code components. Common
aspects that are extracted into into a dedicated component include method-level
access control, logging, database transaction management and synchronization.

When extracting an aspect, join points [Kic+97] are those parts of the program
the aspect needs to affect. For example, when extracting the aspect of trace logging,
i.e., writing the name of the called function to a log file after each function call,
the join points would be all function calls in the program.

Since manually specifying each and every join point would add a severe maintenance
burden – the list would have to be kept synchronized with the actual program –
sets of join points are specified instead. These sets are called pointcuts [Kic+01]
and are usually described by the properties of the contained join points, e.g., names
of called functions, containing classes etc.

AOP-Based Instrumentation 24

Aspect “trace log”

Pointcut
every function call

Advice
log.write(

joinpoint.calleeName
);

Program without aspects

Function f()

// code
g();

Function g()

// codeJoin
Point

woven
to

Advice
log.write(

joinpoint.calleeName
);

Function f()

// code
g();

Function g()

// code

Figure 4.1: Aspect weaving introduces an advice into the control flow

The logic that needs to be executed at one or more pointcuts is called an advice
[Kic+01]. An advice is often written in a dialect or extension of language the target
program is developed in.

To continue the example, the trace logging aspect would store a handle for the
log file. It would execute at a pointcut that contains all function calls; on each
execution, the name of the called function would be written to the log file.

Support for AOP is provided by an aspect weaver [Kic+97]. This component
is responsible for modifying a program so that at defined pointcuts, an advice
is introduced into the execution. The interaction of the various components is
illustrated in Figure 4.1: the aspect weaver modifies the program’s control flow
to include the advice code. Aspect-oriented programming encompasses more
techniques than those introduced here; since these bear no relevance to this thesis,
they are omitted.

4.2 AspectC++

For the analysis framework, the AOP framework AspectC++ [SGS02; FBS17]
was used. AspectC++ uses standard C++ for the aspect-less program and an
extended C++ dialect – the AspectC++ language – to define aspects and pointcuts.
The framework also provides an aspect weaver for the language, the AspectC++

compiler. Furthermore, the framework implements several advanced features not
required for this thesis.

25 AspectC++

1 aspect TraceLogging {
2 pointcut everyCall() = "%";
3 static logging::Logger log;
4 advice execution(everyCall()) : before() {
5 log << "entering "
6 << tjp->signature()
7 << "\n";
8 }
9 };

Listing 4.1: Trace logging aspect implemented in AspectC++

The logic of advices is implemented in standard C++; to access information about
the current join point, the object tjp and the class JoinPoint are injected into
the code. Pointcuts are specified using

• either a matching language that can match functions by name, parameter
types, return type, and other properties,

• by defining custom C++ annotations that can be applied to the program’s
code, or

• a combination of both approaches.

The weaving step replaces all language extensions and outputs standard-compliant
C++ code that can then be compiled using a standard C++ compiler. Listing 4.1
shows a trace logging aspect written in AspectC++ that outputs the function’s
signature after each call of a function or method in the program.

During weaving, the AspectC++ compiler collects metadata about the project in an
auxiliary XML file. This information includes the logical structure of the program
(namespaces, classes, methods etc.) and information about the weaving performed
by the compiler. Each join point is assigned a unique, numerical, sequential
identifier, the join point identifier (JPID), that can also be programatically
accessed by an aspect. Using this information, a mapping from JPIDs to function
and method signatures can be established. This thesis uses the mapping to store
signatures compactly.

Chapter 5

Implementation

This chapter describes the architecture and high-level implementation of the
analysis framework developed for this thesis. Also, the communication protocol
for tracing is described and the data structure used for storage explained.

The components that needed to be implemented for deployment on a specific
platform will be outlined in the next chapter.

5.1 Architecture

The analysis framework is set up on two separate devices. The first machine hosts
analysis software and will attempt to recognize failures and localize the faults
responsible for them; this is called the monitor. The second machine hosts the
program that is suspected of harboring faults; this is called the target. An sketch
of their interaction is depicted in Figure 5.1.

Retrofitting of tracing capability into the target program was performed using the
AspectC++ compiler to weave in a tracing aspect. This approach requires no changes
to the program code, only to the build system. While several implementations
of SBFL have instrumented code at the statement or block level, this is not
possible with AspectC++. Therefore, the trace data only contains information
about function and method calls.

The acquired trace data is immediately transmitted to the separate, physically
isolated monitor to protect against data corruption and crashes. Since the tracing
aspect can not be guaranteed exclusive access to the transmission hardware on all
combinations of hardware and operating system, some synchronization with the
target OS is required for this step.

This monitor uses oracles and transaction detectors to segregate the trace into
transactions and identify failures. This information is stored in aggregate matrices.
On demand, this data will be condensed into an SBFL report using one or more

Implementation 28

Target Machine

Target OS
& Program

Tracing
Aspect

Caller

Callee

Monitor Machine

Host OS & SBFL Analyzer

Data
Input

Oracles

Transaction
Detectors

Aggragation

SBFL
Analysis

Trace Data

Fault
L
ocal-

ization
R
eport

Figure 5.1: High-level architecture of the analysis framework

suspiciousness metrics. This report is output to a human operator, who can use it
to ascertain the presence of failures and, if necessary, localize the underlying faults
in the target program.

5.2 Framework Architecture

The components of the developed framework can be separated into three layers.
Some are independent of the target platform, some provide the necessary “glue”
between those and the OS and some are alterations that had to be made to the
target OS itself. An overview of the components is shown in Figure 5.2; detailed
explanations follow.

5.2.1 Tracer

The tracer is the aspect responsible for gathering information about function and
method calls in the target program and is woven into most calls. Some components
that are called during early boot, responsible for context switches or that are
called too frequently to feasibly trace them have to be excluded to maintain system
stability.

This makes the tracer slightly platform-aware, though not -dependent. During
deployment, the components that could safely be traced were quickly identified
using trial and error; for programs running in a managed environment, it is assumed
that all components can safely be traced. To allow the target program to suspend
tracing, a global variable was introduced.

29 Framework Architecture

Host OS
Locks

exclusive serial
writes

UART
OS serial I /O
driver

Others

other target components, potentially
modified by aspects

Platform-
Specific

Target

sends trace
data

DIM Tracer

traces driver
events

Abstractions

platform ab-
straction layer

Monitor

receives data
& timer

Platform-
Independent

Tracer

traces calls &
returns

Utilities

common helper
functions

Protocol

event types &
metadata

Campaign

SBFL analysis
& reporting

Figure 5.2: Component structure of the analysis framework

Tracing itself is composed of three parts: first, the called function or method is
identified by the current join point. Second, the parameters are classified using
the interface described in Section 5.2.3. Third, the current thread of execution
is identified to enable thread separation (see Section 2.6). For operating systems
that do not use threads in the classical sense, the id of the active CPU can be
substituted. Finally, the gathered information is sent to the monitor.

A simplified version of the tracing aspect is shown in Listing 5.1. The actual
implementation requires additional template metaprogramming to extract the
parameters, which has been omitted in the interest of brevity. In the example, only
the first parameter is extracted. Also, the whitelist of safely traceable components
has been reduced to a single entry.

The functionality to communicate with the monitor, obtain the thread identifier
and suppress tracing are platform-dependent. Therefore, they are not implemented
in the aspect, but are provided by the target component described in Section 5.2.5.

To create and verify an SBG, a trace is not sufficient, since information about
function returns is also required to correctly identify callers. The code for tracing
returns is nearly identical to that for tracing calls and is also located in the tracing
aspect.

5.2.2 Utilities

This component collects non-SBFL-related functions and classes that are required
for the other components. This includes features that are provided by a C++

standard library since embedded systems do not necessarily offer one.

Implementation 30

1 aspect SBFLTracer {
2 pointcut whitelist() = "% %Debug::...::%(...)";
3 advice execution(whitelist()) : before() {
4 if (!tracingEnabled()) { return; }
5

6 uint8_t classifiedParameter;
7 if (canClassify<typename JoinPoint::Arg<0>::ReferredType>
8 ::value) {
9 classifiedParameter =

10 classify(*(tjp.template arg<0>()));
11 } else {
12 classifiedParameter = 0;
13 }
14

15 SBFLTraceEvent event(TraceWriter::threadID(),
16 JoinPoint::JPID,
17 classifiedParameter);
18 TraceWriter::record(event);
19 }
20 };

Listing 5.1: Simplified version of the tracing aspect

5.2.3 Protocol

The protocol component provides an object-oriented interface for reading and
creating messages using the communication protocol described in Section 5.3. It
also contains support code for the parameter classification described in Section 2.5
and stores the mapping from JPIDs to signatures described in Section 4.2.

A generic way to classify parameters was realized using template metaprogramming
as demonstrated in Listing 5.2. For a (statically determined) type T, the expression

canClassify<T>::value

is resolved to a boolean at compile time, while

classify<T>(t)

will classify the value t of type T at runtime.

5.2.4 Campaign

The campaign component is completely platform-independent and implements
the SBFL analysis algorithm. It receives trace information and driver interaction

31 Framework Architecture

1 template<typename T>
2 struct canClassify { static const bool value = false; };
3 template<typename T>
4 uint8_t classify(T const &value) { return 0; }
5

6 template<>
7 struct canClassify<int> { static const bool value = true; };
8 template<>
9 struct canClassify<const int> { static const bool value = true; };

10 template<>
11 uint8_t classify (int const &value) {
12 return (value > 0) ? 1 : (value < 0) ? 2 : 0;
13 }

Listing 5.2: Classification support for the int type

events and uses this information to detect failures and compute likely locations of
the underlying faults. Additionally, the campaign can receive special commands,
e.g., to show a fault localization report to a user. The internal layout of the
component is depicted in Figure 5.3.

The central sub-component of the campaign is the event receiver. This class is
notified about incoming trace events, DIM events and commands and is responsible
for handling them.

If a trace event is received, the information is first passed to the oracles and
transaction detectors for analysis. Since all implemented oracles and transaction
detectors do not use information about future events, they can immediately decide
on the presence of a failure or the beginning or end of a transaction.

The called component and the failure information are then passed to the spectrum
store, which then integrates the information into a spectrum. If thread separation
is enabled, one store per thread is maintained and the trace information is sent to
the corresponding store. Otherwise, only a single store is created. If MCSHS are
used, stores are responsible for maintaining and storing the method call sequences.
If the end of a transaction is detected, the spectrum store is again notified. It then
passes its current spectrum and all failure data to the aggregate store and resets
itself to empty state.

The aggregate store, having received a spectrum and failure data, updates the
aggregate matrices for all components in the spectrum. To reduce memory re-
quirements, only the second row of the aggregate matrices, i.e., the number of
succeeding and failing runs the component participated in, is stored. Together
with a global count of failed and successful transactions, the complete matrix can
be recomputed.

Implementation 32

Event Receiver
receives trave events
and commands

Transaction
Detectors

Domain-Specific

see Section 6.2

Timed
see Section 3.5

Oracles

Domain-Specific

see Section 6.2

DIM
see Section 3.3

SBG
see Section 3.2

Aggregate Store

aggreagtes spectra;
can index by failure

Spectrum Store

stores current spec-
trum and detected
failures; can separate
by thread

Suspiciousness Metrics
Barinel

Op2

D∗

Tarantula

Ochiai

detects transactions with

detects failures with

stores events
and failures

notifies about
transaction end

creates report using

sends
transaction
spectra

computes
suspiciousness

using

Figure 5.3: Structure of the campaign component

If failure indexing is enabled, the store allocates the per-failure aggregate objects
lazily. Only if a failure is encountered, a new object is created and information
about previous transactions filled in. This is made possible by storing a utility
aggregate that records every spectrum as succeeding. This data is copied into the
new object after creation. If failure indexing is disabled, only one aggregate is
required and lazy allocation is not necessary.

When the event receiver is notified about a DIM event, the DIM oracle is queried
about a potential failure. If it detects one, and thread separation is enabled, all
thread spectra are notified since the event can not be associated with a specific
thread of execution.

The creation of a SBFL report is handled by the aggregate store, which uses a library
of suspiciousness metrics and provide scores using each of the supplies metrics.
The design is modular to allow quick addition of new metrics for examination.

5.2.5 Target

The target component is a platform-dependent component responsible for sending
events to the monitor. This is done using the operating system’s UART driver.

33 Framework Architecture

1 aspect GPIODIMTracer {
2 advice execution(gpioWrite()) : before() {
3 if (!sbfl::target::tracingEnabled()) { return; }
4

5 uint32_t bank = gpioDRToBank(*(tjp->arg<0>()));
6 uint8_t pin = *(tjp->arg<1>());
7 uint8_t value = *(tjp->arg<2>()) ? 1 : 0;
8

9 DIMTraceEvent event(64 * (bank - 1) + 2 * pin + value);
10 TraceWriter::record(event);
11 }
12

13 advice execution(gpioInterrupt()) : before() {
14 if (!sbfl::target::tracingEnabled()) { return; }
15

16 DIMTraceEvent event(64 * interruptBank);
17 TraceWriter::record(event);
18 }
19 };

Listing 5.3: Simplified version of a DIM tracing aspect for GPIO

To avoid an infinite loop in the instrumentation logic, the driver can not be
instrumented.

Since sending data requires uninterrupted access to the UART driver, a priority
mechanism had to be introduced that is described in Section 5.2.9. The component
also provides an interface to temporarily suppress tracing and is used to obtain
the identity of the current thread.

5.2.6 DIM Tracer

Similar to the primary tracer, the DIM tracer records driver interaction events.
Since this tracer gathers its data by instrumenting the low-level GPIO driver
inside the target OS, it can not be implemented in a platform-independent way.
Fortunately, finding the correct methods for instrumentation proved to be both
fast and simple.

Tracing driver interactions requires far less information than gathering data for
SBFL itself, since neither parameters nor threads need to be handled. Instead, an
ID is assigned to each possible event; the ID is then transmitted to the monitor.

Implementation 34

A simplified version of the tracer is shown in Listing 5.3. This aspect omits the
definition of the pointcuts, constants and some utility functions that are of minor
interest.

5.2.7 Abstractions

Since a standard library is not necessarily present on an embedded system, standard
C++ types such as uint32_t might only be provided in a proprietary header
file. This same issue arises for text output streams and the memory allocation
mechanism.

To avoid the introduction of platform-specific code in higher layers, the abstractions
component provides an adapter for these dependencies. It provides

• a header that includes the system-specific type header,
• a header that provided macros wrapping the host operating system’s memory

allocator and
• an output stream for text behaving similar to the <iostreams> library.

This component requires rewriting when porting the system to another platform.

5.2.8 Monitor

The monitor component is responsible for receiving timer and UART input events
from the operating system’s event dispatcher and forwarding them to the campaign,
while handling protocol decoding using the respective component.

For experimentation purposes, the component was given a second responsibility.
When using timed transaction detection, experiments become impossible to repro-
duce exactly due to the timer introducing non-deterministic transaction boundaries.
To reintroduce determinism, the OS timer can be substituted with commands
sent by an external timer. The synthetic timer event is indistinguishable from a
locally-sourced one, allowing for deterministic replay of trace data when combined
with timer information.

Two other commands handled by the monitor component disable and enable
UART output from the monitor system If the monitor’s OS writes debug output
to the serial interface, disabling the UART avoids accidentally sending data to
the target system. This required patches to the drivers themselves, although a
reimplementation as an aspect might avoid the need to modify the OS.

35 Communication Protocol

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0x1b Type Payload CRC32 0x1d

Figure 5.4: Structure of an event package

5.2.9 Locks

The locking mechanism requires modifications to the operating system itself.
All components that access the UART driver, including the framework’s target
component, must acquire a lock. The OS needs to modified to introduce this
behavior.

This avoids interference between an event and other output and allows shared usage
of the serial interface while guaranteeing the integrity of sent events. Section 5.3
details how the communication protocol provides for separation of the events and
other output.

5.3 Communication Protocol

To communicate trace events, DIM events and commands to the monitor, serial
communication over a UART was used. The target, however, may also use the serial
interface to communicate with the user, receive commands and emit diagnostic
messages. The protocol therefore has to co-exist with regular input and output.
All data sent by the target itself is assumed to be text data, i.e., a sequence of
characters from the ASCII character set [Cer69].

Since no send buffer was maintained on the target device to avoid corruption of
the buffered data, events had to be sent synchronously. This causes a slowdown of
the system proportional to the UART speed and the size of a message. Messages
therefore had to be as small as possible.

To delimit an event package, two ASCII control characters, escape (0x1b) and group
separator (0x1d) were chosen since they are not commonly used in ASCII-encoded
documents.

Since, contrary to the previous assumption, the target might emit these characters
or the payload might be corrupted during transmission, an additional checking
mechanism was introduced. A CRC32 checksum [PB61; HBL75] was chosen due to
guaranteed detection of single-byte errors and a high resilience against transmission
errors in general. The checksum is only computed over the type and the payload
fields since an invalid start or stop byte causes the package to be ignored anyway.

Implementation 36

This mechanism allows to separate text and trace output cleanly when reading
from the UART. The monitor component itself discards both invalid event packages
and other data. During experimentation, no invalid packages were observed.

5.4 Data Structures

Since the developed framework must operate in an embedded environment, it needs
to limit its memory usage. For most components, the memory requirements were
satisfied using statically-allocated memory and small data structures allocated on
the stack. Since the amount of memory required for these was insignificant, they
were not examined further.

However, the campaign component needs to store MCSHS and index them by
failure. The naive approach to storing a spectrum over n components would be an
array of size n; aggregate matrices could be stored in a similar array. For less than
five hundred functions in a small program, this approach is feasible.

If parameter classification is enabled, every function corresponds to a set of variants.
For five parameters (the greatest number encountered during implementation)
and a maximum of seven classifiers, this results in a maximum of 75 = 16 807
variants. This would result in 8 403 500 array entries, which can still be stored in
a few megabytes. However, there are 8 403 5002 = 70 618 812 250 000 method call
sequences of length two, requiring more than 70 terabytes of storage for a single
spectrum. Therefore, a more compact approach to storage is necessary.

Before discussing this approach, the nature of detected failures can be examined:

• The DIM oracle triggers due to a missing transition; since the layout of
the DIM does not necessarily match real world concepts, no failures can be
distinguished.

• The SBG oracle triggers due to a pair of calls that describe the missing edge.
The set of potential failures is the set of call sequences of length 2.

• Domain specific oracles1 are triggered by single, specific calls that also
describe the failure. The set of potential failures therefore is the set of calls.

Next, the data that is stored by a campaign can be studied. Given a method call
sequence length of k, the following objects require a storage scheme:

Spectra are a mapping from call sequences of length k to booleans.

Aggregate matrix storage can be implemented as a mapping from call sequences
of length k to pairs of counters.

1An example will be given in Section 6.2.

37 Data Structures

v
f1 0 1 f2 2

Figure 5.5: Trie storage for a single entry

v1

v2

v3

f1 0 1 f2 2

2 f3

f5 1 f4 2

Figure 5.6: Trie storage for multiple entries

The failure indices are a mapping from call sequences of length 0, 1 and 2 to
aggregate matrix storages.

It is apparent that the only data structure required is a key-value-mapping from
call sequences to arbitrary objects. The call sequences are not fully random, but
stem from the trace produced by the target. This means there is only a limited set
of successors that can follow a call. To store these mappings efficiently, a modified
version of tries [Bri59; Fre60] was used.

First, the storage of a single value will be explained. Assume that a value v is stored
for a sequence of two calls. Each call contains a function and 0 to n parameter
representatives, depending on the function’s arity. As an example, let the sequence
be 〈f1(0, 1), f2(2)〉. This sequence would be stored as a graph, using a chain of
nodes. Every edge corresponds to a function or its parameters, as illustrated in
Figure 5.5.

When storing multiple values, common key prefixes are merged in the trie. A trie
storing the mappings

〈f1(0, 1), f2(2)〉7→ v1

〈f1(0, 2), f3()〉 7→ v2

〈f5(1), f4(2)〉7→ v3

is depicted in Figure 5.6. To implement this structure for C++, three types of
nodes are used:

Value nodes store a value object. They are the leaves of the trie. In Figures 5.5
and 5.6, they are represented by rectangles.

Implementation 38

f1 f2 f3 f4 f5

0 1 2

0 1 2

f1 f2 f3 f4 f5

0 1 2

v1

f1 f2 f3 f4 f5

v2

0 1 2

f1 f2 f3 f4 f5

0 1 2

v3

fir
st

el
em

en
t

se
co
nd

el
em

en
t

va
lu
es

Figure 5.7: In-memory structure of trie storage

Function nodes store an array of pointers to nodes. The array’s size is the number
of instrumented functions in the target program. Since AspectC++ assigns
sequential JPIDs, they can be used as function identifiers and as indices
when accessing the array.

Each array element contains a nullptr if no value is stored below it or a
pointer to another node if there is. If the function with the respective JPID
has parameters, that pointer will reference a parameter node, if not, the
next function or value node. In Figures 5.5 and 5.6, they are represented by
circles.

Parameter nodes also store an array of pointers to nodes; the array has size equal
to the largest number of classifiers for any type. The representatives are used
as indices.

Each element again contains a nullptr if no value is stored below it or
a pointer to another node if there is. If the parent function has another
parameter, it will reference a parameter node, if not, the next function or
value node. In Figures 5.5 and 5.6, they are represented by diamonds.

39 Data Structures

The resulting in-memory structures are shown in Figure 5.7 for five functions and
a maximum representative of 2. The resulting nodes form one “layer” per element
in the method call sequence serving as a key. This results in a fixed number of
layers. Below the final layer, the values are stored.

The maximum storage required for nv values, nf functions with at most np

parameters, nr representatives and sequences of length k is

n · r · (nf + nr · np).

This case only occurs if all method call sequences used as keys diverge in the
first element, i.e., if every key used for storage diverges in the first function. This
scenario is highly unlikely for the intended usage of the tries and a sufficient
number of stored mappings. The storage requirements for real-world input will be
examined empirically in Section 7.5.

Looking up a value in the storage requires traversal of the trie. This can be
performed in linear time with respect to the (constant) depth. Storing new values
is not possible using static memory, instead, the operating system’s implementation
of C++ dynamic memory API (new and delete) was used to allocate new nodes,
making support for dynamic memory hard requirement.

Chapter 6

Deployment on CyPhOS

While the bulk of the analysis framework operates independently of the host
platform, some adapter components need to be implement to port the framework
to a platform. For this thesis, the framework was deployed on the operating system
CyPhOS.

This chapter introduces CyPhOS and some of its components, describes the
platform-specific parts developed for the analysis framework and outlines some of
the issues encountered during implementation.

6.1 Host Platform

This section gives an overview of the software and hardware that were used as a
deployment platform for the analysis framework. These include CyPhOS itself, its
motor control component, EMSComponent, and the EMSBench software used to
simulate a motor.

6.1.1 CyPhOS

The operating system CyPhOS (real-time operating system for cyber-
physical systems) [BS15] is designed to provide predictable timing behavior
during execution. This is realized by separating the system into several compo-
nents, operating system components (OSCs), that interact over an event
bus. By loading OSCs into a partition of the memory cache before execution, it
is guaranteed that no accesses to main memory must be performed. This avoids
the randomness in timing behavior encountered when interacting with normal
RAM. By eliminating non-cached RAM accesses, the OS can provide real-time
characteristics even on non-purpose-built hardware and while running applications
in parallel on multiple cores.

Deployment on CyPhOS 42

Figure 6.1: Manufacturer’s photo of a Wandboard Quad1

CyPhOS is written in C++ and already incorporates the AspectC++ compiler into
its build process. While the real-time characteristics were not exploited for this
thesis, it provided a convenient platform for both the gathering of data and its
analysis.

CyPhOS itself was deployed to a Wandboard Quad (depicted in Figure 6.1),
a development board hosting an i.MX6 CPU providing the ARM Cortex-A9
instruction set and 2 gigabytes of RAM.

6.1.2 EMSComponent

To validate the real-time capabilities of CyPhOS, Schulte-Althoff implemented
an engine management system (EMS) running on CyPhOS. EMSs control
ignition and fuel injection for a motor’s cylinders and are a stock component of
modern cars.

The component, called EMSComponent [Sch17], was designed to interact with
a (simulated) motor under extreme system loads. Its responsibilities include
interrupt handling and timing measurements that needed to be completed under
time pressure. Even under a high system load and for 20 000 simulated revolutions
per minute, the component performed with high accuracy. The original setup is
depicted in Figure 6.2. It uses a connection board between the trace generator

1Retrieved from https://www.wandboard.org/products/wandboard/WB-IMX6Q-BW/.

43 Host Platform

Connection Board with Test Points

Trace Generator

Oscilloscope

GPIO Header JP2

Wandboard with CyPhOS

Figure 6.2: The experimental setup for the EMSComponent (translated, illustration
from [Sch17])

and the Wandboard; an oscilloscope can be connected to the board to monitor
data traffic. This setup was reused for this thesis.

The EMSComponent was chosen as a test application for evaluation since it does
not interfere with the communication medium chosen for trace data (i.e., UART)
and implements algorithms that are sufficiently complex to be sensitive to a wide
selection of faults.

6.1.3 EMSBench

To simulate a motor for the EMSComponent to control, EMSBench2 [KU15] was
used. This software can either act as an EMS or simulate a motor to aid in
the development of EMSs. The second mode is called trace generation. In this
mode, EMSBench does not “receive” control signals; the trace will be generated
independent of any input.

2https://www.informatik.uni-augsburg.de/en/chairs/sik/research/running/
emsbench/

Deployment on CyPhOS 44

(a) injection signals (b) ignition signals

Figure 6.3: Interrupts generated by the trace generator (lines 1 and 2) and injection
and ignition signals sent by the Wandboard (lines 3–6) (illustrations
from [Sch17])

EMSBench was used by Schulte-Althoff to develop and evaluate the EMSCompo-
nent. The software was deployed on a STM32F4-Discovery development board,
a low-power development board featuring an ARM Cortex-M3 CPU. Figure 6.3
shows recordings of the expected communication between the EMSComponent and
EMSBench, collected under no system load. Note that the signals are repeating
due to the motor’s operational cycle.

6.2 CyPhOS-Specific Oracles and Transaction
Detectors

To provide a baseline for evaluation and test the oracle and transaction detec-
tor system, a domain-specific oracle and a domain-specific transaction detector
were developed for CyPhOS and the EMSComponent. These required detailed
knowledge about CyPhOS to implement, indicating a high up-front workload.

If a fault in CyPhOS causes a CPU exception handler to be invoked, some diagnostic
information is emitted over the serial interface; then, the CPU is reset. To emit
diagnostic information, CyPhOS’ CPU exception handler invokes the function

void printCrashContext(dword_t *sp).

This call is intercepted by the trace aspect, which transmits the information to
the monitor. This is sufficient for an oracle to detect a failure.

Detection of transactions was realized by exploiting CyPhOS’ component system.
A context switch to an OSC is performed by the method

45 Generic Oracles and Transaction Detectors

171

217

284

288

407

286

170

513
512

170

216

284

513

218

219

513

218

284

512

512

286

170

290 289
406

288

288

286 406

284

287

216
406

216

290

286

291

512
512

290

286

285

290

218

288

Figure 6.4: DIM learned with k = 1

void EventHandler::activateOSC(EventTask *event).

Similar to the oracle, calls to this method signal the beginning of a new transaction.
A limitation of this approach is that code outside of OSCs is not separated into
transactions correctly. This affects some system code and all interrupt handlers.

6.3 Generic Oracles and Transaction Detectors

The canonical SBG used for the evaluation was acquired in a single run by deploying
the target program, recording the wandboard’s output using a PC, deploying the
monitor and replaying the stored output. To generate a complete SBG, all “normal”
commands offered by CyPhOS were executed. Commands that crash or reboot the
system or start infinite loops were omitted, as well as the option to start two stress
tests in parallel. To test the EMSComponent, the trace generator configuration
used to acquire DIMs (see Section 3.4) was used. Table A.1 lists the complete
sequence of steps required to recreate the SBG.

Deployment on CyPhOS 46

To obtain a DIM for experimentation that was robust to behavioral changes in
the hardware, the EMSComponent was run 15 times following the experimental
protocol outlined in Table A.2. Then a DIM for the first run was learned using
k = 10 and all logs were tested against the DIM. The first violating log was
iteratively added to the learning set until all 15 logs were accepted.

The learning set was then used to derive DIMs for k = 1, . . . , 10. Section 7.1
examines the structure of the resulting set of DIMs; their suitability for use in
oracles will be examined in Section 7.4.1. The model learned with k = 1 is rendered
in Figure 6.4 using the circo tool from GraphViz3 [GN00]. The transition labels
use the numerical DIM event IDs.

6.4 Issues and Workarounds

While some minor bugs in CyPhOS and the EMSComponent were discovered and
fixed while deploying the framework, these are of no particular interest to this
thesis and are therefore omitted.

A weakness of the CyPhOS UART driver was uncovered when receiving data at the
maximum baud rate of 460 800 (= 57 600 bytes per second, 3 840 event messages
per second). When receiving data, the driver reads a single byte from the UART
and sends an event to interested components (i.e., the monitor component). Even
when immediately returning from the event handler, the event system emitted
errors after a few seconds due to exhaustion of the pending event pool. This is an
architectural weakness in the driver itself. To resolve it, the driver could, e.g., use
a receive buffer that is passed when full. This was deemed to be outside the scope
of this thesis.

To circumvent this, a virtual input was created by storing the output of a previous
run of the target system in a C++ byte[] array. When receiving a specific command,
the monitor reads input data from the array, and benchmarks the processing speed.
This feature also proved to be useful for automating experiments.

The EMSComponent originally used the system timer to schedule injection and
ignition starts and stops. Instrumenting the timer proved to be infeasible due
to the large number of events. This resulted in inputs that were not recorded
by the DIM tracer, which made inferring a DIM difficult. As a mitigation, a
timerless mode was implemented that exchanged the scheduled operation for a
flank-triggered one: the GPIO pins were set to high and back to low immediately.
This greatly improved DIM quality.

3https://www.graphviz.org/

47 Issues and Workarounds

The delays imposed by synchronous tracing hampered the EMSComponent, caus-
ing interrupts to be lost in high-load scenarios. To avoid this, EMSBench was
reconfigured using the configuration in Listing A.1 to use a slower driving cycle than
that used by Schulte-Althoff. Additionally, the slow mode provided by EMSBench
itself was enabled.

Chapter 7

Evaluation

This chapter describes how the analysis framework was evaluated and the results
that were obtained. First, some remarks on the learned DIMs are made. After
introducing the evaluation metric and the approach to experiment design, the
various parameters available to the framework are compared and an “ideal” config-
uration for SBFL analysis is derived. Finally, some potential threats to the validity
of the results are discussed.

7.1 Informal Observations on DIMs

When visually inspecting renderings of the learned driver interaction models,
several observations can be made. To create a rendering, the circo tool from
GraphViz1 [GN00] was used again. Other graph layout engines did not yield graphs
with any discernible structure. Sample renderings are provided in Figure 7.1, a
complete set of all graphs is available in Figures A.1 to A.3. As was expected, the
graph’s size increases in proportion to the parameter k. Of more interest is the
structure of the graph. With increasing size, the outer circle of nodes with mostly
sequential transitions increases in size, while the number of interconnects across
the circle drops.

Since the EMS’ behavior is inherently repetitive, this effect was to be expected for
a valid DIM; in fact, a manually created DIM could be laid out as a circle with no
interconnect, combined with a small startup sequence to account for stabilizing
voltage on the GPIO when supplying power to the Discovery board. This indicates
that while a larger value of k improves the fit of the model to the input data,
too large values result in models “under-fitting” the acutal behavior, i.e., missing
relevant information.

1https://www.graphviz.org/

Evaluation 50

(a) k = 1 (b) k = 2

(c) k = 5 (d) k = 10

Figure 7.1: Learned DIMs with increasing parameter k

The states of the DIM, however, can not be fully matched to the EMS’ internal
state (i.e., the internal state of the simulated motor). Further research on DIMs is
suggested in Section 9.2.

7.2 Basic Concepts

To judge analysis quality, an evaluation metric is required. Since the normal
SBFL workflow (see Listing 2.1) requires time-consuming manual checking of the
components in its last step, a sensible metric is the amount of time saved for the
human checker.

51 Fault Synthesis

It is assumed that the checker will start with the most suspicious component and
proceed to the least suspicious one. Each component that is more suspicious than
the faulty one therefore wastes the checker’s time. This intuition is codified in the
EXAM score.

If a system with k components is analyzed using an SBFL-based fault localization
scheme, let C0 by a faulty and C1, . . . , Ck−1 be non-faulty components. Let m(Ci)
be the suspiciousness assigned to Ci. Additionally, let Ei be true if and only if Ci

was executed at least once. The EXAM score [WDX12] for the system is

e = |{i | Ei,m(Ci) > m(C0), i ≥ 1}|
|{i | Ei}|

.

The EXAM score is not only dependent on the SBFL scheme, but also on the test
case used. Note that for randomly assigned suspiciousness, the score should ap-
proach 50 %. If multiple faults are present, the proportion of non-faulty components
“above” the most suspicious faulty component is computed.

For example, if a program consists of non-faulty components A,B,C,D,E and a
faulty component F . After several runs, suspiciousness is computed, with

m(A) = 0.8 m(B) = 0.8 m(C) = 0.6
m(D) = 0.5 m(E) = 0.4 m(F) = 0.6.

However, components D and E have not been executed. The EXAM score would
be 2

4 = 50 %, since 4 components were executed and A and B are more suspicious
than F . The identical suspiciousness of C does not reduce the score.

Since parameter classification results in multiple instances of a component being
observed, one for every combination of classified parameters, the EXAM score
needs to be adapted. Since the source code for all instances is identical, the
checker is assumed to discover a fault during the first examination of a component.
Therefore, the best score for a component is selected.

7.3 Fault Synthesis

To empirically analyze fault localization techniques, a repository of faults that
can be introduced into the examined program is required. This section discusses
both the basic concepts of artificial faults and the creation of the faults used for
evaluation.

Evaluation 52

1 --- components/EMSMotor.cc 2018-06-19 01:40:26.986141936 +0200
2 +++ MLPA_158.cpp 2018-06-27 13:15:17.510079885 +0200
3 @@ -289,2 +289 @@
4 - doWorkOfCylinder(&EMSMotorCylinder::cylinder[1]);
5 - doWorkOfCylinder(&EMSMotorCylinder::cylinder[2]);
6 + ;

Listing 7.1: “Missing small and localized part of the algorithm”-type fault generated
by clang-sfi.

7.3.1 Basic Concepts

Faults used for this purpose can either be real faults that have been discovered
in the software previously or can be artificially created. While collections of real
faults such as iBugs2 [DZ07] exist, artificial samples can be generated for any
program, making them a more versatile option.

Duraes and Madeira provide a categorization of faults [DM06] that can be artificially
generated that divides them into three basic categories:

• missing constructs (e.g., a missing assignment),
• wrong constructs (e.g., a wrong constant), and
• extraneous constructs (e.g., an extraneous assignment).

Inside these categories, faults are classified by the exact nature of the introduced
modification. By modeling these as patches that can be applied to existing source
code, a collection of faults can be synthesized for any program.

The application clang-sfi [Sie18] can inject several of the types of faults into
C++ code. Contrary to the solution developed by Duraes and Madeira, clang-sfi
injects faults at source code level, not into the object code generated by the
compiler. An example of a generated “missing small and localized part of the
algorithm”-type fault in patch format is depicted in Listing 7.1. Two lines from
the motor cylinder control algorithm are removed and replaced with an empty
statement.

7.3.2 Sample Creation

To obtain a set of faults, clang-sfi was run for each of the four C++ implementa-
tion files of the EMSComponent. In the next step, the resulting patch files were
applied and a faulty program built for each.

2https://www.st.cs.uni-saarland.de/ibugs/

53 Experiments

Unfortunately, several of the patches were defective, in that they either were
empty, did not modify the source code or injected faulty syntax. These patches
were discarded. All patches from the “missing return statement” family, as well
as a small set of other patches, triggered compiler warnings due to execution
paths without a return statement. Arguably, these faults were already diagnosed
correctly by the g++ C++ compiler; they were however retained.

For every type of fault a set of five faults was picked at random. Faults were
discarded and replaced if

• they only modified dead code such as never-called methods or removed
always-false clauses in or-statements,

• did only result in modifications to debug output,
• created a fault similar to an already used one (e.g., removed entries from the

same array), or
• the resulting program was inoperable (e.g., did not boot).

A set of 41 patches remained. Some types of faults were never created or all
instances had to be discarded; for other types, less than five patches could be used.

All faulty programs were deployed to the Wandboard and output recordings were
created by handling a single driving cycle using the EMSComponent, using the
experimental protocol described in Table A.3. These recordings were used for all
subsequent experiments. The faults are identified by their type and a number.

7.4 Experiments

Having obtained a library of faults, the evaluation itself could be performed. To
obtain results, the following experiments were run:

DIM Selection: This experiment selected a driver interaction model that produced
no false positives, but also had a high recall, i.e., amount of faults that
triggered the DIM oracle. This experiment also aimed to determine a
suitable reset parameter, i.e., the number of successful transitions required
after a failed one to “reset” the DIM (see Section 3.3 for details).

Method Call Sequence Length Selection: The next experiment tried to deter-
mine a suitable length parameter for MCSHS. Since longer sequences stress
the CPU during analysis, timing measurements were performed to determine
the highest length the Wandboard could handle.

Common Parameter Comparison: Using the results of the previous two, this
experiment searched for the “ideal” configuration for thread separation,

Evaluation 54

Exp. Oracles Exp. Oracles Exp. Oracles

MFC-1 DIM MIES-2 MPLA-2
MFC-2 DIM MIES-4 MPLA-10 DIM
MFC-4 MIES-6 DIM MPLA-26 DIM
MFC-5 MIES-7 DIM MPLA-29 DIM
MFC-6 DIM MIES-11 DIM MPLA-30 DIM

MIA-2 MIFS-1 MRS-1
MIA-3 MIFS-3 MRS-9 DIM
MIA-5 MIFS-5 MRS-10 CPU Ex. & DIM
MIA-6 MIFS-7 DIM MRS-15
MIA-7 MIFS-8 DIM MRS-18 DIM

MIEB-2 DIM MLOC-3 DIM & SBG MVIV-7
MIEB-3 DIM MLOC-4 DIM MVIV-15
MIEB-4 DIM MLOC-5
MIEB-7 DIM MLOC-8
MIEB-10 DIM

Table 7.1: Oracle-detected failures for the selected faults

choice of transaction detector and suspiciousness metric. All combinations
were compared using the average EXAM score over all generated faults.

Evaluation of Other Parameters: Several parameters were difficult to test, for
others, the first two experiments could only exclude certain options. This
experiment investigated those parameters by modifying the “ideal” config-
uration derived in the previous step and computing the respective EXAM
scores.

7.4.1 DIM Selection

In the first experiment, a suitable driver interaction model was selected. When
testing the models five times in combination with a fault-free program, it was
discovered that models learned using k ≥ 3 produced false positives. Therefore,
only DIMs learned using k = 1 and k = 2 were deemed suitable for use as an
oracle.

When using a k = 2-DIM, failures were detected for 22 of the 41 faults (53.7%),
almost all by the DIM oracle (see Table 7.1 for a breakdown). The SBG oracle
triggered twice, once due to a change in the control flow and once due to a system

55 Experiments

crash. In the latter case, the SBG had not “learned” about the CPU exception
handling code; the CPU exception oracle was also triggered. The crash was caused
by a missing return statement.

To fix the parameters of the DIM oracle, three modes of operation were compared
by their failure detection rates: a k = 1-DIM with reset threshold 1, a k = 2-DIM
with reset threshold 1 and the same DIM with threshold 2. Only the failures
triggering the DIM oracle were examined.

As can be seen in Table 7.2, detection rates for the k = 1-DIM dropped to 19.5%.
The difference in the number of failures detected by the k = 2-DIM did not
vary substantially depending on the reset threshold; only two experiments were
impacted at all. The k = 1-DIM was subsequently discarded.

7.4.2 Limits to Method Call Sequence Lengths

In the next experiment, the suitable lengths for method call sequences were
determined. It quickly became apparent that increasing the sequence length
resulted in a major reduction in processing speed. As determined in Section 6.4, a
processing speed of 57 600 bytes per second was essential. Since processing speed
decreased for longer inputs, the recording used for SBG learning – the longest
recording created during experimentation – was used for benchmarking.

Since the impact of failure indexing and thread separation had not yet been
explored, all four combinations of the two parameters were tested. The results
over three runs are shown in Table 7.3. Both the average speed and the speed of
the lowest 10-kilobyte block were determined. The standard deviation is omitted
due to being close to zero. Experiments for a length of 3 were not completed since
initial attempts demonstrated an unacceptable processing speed.

Disabling the MCSHS feature resulted in a processing speed suitable for real-time
processing in some configurations due to the minimum speed being above 57 600
bytes per second. Other configurations dropped below this minimum speed, but
maintained a higher average speed. In these cases, the addition of a receive buffer
would suffice to maintain real-time capabilities. Note that the monitor’s code
contained several MCSHS-specific parts. The creation of optimized code paths for
analyses without MCSHS is likely to result in a performance increase.

For sequence lengths of two, average processing speed was too slow by a factor
between 2.8 and 7.7. Further examination was performed using a length of one
(i.e., without MCSHS). Since optimization might conceivably increase performance
to sufficient levels to handle lengths of two, the determined “ideal” configuration
for sequence length one was tested for a length of two in a later step to determine
the impact of sequence length on analysis quality.

Evaluation 56

Exp. DIM Failures
k = r = 1 k = 2, r = 1 k = r = 2

MFS-1 0 2 2
MFC-2 13 1 1
MFC-6 1 1 1

MIEB-2 1 1 1
MIEB-3 1 1 1
MIEB-4 0 10 10
MIEB-7 0 3 3
MIEB-10 0 1 1

MIES-6 0 3 1
MIES-7 0 2 2
MIES-11 0 1 1

MIFS-7 0 6 6
MIFS-8 0 2 2

MLOC-3 11 11 11
MLOC-4 1 2 2

MLPA-10 1 1 1
MLPA-26 2 2 1
MLPA-29 0 1 1
MLPA-30 0 2 2

MVIV-9 0 10 10
MVIV-18 0 1 1

Detection Rate 19.5% 51.2% 51.2%
∑

Failures 31 64 61

Table 7.2: Number of failures detected by the DIM oracle for learning parameter k
and reset threshold r

7.4.3 Comparison of Common Parameters

Next, an “ideal” analysis configuration was determined; however, some parameters
were not investigated in this step. For all faults but two, only the DIM oracle
was triggered. Since this oracle is not capable of failure indexing, this setting was
ignored. The same issue arose for the reset threshold, which produces identical
results for most faults.

57 Experiments

Seq. Len. F. Ind. Th. Sp. Avg. B / Sec Min. B / Sec

2 yes yes 11 196 5 441
2 yes no 7 445 3 344
2 no yes 20 788 10 032
2 no no 12 813 5 777

1 yes yes 81 335 48 819
1 yes no 68 147 39 683
1 no yes 146 787 95 129
1 no no 127 094 76 523

Table 7.3: Processing speeds for different campaign configurations

Since the “natural” threshold for a DIM is the learning parameter k (due to
the merging behavior of k-tails), a threshold of two was picked initially. Because
activating failure indexing reduced performance and made scoring more complicated,
it was disabled at first. The timer transaction detector was set to an interval of
100 milliseconds using injected timer events.

Three parameters remained to be fixed: the use of thread separation, the best
transaction detector (timed, OSC-based, both) and the best suspiciousness metric.
To determine these, a set of six experiments was run. In every experiment, the
average EXAM score over all detected fault was determined for each implemented
suspiciousness metrics.

The avarage EXAM score over all faults and the score’s standard deviation are
tabulated in Table 7.4. Since in many experiments the fault localization was
“perfect”, i.e. an EXAM score of 0% was achieved, the number of faults handled
“perfectly” is also shown.

Several conclusions can be drawn. The most obvious is the immense decrease in
quality when enabling thread separation. Since the workload was mostly single-
threaded, the added spectra appeared to be of little use. For parallel workloads,
this effect might not persist.

The timer transaction detector outperformed the OSC-based one; disabling the
latter slightly increased result quality. This might be caused by fact that the OSC
detector cannot recognize interrupt handlers. Again, the workload might benefit
the timer-based detector since the thread of execution contains pauses between
OSC activations.

The high performance of the Barinel and Tarantula metrics in the last experiment
gives some insight into the characteristics of these metrics; apparently, they

Evaluation 58

Th. Tr. 0% Avg. σ 0% Avg. σ 0% Avg. σ

Sp. Dt. Barinel D2 D3

Ochiai Op2 Tarantula

off both 13 3.7% 7.2 pp 15 3.0% 5.9 pp 15 3.0% 5.9 pp
12 5.0% 8.1 pp 12 5.0% 8.1 pp 10 5.4% 8.0 pp

off osc 11 5.1% 8.1 pp 13 4.7% 8.2 pp 13 4.7% 8.2 pp
13 4.7% 8.2 pp 13 4.7% 8.2 pp 11 5.1% 8.1 pp

off timer 13 2.9% 4.1 pp 15 2.7 % 4.7 pp 15 2.7 % 4.7 pp
14 3.0% 4.7 pp 14 3.0% 4.7 pp 12 3.6% 4.7 pp

on both 4 21.7% 19.7 pp 0 35.9% 14.9 pp 0 36.3% 15.1 pp
0 36.0% 14.8 pp 0 36.4% 15.0 pp 4 22.5% 19.7 pp

on osc 1 43.2% 21.2 pp 1 44.5% 18.4 pp 0 43.1% 15.3 pp
1 44.5% 18.4 pp 0 43.1% 14.6 pp 1 43.2% 21.2 pp

on timer 13 5.6% 10.5 pp 0 27.4% 8.8 pp 0 27.8% 8.8 pp
0 27.8% 8.7 pp 0 28.3% 8.7 pp 12 6.0% 10.5 pp

Table 7.4: Accuracy results for different analysis configurations

outperform the others if the number of successful runs vastly exceeds the execution
counts for the examined component.

The “ideal” configuration was obtained by disabling both thread separation and the
OSC transaction detector while using the D2 metric. Since D2 slightly outperformed
D3 in other experiments, it was given preference. While the metrics correctly
identified the defective component in 15 cases, the components clustered on identical
suspiciousness values, with an average of ca. 7 components tied in suspiciousness
with the “correct” one. Also, it must be noted that the EXAM score obtained for
all configurations without thread separation is within 1σ of the “ideal” one.

7.4.4 Examination of Edge Cases

In the final step, the features skipped in the previous experiment were examined.
This was done by modifying the “ideal” configuration and recomputing the average
EXAM score over all detected fault for each implemented suspiciousness metrics.

Testing failure indexing was complicated by two facts: little experimental data was
available and only one fault was injected per experiment, i.e., only one “correct”
location could be discovered. It was only performed for the two experiments

59 Memory Requirements

Mode 0% Avg. σ 0% Avg. σ 0% Avg. σ

Barinel D2 D3

Ochiai Op2 Tarantula

Ignored 12 2.9% 3.8 pp 13 2.7% 3.9 pp 13 2.7% 3.9 pp
Parameters 12 3.0% 4.0 pp 12 3.0% 4.0 pp 10 3.6% 4.0 pp

Reset 12 3.2% 4.2 pp 14 3.0% 4.7 pp 14 3.0% 4.7 pp
Threshold 1 13 3.3% 4.7 pp 14 3.0% 4.7 pp 11 3.9% 4.7 pp

Seq. Len. 2 12 3.8% 5.5 pp 14 2.7% 4.9 pp 14 2.7% 4.9 pp
Best Score 13 2.9% 4.9 pp 14 2.4 % 4.6 pp 11 4.1% 5.5 pp

Seq. Len. 2 9 18.8% 24.1 pp 10 17.1% 22.2 pp 10 19.2% 23.3 pp
Avg. Score 9 17.9% 23.7 pp 10 21.1% 28.0 pp 8 19.3% 24.3 pp

Table 7.5: Accuracy results for variants of the “ideal” configuration

that had triggered multiple oracles, without significant results. Most failures
were registered only once and in the same transaction, the resulting diagnosis
was therefore identical to the analysis without failure indexing. One failure was
attributed to a different transaction, resulting in worsened diagnostic accuracy.
Without more data, a verdict on the extension is difficult, however, the feature
seems to be of little benefit in conjunction with a DIM oracle.

Results for the following experiments are tabulated in Table 7.5. Disabling param-
eter recording was tested without measurable impact on the result accuracy. Then,
a DIM reset threshold of one was tested with minor negative impact on the score.

Finally, a method call sequence length of two was tested. First, the sequences were
used as-is, with the assumption of the developer examining sequences in order of
suspiciousness. The best-scoring sequence containing the faulty component was
chosen. In this scenario, Op2 was able to outperform D∗ with a score of 2.4%,
however, the number of 0%-results decreased. It is questionable if this offsets the
performance loss. When using the averaging proposed by Dallmeier, Lindig, and
Zeller, the EXAM scores dropped to values of more than 17%.

7.5 Memory Requirements

While the Wandboard offers 2GB of RAM, other embedded systems are equipped
with substantially smaller amounts. To ensure that the framework can also operate
on these systems, the memory usage after each experiment was checked. The

Evaluation 60

Mode Avg. Usage Usage σ

Seq. Len. 1, no threads 6 492.5B 214.5B
Seq. Len. 1, thread sep. 10 846.3B 236.4B
Seq. Len. 2, no threads 210 167.5B 16 409.4B

Table 7.6: Average memory usage for different thread separation modes and se-
quence lengths

results, using no failure indexing, are tabulated in Table 7.6. Due to the low number
of faults triggering multiple oracles, no reliable results could be determined; in the
two tested cases, the greatest amount required was 57 780Bytes.

In all cases, less than one megabyte of memory was used. In the “ideal” configu-
ration, less than 10 kilobytes were required. This amount of memory should be
available in for any system equipped with sufficient processing power to perform
analysis in the first place.

This does, however, not necessarily extend to MCSHS-based analysis; to make
this feasible on low-memory devices, the storage system would require immense
optimization. The possibility to switch data structures to achieve this was not
investigated in this thesis.

7.6 Threats to Validity

The validity of these results may be threatened for two reasons. Aspects of the
experimental design might prevent generalization of the results. Systemic issues
related to the experimental design draw into question the validity of the results in
general.

7.6.1 Experimental Design

While the EMSComponent might be representative of many low-level embedded
applications, its structure is highly different from programs that might be found
on a traditional PC. The low number of functions and the deterministic control
flow may have reduced the effectiveness of the SBG oracle. The fact that the
EMSComponent communicated with the EMS hardware without a large driver
stack or buffers often cause a faults to immediately trigger the DIM oracle. This
benefited the analysis process, an effect that might not be present when using a
multi-layered driver stack.

61 Threats to Validity

Many aspects of the experimental conditions are specific to the EMSComponent,
or at least to similar programs for cyber-physical systems. The low degree of
parallelism is rater typical for single-purpose systems; a web server or desktop
computer executes threads in parallel almost constantly.

Unfortunately, other CyPhOS applications that could be injected with meaningful
faults were not readily available. While the effort required to port the framework
to another platform is low, this was nonetheless deemed to be outside of the scope
of this thesis. Whether this thesis’ results can be generalized to other systems
remains to be explored.

7.6.2 Systemic Issues

In a review of existing results comparing suspiciousness metrics by their performance
[Pea+17; Pea+16], Pearson et al. noted that these results were acquired in different
environments and by using artificially generated faults. To check applicability for
the “real world”, the experiments were repeated while substituting real faults that
were acquired from the tested programs’s history for artificial faults.

While the authors were able to replicate most experimental results with sufficient
degrees of significance (except for a result ranking the Barinel metric above
the Ochiai metric) using artificial faults, all results were either diminished to
insignificant differences between metrics or refuted outright when substituting real
faults.

Since for this thesis, the injected faults were artificially generated, the validity
of the obtained results may be threatened. While Pearson et al. recommend
the use of real faults, a review of the CyPhOS source repository did not reveal
easily-accessible faults in single components that could be reintroduced. The idea
of manually creating bugs was rejected due to the risk of involuntarily introducing
bias.

To improve the results obtained using artificial faults, all metrics examined by
Pearson et al. were evaluated to obtain a broad set of results. Again, a port to
other systems could bring clarity by making available other sources of faults.

Chapter 8

Related Work

This chapter discusses alternative strategies to tackle this thesis’ objectives that
were not pursued. A short overview, as well as the reasons for not adopting it, are
given for each of the approaches.

8.1 Model-based Diagnosis

In the scope of the Trader project [Mat09], an alternative to the use of suspiciousness
metrics was examined by Abreu, Zoeteweij, and Gemund. Using a spectrum from
a failed run, it can be inferred that at least one component present in the trace
must be faulty.

Instead of examining the similarity of component vectors to the error vector, this
information is used in a first-order logic model [AZG08; HM09]. This model assigns
a health variable hi to every component Ci such that

hi = 0 ⇐⇒ component Ci is faulty

For a failing run i executing components Ci0 , . . . , Cimax , it is known that one
component cannot be healthy:

¬hi0 ∨ ¬hi1 ∨ · · · ∨ ¬himax

Using spectra from multiple failing runs 0, . . . , n− 1, this fact must hold for every
run:

(¬h00 ∨ · · · ∨ ¬h0max) ∧ (¬h10 ∨ · · · ∨ ¬h1max) ∧ · · · ∧ (¬hn−10 ∨ · · · ∨ ¬hn−1max)

A fault localization diagnosis can be acquired by finding a variable assignment that
only assigns a false value to a minimal number of health variables. Computing
a minimal assignment is NP-complete (hitting set problem). Instead of using

Related Work 64

an exponential-time algorithm to identify a minimal assignment, the Staccato
algorithm [AG09] was devised. It uses regular SBFL suspiciousness results to
assign an initial non-boolean value to each health variable and then refines these
values to yield hitting sets.

Since the generation on the models requires information about every individual
run, instead of aggregate matrices, every spectrum must be stored. Due to the
memory requirements, this approach was deemed unsuitable for implementation in
an embedded context and not pursued in this thesis.

8.2 Optimal Suspiciousness Metrics

To improve upon the empirical evaluation of suspiciousness metrics, Xie et al.
presented a comparison relation between metrics [Xie+13]. Using this relation, two
equivalent, optimal metrics among a set of thirty were identified. However, this
ranking only holds under the assumption that 100% test coverage is available and
does not necessarily extend to identifying missing statements.

Le, Thung, and Lo examined these optimal metrics in real-world scenarios that
did not match the assumptions required for the theoretical comparison [LTL13].
In this scenario, the optimal metrics were outperformed by non-optimal ones.

This thesis uses synthetic bugs that do remove statements and forsakes test coverage
for other approaches. Therefore, only popular, non-optimal metrics that proved
accurate in empirical studies were examined.

8.3 Fault Localization in Embedded Devices

For a different part of the Trader project [Mat09], SBFL was used by Abreu et al.
to investigate pre-existing faults in a TV set’s controller software [Abr+09; Zoe+09].
This environment severely limited the available memory and CPU time.

To successfully employ SBFL, several optimizations were implemented. Spectra
were recorded into a fixed-size ring buffer fur further processing during periods
of low system load and discarded if necessary. The spectra were then integrated
into aggregate matrices to reduce memory consumption further. This approach
maintained the timing characteristics of the tested system sufficiently to correctly
diagnose a timing-related fault. Even with a little collected data, good fault
localization results could be obtained for the investigated bugs.

65 Energy Consumption Models

This thesis uses similar approaches to reduce memory consumption on the monitor.
Since the framework developed for this thesis does not need to contest the target’s
CPU, a buffered approach was not deemed necessary.

8.4 Energy Consumption Models

To formalize the power consumption of wireless sensor networks, Wang and Yang
proposed communication subsystem energy consumption models [WY07]
that model the power states of sensors (off, power save, receiving, transmitting,
etc.) as a finite state machine.

This approach was extended by Falkenberg for use in driver design [Fal14]. Since
in a low-power environment, the OS needs to enforce a regimen on the power
consumption of peripheral components to avoid a voltage drop, drivers should be
aware of the power consumption state of the controlled devices. This was realized
by modeling these states in the drivers as priced timed automatons.

Friesel investigated the feasibility of automatic refinement of these models [Fri17],
concluding that such refinement could reliably improve the accuracy of the models.
Since otherwise, these models would have required manual refinement, the approach
has the potential to reduce the workload for human operators.

While these approaches concentrate on modeling power consumption with high
accuracy, the DIMs examined in this thesis are designed to detect failures of the
driver itself. Therefore, the models need to be less accurate, but need to avoid
false reporting of failures.

For the energy consumption models, the initial models were designed manually,
using a set of states designed to model the actual states of the hardware. DIMs’
states are inferred using a fully automatic process; their states do not need to
model a property of the hardware.

8.5 Learning Cache Replacement Policies

To reverse-engineer the cache replacement policy of a CPU, Rueda Cebollero used
LearnLib1 to infer register mealy automata from the timing behavior of cached
memory [Rue13].

1https://learnlib.de/

Related Work 66

For a simulated CPU, an accurate model was obtained. When using data acquired
from measurements, severe limitations of the approach – primarily due to perfor-
mance problems – became apparent, leading to the conclusion that future work
would be required to make the approach feasible.

While this work attempts to model the hardware, driver interaction models describe
the communication between driver and hardware. The performance issues could
be avoided in this thesis by using a different learning approach for DIMs.

Chapter 9

Conclusion

Drawing on the results presented in previous chapters, this chapter discusses the
conclusions that can be drawn from the experiments and suggests future work
building on this thesis.

9.1 Results

The goals outlined in Section 1.1 have been fully achieved. The designed framework
meets the constraints and the evaluation results build confidence that the system
can be a useful aid in debugging. The performance constraints of embedded
systems were met, although the use of UART as a communication medium caused
several complications.

The performance of domain-agnostic oracles and transaction detectors was varied.
While the performance of the SBG oracle was disappointing, the DIM-based oracle
successfully detected over 50% of injected faults. The timer-based transaction
detector was able to outperform the manually written one. It can be concluded
that the approach of obtaining these components using machine learning is viable
for fault localization. Even outside of SBFL, DIMs might be of utility in the field
of model checking.

The accuracy of the SBFL process was beyond expectations. While literature
reports average EXAM scores of 10 to 20%, the 2.7% achieved in the “ideal”
configuration are a vast improvement over these values. Should this quality
generalize to other embedded systems, the analysis framework can successfully
compete with other fault localization techniques.

The extensions to SBFL – aside from parameter classification – that were examined
yielded disappointing results. While positive effects might appear for more complex,
larger systems, simplicity seems to be its own reward for the embedded case.
Skepticism about the suitability of MCSHS for this domain appears to be warranted,

Conclusion 68

since the (questionable) improvement in quality is bought with severe performance
reductions.

All in all, SBFL was confirmed to be a viable, useful tool in localizing faults. It
can only be hoped that the technology rises to more prominence among software
developers in the years to come.

9.2 Future Work

Many properties of the framework had to remain unexplored. Future research
is required to generalize the thesis’ results to other applications and platforms
or demonstrate the inability to do so. On the one hand, performance on other
embedded systems would be of interest to study the usability in a general embedded
context. On the other hand, examining desktop applications might give insight
into the suitability of models such as SBGs in these scenarios.

Due to the pluggable nature of oracles, transaction detectors and suspiciousness
metrics, the framework can be used as an experimental platform for these. Of
special interest might be the derivation of other domain-agnostic components
and their evaluation in different contexts. Finally, the framework implementation
certainly leaves room for performance optimization. Performance improvements
might make MCSHS viable or allow porting the monitor to even lower-power
platforms.

Driver interaction models could only be explored in passing. While model checking
often has focused on modeling a single component (i.e. either the program or the
hardware), the holistic approach of DIMs and similar interaction models might
help shed light on previously unexplored aspects of system behavior.

If the “readability” of models can be improved, they might prove to be of interest
as a reverse engineering tool. Having a model of the observed communications
might aid in the understanding of undocumented network protocols or device
drivers.

The models themselves might benefit from a different machine model, such as
timed or register automata. To improve the recognition of abnormal behavior,
probabilistic automata could be used to detect shifts in the probability distribution
and acquire resistance to the occasional exceptional event. Weighting edges can
also improve the visualization by highlighting the “common case”.

While this thesis has hopefully both advanced the understanding of SBFL in the
context of embedded systems and uncovered a topic of future interest by examining
DIMs, research in these fields is far from complete. Thus, this thesis concludes in

69 Future Work

the hope that future advances in those fields might eventually contribute to the
understanding of software and – perhaps – eliminate a few bugs on the way.

Glossary

advice logic that needs to be executed at one or more join points to realize an
aspect 24, 25, 71

aggregate matrix a matrix recording the number of failing and succeeding runs
during which a component was executed or not executed 9, 10, 27, 31, 36,
37, 64

aspect a part of a system’s function that can not cleanly be encapsulated into a
component 23, 24, 25, 27–30, 44, 71, 72

aspect weaver a component that modifies a program so that at defined pointcuts,
an advice is introduced 10, 24, 27

behavior a system’s actual function 5, 72

classification categorization of a function’s parameters into subsets of their types
12, 29–31, 36, 51, 67

classifier a function mapping all values of a type to a limited numerical range
11, 12, 36, 38, 72

component a constituent part of a system 5, 6–13, 15, 21, 23, 28, 29, 31, 36,
41, 44, 50, 51, 58, 59, 61, 63, 71–73

component vector a vector recording in which runs a component was executed
7, 8, 11, 63, 73

driver interaction model a FSM modelling the interactions between driver and
hardware 4, 15, 16, 18, 49, 54, 66, 68

error vector a vector recording which runs have failed 7, 8, 11, 63, 72, 73

EXAM score the proportion of components more suspicious than the faulty one
51, 54, 57–59, 67

execution the part of a run affecting a single component 6, 7, 10, 41, 51, 58,
63, 71, 73

Glossary 72

failing exhibiting a failure 6, 7, 8, 10, 14, 17, 31, 63, 71

failure deviation of a system’s service from the intended function 6, 7, 9, 10,
12, 13, 15, 17, 21, 27, 31, 32, 36, 44, 54–56, 59, 65, 71–73

failure indexing separate SBFL analysis for every different failure detected 21,
32, 36, 55–60

fault the (hypothesized) cause of a failure 6, 9–12, 14, 16, 18, 21, 27, 28, 31, 43,
44, 51–54, 56–58, 60, 61, 64, 67, 68, 72, 73

fault localization the attempt to find the fault causing a failure 4, 6, 8–11, 14,
28, 51, 57, 63, 64, 67, 72, 87

faulty containing a fault 6, 7, 8, 12, 15, 51–53, 59, 63, 71

function a system’s intended operation 5, 14, 23, 71, 72

join point the parts of a program affected by an aspect 23, 24, 25, 29, 71, 72

k-tail the set of words of length k that are accepted starting from a state 18,
19, 20

method call sequence a tuple containing the last k observed method calls 10,
11, 12, 31, 36, 39, 72

method call sequence hit spectrum a spectrum using method call sequences as
components 3, 10

monitor the system analyzing the target to perform fault localization 27, 28,
29, 33, 34, 44, 45, 65, 68

observation matrix a matrix containing a set of spectra and the corresponding
error vector side by side 7

oracle a function that detects failures in a trace 3, 4, 13, 14, 15, 17, 21, 27, 28,
31, 32, 36, 44–46, 53–56, 60, 67, 68

pointcut a set of join points 23, 24, 25, 34, 71

program a system implemented in software 6, 7, 9, 10, 12, 14–18, 21, 23–25, 27,
28, 36, 45, 51–54, 60, 61, 71–73

representative a value output by a classifier, i.e., in its image 12, 37–39

run the execution of a complete program 6, 7–10, 13, 14, 17, 18, 31, 45, 51, 63,
64, 71, 73

service the part of a system’s behavior percieved by its users 5, 6, 72

software behavior graph a graph storing observed calls between functions and
methods 14, 15

73 Glossary

spectrum a vector recording which components were executed during a program’s
run 7, 9, 10, 12–14, 21, 31, 32, 36, 57, 63, 64, 72

succeeding exhibiting no failures 6, 7, 8, 17, 31, 32, 71

suspiciousness the similarity of a component vector to the error vector 8, 9, 10,
12, 32, 51, 58, 64, 71

suspiciousness metric a function computing a component’s suspiciousness 8,
9, 11, 28, 32, 54, 57, 58, 61, 63, 64, 68

system an entity that interacts with other entities 5, 6, 12, 14, 15, 21, 23, 34,
51, 61, 64, 71, 72

target the system suspected of harboring faults 18, 27, 28, 29, 33–35, 37, 45,
65, 72

thread separation separation of gathered data by originating thread of execution
12, 21, 29, 31, 32, 53, 55, 57, 58, 60

trace a recording of the components executed during a program’s run, in chrono-
logical order 6, 7, 10, 13, 17, 21, 27, 28, 37, 63, 72, 73

transaction a continuous subsequence of a trace 13, 14, 21, 27, 31, 32, 34, 45,
59, 73

transaction detector a function that splits a trace into transactions 3, 4, 13,
14, 21, 27, 28, 31, 32, 34, 44, 45, 54, 57, 58, 67, 68

Acronyms

AOP aspect-oriented programming 3, 4, 23, 24

API application programming interface 39

ASCII American Standard Code for Information Interchange 35

avg. average 57–60

B bytes 57

CPU central processing unit 12, 18, 29, 42, 44, 53–55, 64–66

CRC cyclic redundancy check 35

DIM driver interaction model 16, 17–20, 23, 29, 31–33, 35, 36, 45, 46, 49, 50,
53–57, 59, 60, 65–68, 85–87, 89–91

EMS engine management system 42, 43, 49, 50, 60

ex. exception 54

exp. experiment 54, 56

f. ind. failure indexing 57

FSM finite state machine 16–20, 65, 71

GPIO general-purpose input / output 33, 43, 49

I /O input / output 29

ID identifier 33, 46

IP Internet Protocol 16

JPID join point identifier 25, 30, 38

MCSHS method call sequence hit spectrum 10, 11, 12, 31, 36, 53, 55, 60, 67, 68

min. minimum 57

OS operating system 4, 27–29, 32–35, 39, 41, 65, 87

Acronyms 76

OSC operating system component 41, 44, 45, 57, 58

PC personal computer 18, 45, 60

PCI Peripheral Component Interconnect 16

pp percentage points 58, 59

RAM random access memory 41, 42, 59

SBFL spectrum-based fault localization 3–5, 7, 9, 10, 13, 14, 21, 23, 27–30, 32,
33, 49–51, 64, 67, 68, 72

SBG software behavior graph 14, 15, 17, 23, 29, 32, 36, 45, 54, 55, 60, 67, 68, 86

sec seconds 57

seq. len. sequence length 57, 59

SQL Structured Query Language 14

TCP Transmission Control Protocol 16

th. sp. thread separation 57, 58

tr. dt. transaction detector 58

UART universal asynchronous receiver-transmitter 29, 32–36, 43, 46, 67

XML Extensible Markup Language 25

Bibliography

[Abr+09] Rui Abreu et al. “A practical evaluation of spectrum-based fault lo-
calization”. In: Journal of Systems and Software 82.11 (Nov. 2009),
pp. 1780–1792. issn: 0164-1212. doi: 10.1016/j.jss.2009.06.035
(cit. on pp. 9, 64).

[AG09] Rui Abreu and Arjan J. C. van Gemund. “A Statistics-directed Mini-
mal Hitting Set Algorithm”. In: Proceedings of the 20th International
Workshop on Principles of Diagnosis. Ed. by Erik Frisk et al. June
2009, pp. 51–58. url: http://photon.isy.liu.se/dx09/ (cit. on
p. 64).

[Avi+04] Algirdas Avižienis et al. “Basic Concepts and Taxonomy of Dependable
and Secure Computing”. In: IEEE Transactions on Dependable and
Secure Computing 1.1 (Jan. 2004), pp. 11–33. issn: 1545-5971. doi:
10.1109/TDSC.2004.2 (cit. on pp. 5, 6).

[AZG06] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Program
Spectra Analysis in Embedded Software: A Case Study. Tech. rep.
TUD-SERG-2006-007. Software Engineering Research Group, Delft
University of Technology, 2006. arXiv: cs/0607116 (cit. on p. 21).

[AZG08] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. “An
Observation-based Model for Fault Localization”. In: Proceedings of
the 2008 International Workshop on Dynamic Analysis: Held in Con-
junction with the ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA 2008). New York, NY, USA: ACM,
July 21, 2008, pp. 64–70. isbn: 978-1-60558-054-8. doi: 10.1145/
1401827.1401841 (cit. on pp. 7, 63).

[AZG09] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. “Spectrum-
Based Multiple Fault Localization”. In: 2009 IEEE/ACM International
Conference on Automated Software Engineering. IEEE, Nov. 2009,
pp. 88–99. isbn: 978-1-4244-5259-0. doi: 10.1109/ASE.2009.25 (cit.
on p. 8).

Bibliography 78

[BF72] A. W. Biermann and J. A. Feldman. “On the Synthesis of Finite-State
Machines from Samples of Their Behavior”. In: IEEE Transactions
on Computers C-21.6 (June 1972), pp. 592–597. issn: 0018-9340. doi:
10.1109/TC.1972.5009015 (cit. on p. 18).

[Bri59] Rene de la Briandais. “File Searching Using Variable Length Keys”. In:
Papers Presented at the the March 3-5, 1959, Western Joint Computer
Conference. New York, NY, USA: ACM, Mar. 3, 1959, pp. 295–298.
doi: 10.1145/1457838.1457895 (cit. on p. 37).

[BS15] Hendrik Borghorst and Olaf Spinczyk. “Increasing the Predictabil-
ity of Modern COTS Hardware through Cache-Aware OS-Design”.
In: Proceedings of the 11th Annual Workshop on Operating Systems
Platforms for Embedded Real-Time Applications. Ed. by Björn B. Bran-
denburg and Robert Kaiser. MPI-SWS, July 7, 2015, pp. 41–44. url:
https://people.mpi-sws.org/~bbb/events/ospert15/ (cit. on
p. 41).

[Cas+11] Paulo Casanova et al. “Architecture-Based Run-Time Fault Diagno-
sis”. In: Software Architecture. Ed. by Ivica Crnkovic, Volker Gruhn,
and Matthias Book. Lecture Notes in Computer Science 6903. Berlin,
Heidelberg: Springer, 2011, pp. 261–277. isbn: 978-3-642-23798-0. doi:
10.1007/978-3-642-23798-0_29 (cit. on pp. 13, 14).

[Cer69] Vint Cerf. ASCII format for Network Interchange. STD 80. RFC Editor,
Oct. 16, 1969. url: https://tools.ietf.org/html/std80 (cit. on
p. 35).

[DLZ05] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. “Lightweight
Defect Localization for Java”. In: ECOOP 2005 - Object-Oriented
Programming. Ed. by Andrew P. Black. Lecture Notes in Computer
Science 3586. Berlin, Heidelberg: Springer, 2005, pp. 528–550. isbn:
978-3-540-31725-8. doi: 10.1007/11531142_23 (cit. on pp. 6, 10, 11,
59).

[DM06] Joao A. Duraes and Henrique S. Madeira. “Emulation of Software
Faults: A Field Data Study and a Practical Approach”. In: IEEE
Transactions on Software Engineering 32.11 (Nov. 20, 2006), pp. 849–
867. issn: 0098-5589. doi: 10.1109/TSE.2006.113 (cit. on p. 52).

[DZ07] Valentin Dallmeier and Thomas Zimmermann. “Extraction of Bug
Localization Benchmarks from History”. In: Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software
Engineering. New York, NY, USA: ACM, Nov. 5, 2007, pp. 433–436.
isbn: 978-1-59593-882-4. doi: 10.1145/1321631.1321702 (cit. on
p. 52).

79 Bibliography

[Fal14] Robert Falkenberg. “Entwurf eines energiegewahren Treibermodells
für eingebettete Betriebssysteme”. MA thesis. Technische Universität
Dortmund, Fakultät für Informatik, Lehrstuhl 12, Arbeitsgruppe ESS,
Dec. 2014. doi: 10.17877/DE290R-16451 (cit. on p. 65).

[FBS17] Daniel Friesel, Markus Buschhoff, and Olaf Spinczyk. “Annotations in
Operating Systems with Custom AspectC++ Attributes”. In: Proceed-
ings of the 9th Workshop on Programming Languages and Operating
Systems. New York, NY, USA: ACM, Oct. 28, 2017, pp. 36–42. isbn:
978-1-4503-5153-9. doi: 10.1145/3144555.3144561 (cit. on p. 24).

[Fre60] Edward Fredkin. “Trie Memory”. In: Communications of the ACM 3.9
(Sept. 1, 1960), pp. 490–499. issn: 0001-0782. doi: 10.1145/367390.
367400 (cit. on p. 37).

[Fri17] Daniel Friesel. “Automatisierte Verfeinerung von Energiemodellen für
eingebettete Systeme”. MA thesis. Technische Universität Dortmund,
Fakultät für Informatik, Lehrstuhl 12, Arbeitsgruppe ESS, Mar. 2017.
doi: 10.17877/DE290R-18206 (cit. on p. 65).

[GN00] Emden R. Gansner and Stephen C. North. “An open graph visual-
ization system and its applications to software engineering”. In: Soft-
ware: Practice and Experience 30.11 (Aug. 24, 2000): Special Issue:
Discrete algorithm engineering, pp. 1203–1233. doi: 10.1002/1097-
024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N (cit. on pp. 46,
49).

[HBL75] Joseph L. Hammond, James E. Brown, and Shyan-Shiang S. Liu.
Development of a Transmission Error Model and an Error Control
Model. Tech. rep. RADC-TR-75-138. Griffiss AFB, NY, USA: Rome
Air Development Center, May 1975. url: https://ntrl.ntis.gov/
NTRL/dashboard/searchResults/titleDetail/ADA013939.xhtml
(cit. on p. 35).

[HM09] Jozef Hooman and Somayeh Malakuti. “Model-based error detection”.
In: Trader: Reliability of high-volume consumer products. A collabo-
rative research project on the reliability of complex embedded devices.
Ed. by Roland Mathijssen. Eindhoven, the Netherlands: Embedded
Systems Institute, Oct. 17, 2009. Chap. 8, pp. 93–101. isbn: 978-90-
78679-04-2. url: http://redesign.esi.nl/research/applied-
research/finished-projects/trader/ (cit. on p. 63).

[JH05] James A. Jones and Mary Jean Harrold. “Empirical Evaluation of the
Tarantula Automatic Fault-localization Technique”. In: Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering. New York, NY, USA: ACM, Nov. 7, 2005, pp. 273–282.
isbn: 1-58113-993-4. doi: 10.1145/1101908.1101949 (cit. on p. 8).

Bibliography 80

[JHS02] James A. Jones, Mary Jean Harrold, and Sohn Stasko. “Visualization
of Test Information to Assist Fault Localization”. In: Proceedings of
the 24th International Conference on Software Engineering. ICSE
2002. IEEE, May 19, 2002, pp. 467–477. isbn: 1-58113-472-X. doi:
10.1145/581396.581397 (cit. on p. 10).

[Kic+01] Gregor Kiczales et al. “An Overview of AspectJ”. In: ECOOP 2001
— Object-Oriented Programming. Ed. by Jørgen Lindskov Knudsen.
Lecture Notes in Computer Science 2072. Berlin, Heidelberg: Springer,
2001. isbn: 978-3-540-45337-6. doi: 10.1007/3-540-45337-7_18
(cit. on pp. 23, 24).

[Kic+97] Gregor Kiczales et al. “Aspect-oriented programming”. In: ECOOP’97
— Object-Oriented Programming. Ed. by Mehmet Akşit and Satoshi
Matsuoka. Lecture Notes in Computer Science 1241. Berlin, Heidelberg:
Springer, 1997, pp. 220–242. isbn: 978-3-540-69127-3. doi: 10.1007/
BFb0053381 (cit. on pp. 23, 24).

[KU15] Florian Kluge and Theo Ungerer. “EMSBench: Benchmark und Te-
stumgebung für reaktive Systeme”. In: Betriebssysteme und Echtzeit.
Ed. by Wolfgang A. Halang and Olaf Spinczyk. Informatik aktuell.
Berlin, Heidelberg: Springer, 2015, pp. 11–20. isbn: 978-3-662-48611-5.
doi: 10.1007/978-3-662-48611-5_2 (cit. on p. 43).

[Liu+05] Chao Liu et al. “Mining Behavior Graphs for “Backtrace” of Non-
crashing Bugs”. In: Proceedings of the 2005 SIAM International Con-
ference on Data Mining. Society for Industrial and Applied Mathe-
matics, 2005, pp. 286–297. isbn: 978-0-89871-593-4. doi: 10.1137/1.
9781611972757.26 (cit. on p. 14).

[LTL13] Tien-Duy B. Le, Ferdian Thung, and David Lo. “Theory and Practice,
Do They Match? A Case with Spectrum-Based Fault Localization”. In:
2013 IEEE International Conference on Software Maintenance. IEEE,
Sept. 2013, pp. 380–383. isbn: 978-0-7695-4981-1. doi: 10.1109/ICSM.
2013.52 (cit. on p. 64).

[Mat09] Roland Mathijssen, ed. Trader: Reliability of high-volume consumer
products. A collaborative research project on the reliability of com-
plex embedded devices. Eindhoven, the Netherlands: Embedded Sys-
tems Institute, Oct. 17, 2009. isbn: 978-90-78679-04-2. url: http:
/ / redesign . esi . nl / research / applied - research / finished -
projects/trader/ (cit. on pp. 63, 64).

[Men42] Luigi Federico Menabrea. “Sketch of The Analytical Engine Invented
by Charles Babbage”. Trans. from the Italian by Augusta Ada King-
Noel, Countess of Lovelace. In: Bibliothèque universelle de Genève 82
(Oct. 1842) (cit. on p. 1).

81 Bibliography

[Mur95] Kevin P. Murphy. Passively Learning Finite Automata. Working Papers
96-04-017. Santa Fe Institute, Nov. 16, 1995. url: https://www.
santafe . edu / research / results / working - papers / passively -
learning-finite-automata (cit. on p. 18).

[NLR11] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. “A Model for
Spectra-based Software Diagnosis”. In: ACM Transactions on Software
Engineering and Methodology 20.3 (Aug. 2011), 11:1–11:32. issn: 1049-
331X. doi: 10.1145/2000791.2000795 (cit. on p. 8).

[Och57] Akira Ochiai. “Zoogeographical Studies on the Soleoid Fishes Found in
Japan and Its Neighbouring Regions—II”. In: Bulletin of the Japanese
Society for the Science of Fish 22.9 (1957), pp. 526–530. issn: 0021-5392.
doi: 10.2331/suisan.22.526 (cit. on p. 8).

[PB61] W. W. Peterson and D. T. Brown. “Cyclic Codes for Error Detection”.
In: Proceedings of the IRE 49.1 (Jan. 1961), pp. 228–235. issn: 0096-
8390. doi: 10.1109/JRPROC.1961.287814 (cit. on p. 35).

[Pea+16] Spencer Pearson et al. Evaluating & improving fault localization tech-
niques. Tech. rep. UW-CSE-16-08-03. Seattle, WA, USA: University of
Washington Department of Computer Science and Engineering, Sept.
2016. url: https://homes.cs.washington.edu/~mernst/pubs/
fault-localization-tr160803-abstract.html (cit. on p. 61).

[Pea+17] Spencer Pearson et al. “Evaluating and Improving Fault Localization”.
In: 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, May 2017, pp. 609–620. isbn: 978-1-5386-3868-2.
doi: 10.1109/ICSE.2017.62 (cit. on p. 61).

[Rep+97] Thomas Reps et al. “The use of program profiling for software main-
tenance with applications to the year 2000 problem”. In: Software
Engineering — ESEC/FSE’97. Ed. by Mehdi Jazayeri and Helmut
Schauer. Lecture Notes in Computer Science 1301. Berlin, Heidelberg:
Springer, 1997, pp. 432–449. isbn: 978-3-540-69592-9. doi: 10.1007/3-
540-63531-9_29 (cit. on p. 7).

[RSB05] Harald Raffelt, Bernhard Steffen, and Therese Berg. “LearnLib: A
Library for Automata Learning and Experimentation”. In: Proceedings
of the 10th International Workshop on Formal Methods for Industrial
Critical Systems. New York, NY, USA: ACM, Sept. 5, 2005, pp. 62–71.
isbn: 1-59593-148-1. doi: 10.1145/1081180.1081189 (cit. on p. 16).

[Rue13] Guillem Rueda Cebollero. “Learning Cache Replacement Policies using
Register Automata”. MA thesis. Uppsala University, Department of
Information Technology, Dec. 2013. url: http://www.diva-portal.
org/smash/record.jsf?pid=diva2%3A678847&dswid=5885 (cit. on
p. 65).

Bibliography 82

[Sch17] Thomas Schulte-Althoff. “Validierung des Echtzeitverhaltens des er-
eignisbasierten Betriebssystems CyPhOS am Beispiel einer Motor-
steuerung”. BA thesis. Technische Universität Dortmund, Fakultät
für Informatik, Lehrstuhl 12, Arbeitsgruppe ESS, Nov. 2, 2017. url:
https://ess.cs.tu- dortmund.de/Teaching/Theses/ (cit. on
pp. 42–44, 47).

[SGS02] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. “As-
pectC++: An Aspect-oriented Extension to the C++ Programming
Language”. In: Proceedings of the Fortieth International Conference
on Tools Pacific: Objects for Internet, Mobile and Embedded Appli-
cations. Ed. by James Noble and John Potter. CRPIT. Sydney, Aus-
tralia: ACS, 2002, pp. 53–60. url: http://crpit.com/abstracts/
CRPITV10Spinczyk.html (cit. on p. 24).

[Sie18] Daniel Ferdinand Siegert. “Entwicklung eines Werkzeugs zur Injekti-
on von Softwarefehlern basierend auf Clang”. BA thesis. Technische
Universität Dortmund, Fakultät für Informatik, Lehrstuhl 12, Arbeits-
gruppe ESS, May 28, 2018. url: https://ess.cs.tu-dortmund.de/
Teaching/Theses/ (cit. on p. 52).

[WDX12] W. Eric Wong, Vidroha Debroy, and Dianxiang Xu. “Towards Better
Fault Localization: A Crosstab-Based Statistical Approach”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 42.3 (May 2012), pp. 378–396. issn: 1094-6977. doi:
10.1109/TSMCC.2011.2118751 (cit. on p. 51).

[Won+14] W. Eric Wong et al. “The DStar Method for Effective Software Fault
Localization”. In: IEEE Transactions on Reliability 63.1 (Mar. 2014),
pp. 290–308. issn: 0018-9529. doi: 10.1109/TR.2013.2285319 (cit. on
p. 8).

[Won+16] W. Eric Wong et al. “A Survey on Software Fault Localization”.
In: IEEE Transactions on Software Engineering 42.8 (Aug. 1, 2016),
pp. 707–740. issn: 0098-5589. doi: 10.1109/TSE.2016.2521368 (cit.
on p. 10).

[WY07] Qin Wang and Woodward Yang. “Energy Consumption Model for
Power Management in Wireless Sensor Networks”. In: 2007 4th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks. IEEE, June 2007, pp. 142–151.
isbn: 1-4244-1268-4. doi: 10.1109/SAHCN.2007.4292826 (cit. on
p. 65).

[Xie+13] Xiaoyuan Xie et al. “A Theoretical Analysis of the Risk Evaluation
Formulas for Spectrum-based Fault Localization”. In: ACM Transac-
tions on Software Engineering and Methodology 22.4 (Oct. 1, 2013),

83 Bibliography

31:1–31:40. issn: 1049-331X. doi: 10.1145/2522920.2522924 (cit. on
pp. 8, 64).

[Zoe+09] Peter Zoeteweij et al. “Spectrum-based fault localization in practice”.
In: Trader: Reliability of high-volume consumer products. A collabo-
rative research project on the reliability of complex embedded devices.
Ed. by Roland Mathijssen. Eindhoven, the Netherlands: Embedded
Systems Institute, Oct. 17, 2009. Chap. 10, pp. 113–124. isbn: 978-
90-78679-04-2. url: http://redesign.esi.nl/research/applied-
research/finished-projects/trader/ (cit. on p. 64).

Appendix

The appendix contains experimental protocols, configuration files and renderings
of all driver interaction models that might be helpful for future work. These are
rendered on the following pages.

Appendix 86

Step Action Performed

1 build the EMSBench trace generator using the DIM car profile and driving cycle
(see Listing A.1) and deploy it on the Discovery board

2 build the target and deploy it on the Wandboard
3 power off and disconnect the Discovery board
4 power cycle the Wandboard and start a new recording
5 connect the Discovery board
6 send a motor start command m
7 power on the Discovery board
8 wait for the end of the simulated driving cycle
9 send a motor stop command moff
10 send a stress test start command son
11 wait for ca. 10 seconds
12 send a stress test stop command soff
13 send a non-existing command x
14 send a command help
15 send a command eventstats
16 send a command cachestats
17 send a command pmustats
18 send a command uptime
19 send a command version
20 send a command verify
21 send a command misstest
22 send a command tlbinfo
23 send a command memtest
24 send a command temps
25 send a command benchmark
26 end recording

27 build the monitor with the recording as in-memory input and deploy it on the
Wandboard

28 power cycle the Wandboard and start a new recording
29 send a binary input-from-memory command
30 send a binary print-learned-SBG command
31 end recording

Table A.1: Experimental protocol used to obtain an SBG for CyPhOS

87 Appendix

Step Action Performed

1 build the EMSBench trace generator using the DIM car profile and driving cycle
(see Listing A.1) and deploy it on the Discovery board

2 build the target and deploy it on the Wandboard
3 power off and disconnect the Discovery board
4 power cycle the Wandboard and start a new recording
5 connect the Discovery board
6 send a motor start command m
7 power on the Discovery board
8 wait for the end of the simulated driving cycle
9 send a motor stop command moff
10 end recording

Table A.2: Experimental protocol used to obtain a recording for constructing DIMs

Step Action Performed

1 build the EMSBench trace generator using the DIM car profile and driving cycle
(see Listing A.1) and deploy it on the Discovery board

2 build the target and deploy it on the Wandboard
3 power off and disconnect the Discovery board
4 power cycle the Wandboard and start a new recording
5 connect the Discovery board
6 send a motor start command m
7 power on the Discovery board
8 wait for the end of the simulated driving cycle
9 should the OS not have crashed, send a motor stop command moff
10 end recording

Table A.3: Experimental protocol used to obtain a recording for fault localization

Appendix 88

1 # Tyre
2 width = 175
3 aspect_ratio = 65
4 diameter = 15
5

6 # Engine and car
7 idle_rpm = 50
8 # Acceleration to idle s^{-2}
9 acc_to_idle = 20

10

11 # Gear translation
12 gear[1] = 3.545
13 gear[2] = 1.913
14 gear[3] = 1.31
15 gear[4] = 1.027
16 gear[5] = 0.85
17 gear[6] = 0
18

19 # Axle and cardan translation.
20 axle = 4.294
21

22 primary_teeth = 12
23

24 # offset of secondary tooth
25 offset_secondary = 0.04

(a) car configuration

1 # Acc. ; SpeedS ; SpeedE ; Dur. ; Gear
2 ; 0 ; 15 ; 1 ; 5
3 ; 15 ; 15 ; 30 ; 5
4 ; 15 ; 0 ; 1 ; 5

(b) driving cycle

Listing A.1: Car and driving cycle configuration for EMSBench

89 Appendix

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure A.1: Learned driver interaction models with 1 ≤ k ≤ 4

Appendix 90

(a) k = 5 (b) k = 6

(c) k = 7 (d) k = 8

Figure A.2: Learned driver interaction models with 5 ≤ k ≤ 8

91 Appendix

(a) k = 9 (b) k = 10

Figure A.3: Learned driver interaction models with 9 ≤ k ≤ 10

List of Figures

1.1 Ada, Countess of Lovelace’s program to compute Bernoulli numbers 2

2.1 All implemented suspiciousness metrics 8
2.2 All implemented classifiers . 11

3.1 The experiment framework used by Casanova et al. 14
3.2 Sample program and a corresponding SBG 15
3.3 Fictional DIM for a wireless chipset driver 17
3.4 Initial FSM for three DIM event sequences 19

4.1 Aspect weaving introduces an advice into the control flow 24

5.1 High-level architecture of the monitor 28
5.2 Component structure of the analysis framework 29
5.3 Structure of the campaign component 32
5.4 Structure of an event package . 35
5.5 Trie storage for a single entry . 37
5.6 Trie storage for multiple entries 37
5.7 In-memory structure of trie storage 38

6.1 Manufacturer’s photo of a Wandboard Quad 42
6.2 The experimental setup for the EMSComponent 43
6.3 Interrupts generated by the trace generator and injection and igni-

tion signals sent by the Wandboard 44
6.4 DIM learned with k = 1 . 45

7.1 Learned DIMs with increasing parameter k 50

A.1 Learned driver interaction models with 1 ≤ k ≤ 4 89
A.2 Learned driver interaction models with 5 ≤ k ≤ 8 90
A.3 Learned driver interaction models with 9 ≤ k ≤ 10 91

List of Listings

2.1 The SBFL workflow . 9

3.1 Modified k-tails algorithm . 18
3.2 Optimized k-tails algorithm . 20

4.1 Trace logging aspect implemented in AspectC++ 25

5.1 Simplified version of the tracing aspect 30
5.2 Classification support for the int type 31
5.3 Simplified version of a DIM tracing aspect for GPIO 33

7.1 “Missing small and localized part of the algorithm”-type fault gen-
erated by clang-sfi. 52

A.1 Car and driving cycle configuration for EMSBench 88

List of Tables

7.1 Oracle-detected failures for the selected faults 54
7.2 Number of failures detected by the DIM oracle for learning parameter

k and reset threshold r . 56
7.3 Processing speeds for different campaign configurations 57
7.4 Accuracy results for different analysis configurations 58
7.5 Accuracy results for variants of the “ideal” configuration 59
7.6 Average memory usage for different thread separation modes and

sequence lengths . 60

A.1 Experimental protocol used to obtain an SBG for CyPhOS 86
A.2 Experimental protocol used to obtain a recording for constructing

DIMs . 87
A.3 Experimental protocol used to obtain a recording for fault localization 87

