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Abstract

Hardware faults induced by radiation can lead to catastrophic failures in safety-
critical systems. Mitigation of this via hardware fault tolerance is expensive and
slow, so the alternative of software-implemented hardware fault tolerance needs
to be considered. It is necessary to test software-implemented hardware fault tol-
erance implementations to evaluate their effects on reliability. The Fault Injection
(FI) tool FAIL* is designed to assist with this, but for large FI campaigns, the
currently implemented backend can lead to long runtimes on the scale of hours
or days. An additional limitation is that it is only possible to inject faults into
full-system images and not into user-space binaries.

In this thesis, we extend the FI tool FAIL* in order to achieve greater simulation
speed, a wider variety of target platforms, and the support for user-space binaries
in addition to system-mode simulation. To achieve these goals, we evaluate suit-
able candidates for a new backend for FAIL* and choose the one which fits best.
We describe the implementation details and evaluate whether fault injection in
user-mode is feasible for testing software fault tolerance mechanisms with FAIL*.
We also consider support for multiple architectures and exemplarily implement it
for x86 and ARM both respectively in 32 and 64 bit. Additionally, we benchmark
the performance of this new backend extensively.
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1 Introduction

Feature sizes of integrated circuits shrink continuously and are predicted to do so
in the future [28]. This leads, together with also reduced voltages, to a growing
susceptibility towards hardware faults, caused by ionizing radiation, aging, or
thermal effects [19].

Hardware faults manifest themselves in multiple forms. Permanent faults stay
forever, intermittent faults disappear and reappear again, and transient faults
appear once and disappear again. Transient faults, in particular, are the most
common as shown by Iyer and Rossetti [29] and often show as bit flips in the
memory or registers; they are mostly radiation-induced. Recent developments
in space weather also led to increased cosmic radiation levels since the 1950s
and point to possible increases in the next decade or two [41], exasperating the
transient fault problem further.

Safety-critical systems are not immune to hardware faults, and measures for
mitigation, therefore, need to be taken in order to minimize risks for lives or
equipment. These systems need to achieve a certain level of fault tolerance. Fault
tolerance denotes the ability of a system to operate unimpeded even if faults are
present.

One approach to achieve fault tolerance is hardware fault tolerance, which is
realized, for example, by redundancy in chip designs or error-correcting code mem-
ory. However, this can be prohibitively expensive for some applications, such as
automotive applications or applications in other price sensitive products. As a
result, more cost-efficient measures need to be considered.

Software implemented hardware fault tolerance (SIHFT) offers a potential so-
lution, as it runs on commercial off-the-shelf (COTS) hardware and thus can be
more cost-effective. To implement this, careful software design is needed with
suitable mitigation strategies.

1.1 Motivation

For STHF'T, it is critical to evaluate the deployed measures to know which fault
tolerance measures are effective. Especially in the case of software fault tolerance,
it can be important to quantify how much specific fault tolerance measures de-
crease risk or whether they are worthwhile at all. It is often not obvious for the
developer which data structures and program modules are most critical for fault
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tolerance and are worth protecting.

To ease the development of fault tolerant systems, a continuous fault toler-
ance assessment process can be valuable [44]. Such a process keeps developers
informed about changes in fault tolerance metrics over the development process’s
span. FAIL* [43] can be a tool that provides those metrics. FAIL* is capable
of surveying the whole fault space through fault injection (FI) and thus provides
more accurate results than competing tools. To keep exploration of the whole
fault space affordable and within a reasonable timeframe, the FI experiments’
high execution speed is crucial. The currently employed backend in FAIL* based
on the Bochs emulator [33] lacks with regard to execution speed when compared
to industry-leading emulators.

An additional limitation of the current backend is the fact that only system
software can be tested. But oftentimes, programs are not developed as a com-
plete operating system but only as a binary that can be executed, for example,
in GNU/Linux (user-space binary). These user-space binaries ease development
compared to needing to build a system image to test the deployed fault tolerance
measures. As of now, FAIL* does not support analyzing such binaries.

1.2 Goals

With an eye to the two main limitations of the current backend we discussed in
the previous section, we aim in this thesis to analyze existing emulators for their
potential to speed up FAIL*’s FI campaigns significantly.

FAIL* provides a way to hide details about the underlying hardware or simulator
details through an abstraction layer. Experiments use the abstraction layer to
interact with the underlying backend. This architecture of FAIL* allows for an
introduction of a new backend so that experiments can seamlessly use the new
one.

To analyze their suitability as the new backend, the emulators would be evalu-
ated whether they better fill the role of the Bochs emulator. Criteria for this will
be, for example, speed and ease of integration.

Very importantly, the new backend needs to have the ability to enable FI in
user-space binaries, from now on called user-mode FI. This would enable easier
adoption of fault injection tools for testing fault tolerance measures, as the need
to build a system image would no longer exist.

The new backend then needs to be designed in such a way as to support the
new user-mode so that it integrates into FAIL*.

The resulting implementation shall be evaluated with large benchmark setups
and compared to other existing back ends. Additionally, it shall be examined
whether user-mode FI is suitable for testing fault tolerance measures.
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1.3 Outline

Initially, chapter 2 introduces the necessary foundations for understanding the
rest of the thesis.

Afterwards, the problem at hand is analyzed in chapter 3, and the requirements
for the design are synthesized.

With these established chapter 4 introduces potential candidates for a new
FAIL* backend and discusses the choice of one of them.

Chapter 5 then describes the implementation of the chosen backend candidate
and the integration into FAIL*.

Subsequently, chapter 6 does an extensive evaluation of the newly implemented
backend with special attention given to the user-mode.

Chapter 7 gives an overview of related works; in particular, previous fault in-
jection tools with QEMU are regarded.

And at last, chapter 8 gives a summary and outlook.







2 Foundations

This chapter introduces fault injection and why the need for it exists. Further-
more, FAIL* the main framework upon which this thesis is based, is presented.

2.1 Faults

We aim to define hardware faults and their different types in this section.

To visualize hardware faults and their consequences, a hardware or software
system can be divided into layers. Each layer can only observe the behavior of
the layer directly below and is thus dependent on it. [44]

A fault can, for example, be an energetic particle hitting a transistor. For the
fault to have a consequence, the fault needs to be activated, which would mean in
the context of the previous example that this impacts the transistor. For instance,
it switches slightly differently, or a bit is flipped.

After activation, the fault is called an error, which is one layer above the fault.
This can then be externalized which would be called failure.

If the fault propagates through all of the layers, the user is experiencing some
disturbance. This can, for example, manifest in an infinite loop or Silent Data
Corruption (SDC). An SDC means an alteration of the program’s output that the
user gets to see, without any indication, that the output may be wrong.

This propagation of the fault through the layers can be potentially stopped at
any layer. Any mechanism that stops the externalization of an error caused by an
underlying fault is called a fault tolerance mechanism.

Faults differ in their lifetime; transient faults (or soft faults) are typically only
present for a very short period of time. They disappear and do not come back.
These are different from intermittent faults, which disappear and then at some
point later appear again. Often these are “early indicators of impending perma-
nent faults” [38]. “Permanent faults,” as the name suggests, only appear once
and stay forever. The component has a defect at this point. In this thesis, only
transient faults are considered, particularly in the form of bit flips.

A fault can occur at any point in time at any point in the hardware. A point
in time is typically the smallest feasible timestep supported, for example, a CPU
cycle. A point in the hardware would be, for example, a bit in a memory cell or a
CPU register. These two dimensions build the fault space, which is visualized in
figure 2.2.
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Figure 2.1: This figure illustrates the propagation of faults from defects or envi-
ronmental effects up to user-visible system failures. Note that a fault
needs to be externalized multiple times until the user is impacted. [44].
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Figure 2.2: The fault space consisting of two dimensions. The one dimension being
any point in the memory or the hardware and the other being any point
in time, here measured in CPU cycles. [44].

2.2 Fault Injection Techniques

Several Techniques have been developed in the past to inject hardware faults
artificially. Such techniques aim to mimic the effects of a naturally occurring
cause (e.g., alpha or neutron radiation or a disturbance of the power supply) but
drastically increase the rate with which faults occur, such that effects are visible
for small sample sizes.

There are several quality criteria for evaluating different fault injection tech-
niques [47].

The first criterion is repeatability. Repeatability is the ability to inject a specific
fault and obtain the same result.

Controllability is the ability to control when and where a fault is injected.
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Intrusiveness is the level of unintended impact on the target system. High
intrusiveness can lead to a probe effect [14, 42], which manifests itself in the way
that a different result is obtained, while, if the fault were to occur on the real
hardware, it would not lead to an alteration of the result.

Observability describes the capability to inject a fault and observe and measure
the ensuing effects.

Reachability is the degree to which all possible aspects of a processor’s state can
be altered.

With these quality criteria, we can now turn to several different fault injection
techniques and assess them.

2.2.1 Hardware-Based Fault Injection

One of the most straightforward ways to increase the occurrence of soft errors is to
amplify the natural causes for them. One way would be to expose the hardware to
heavy-ion radiation [25, 31]. Another way would be to disturb the power supply
[36].

These techniques fall short in many criteria, the only advantage being no intru-
siveness and perfect reachability. Another disadvantage is the high cost for every
experiment, especially in the case of radiation exposure [50] [32].

A third way to inject faults is to install probes to the pins of CPU chips, which,
for example, the FI tools RIFLE [34] and MESSALINE [2] do. Test access ports
can also be used by FI tools to inject faults, for example, GOOFI-2 [47], Xception
[10], and Fidalgo et al. [21]. These techniques lead to better repeatability and
controllability, even more so if using the test access port. However, the test access
port leads to reduced injection speeds, and both techniques suffer from limited
reachability.

A significant disadvantage for most of the hardware-based fault injection tech-
niques is that they require specialized hardware setups, which is, of course, ex-
pensive. Only the FI via test access port is possible with COTS hardware while
still satisfying the controllability and repeatability necessary for a detailed post-
injection analysis.

2.2.2 Software-Implemented Fault Injection

Another class of techniques is software-implemented Fault Injection (SWIFT).

One of those techniques is pre-runtime SWIFI, where the software or data is
modified before it is run. This is done by the FI tools GOOFI [1] and FUCHS
[23]. An advantage is the largely unimpacted execution speed, but this technique
has a limited reachability of injectable state and the potential for a “probe effect”
(high intrusiveness). Another drawback is a long roundtrip when the injection
location changes.
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The next technique runtime SWIFI mitigates this. Runtime SWIFI injects
faults into the running system by leveraging exceptions or debugging features of
the CPU. FIAT [4], FERRARI [30], Xception [10] and GOOFI-2 [47] use runtime
SWIFI. Although the long roundtrip is no longer present, nothing is done to
mitigate the probe effect and limited reachability.

An argument for using either form of SWIFI is that there is no need for spe-
cialized hardware and, thus, is affordable.

2.2.3 Simulation-Based Fault Injection

Simulation-based FI [6], [32] injects faults into simulated hardware. There is a
tradeoff with the simulators between speed and simulation accuracy.

On the one side, there are FI tools for low-level hardware models as VERIFY
[46] and MAFALDA [3], and on the other side, there are FI tools, which use
slightly inaccurate simulators or even emulators such as F-SEFI [24] and Qinject
[22].1 These inject faults with the QEMU [5] emulator.

The slowdown encountered is often very significant, even orders of magnitude
for low-level simulators. The big benefit is very good reachability of injectable
state and low intrusiveness, both advantages over SWIFI. Also, controllability,
repeatability, and observability are all on a high level but limited by the detail
level of the used simulator or emulator.

A functionality, which is impossible with SWIFI but possible with Simulation-
based FI, is the use of checkpoints, which can help to mitigate slower speeds [7].
Simulation-based FT has the same benefit to SWIFI of running on COTS hardware
and is also more cost-effective than hardware-based FI.

2.3 FAIL*

In this section, we introduce the fault injection tool FAIL*. First, we list which
of the FI techniques are supported by FAIL* and some capabilities, until we
introduce some terminology used by it. After this, we take a closer look at the
architecture of FAIL*.

2.3.1 FI Technique Support and Capabilities

FAIL* supports three of the FI techniques mentioned above, simulation-based FI
and a hybrid technique between SWIFI and test access port based FI.

!The terms simulator and emulator are used interchangeably in this thesis. The difference
between both generally lies in the accuracy of the simulation. An emulator does not simulate
as accurately as a simulator. This difference is of no concern here; both are used in the context
of simulation-based Fault Injection.




2.3 Foundations

This thesis focuses on simulation-based FI. Currently, three different simulator
backends are supported in FAIL*. Bochs is the best-supported backend, and
QEMU and gem5 are implemented in a rudimentary state. FAIL* is different
from many other FI tools, as most only sample small parts of the fault space [43],
while FAIL* can cover the whole fault space of the target application. To achieve
this, FAIL* leverages massive parallelization and advanced fault-space pruning
techniques.

Moreover, FAIL* can offer fine-grained post-injection analyses on the level of
single CPU instructions, variables or, high-level program code lines. In contrast to
most FI tools in existence, FAIL* can quantitatively estimate specific applications’
hardware fault tolerance.

2.3.2 FI Experiments, Outcomes, and Campaigns

A fault injection experiment consists of injecting a fault at runtime into the hard-
ware or simulated hardware that runs the analyzed software. The outcome of this
injection is recorded at the end of the experiment.

There are multiple types of outcomes; FAIL* considers these in particular:

e No Effect: There was no measurable difference in the outcome of the ana-
lyzed software. The time constraints were satisfied, and the output was the
same as in the case without the fault.

e Detected: The fault was detected, and appropriate measures were taken.

e Silent Data Corruption: An alteration of the program’s output that the user
gets to see, without any indication that the output may be wrong.

e Timeout: The fault led to an increase in runtime, which was so large that
the given time constraints were not satisfied.

The golden run is the first run of the program without any fault injection.
It serves the function of tracing all memory accesses and instructions executed.
Additionally, the golden run traces the output of a program, for example, the
output over a serial port. A fault injection campaign consists of multiple fault
injection experiments. From the golden run, the fault injection campaign generates
experiments for different points in the fault space to inject a fault into and runs
the experiments.

2.3.3 Architecture

FAIL* is divided into the plumbing and the assesment-cycle layers.
The plumbing layer abstracts away the specific backend or execution environ-
ment in use, such as a simulator, and is organized in a client/server architecture.
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Many clients run the experiments in parallel, and the server assigns work to the
clients and records results in a MySQL database. More specifically, the server runs
user-defined campaigns and generates experiment parameters for the clients. The
client then runs the experiment in its execution-environment abstraction layer,
using a user-defined ezperiment procedure. The plumbing layer is the layer with
complete control for implementing new experiment- and campaign- procedures.
“This layer is primarily aimed at researchers working on FI techniques and opti-
mizations themselves” [44], and the layer on which this thesis focuses.

The plumbing layer exposes an API, upon which the assessment-cycle layer
builds. Therefore, the assessment-cycle layer is less flexible and powerful but more
straightforward to use. The assessment-cycle layer is used to introduce single-bit
flips in CPU registers and main memory. “In contrast to the plumbing layer,
the assessment-cycle layer primarily aims at the developers and users of SIHFT
mechanisms” [44], and is therefore of not much interest in this thesis as the goal
is not to introduce new SIHF'T mechanisms, so changes to this layer are minimal.

The plumbing layer consists of a client and a server-side, which is shown in
figure 2.3. The server side is of little interest; it is sufficient to know that the
server distributes job parameters to the clients and collects the results from them.

On the client-side is a so-called FAIL* client instance, or in short fail-client,
which uses a simulator or emulator and implements an abstraction on top of it,
which can run jobs from given job parameters, so basically an extended simulator
or emulator.

A FAIL* client instance can be divided into three larger components, user-
defined experiment, the execution-environment abstraction, and the backend con-
sisting of a modified simulator or emulator. The user-defined experiment proce-
dure is started in the beginning in parallel to the simulator as a coroutine. Both
run at mutually exclusive times; each must give back control to each other at
certain events. A visualization of this control flow can be seen in figure 2.4.

For the user-defined experiment procedure to orchestrate the target backends,
the Erecution-Environment Abstraction (EEA) is the common interface. At the
heart of the EEA is the SimulatorController class. The experiment procedure calls
methods from this class to communicate with the EEA. Additionally, the EEA
has classes for specific features, for example, accessing memory via the Memo-
ryManager class, accessing CPU registers with the RegisterManager class and
the ListenerManager class. The ListenerManager class provides means for reg-
istering listeners for different types of events such as: Reaching specific program
instructions (similar to breakpoints), access to specific memory addresses?, CPU
exceptions, external interrupts, serial I/O, and the passing of specific amounts of
backend time. Furthermore, the EEA provides meta information on the target
backends, for example, the number of CPUs.

2These are often called watchpoints.

10
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Figure 2.3: Shows an overview of the FAIL* architecture. The client instances

receive jobs from the server, which runs a campaign. Then the client
instance runs the experiment and injects faults with the use of the
EEA, which hooks into a backend. The backends are Bochs, gemb,
OpenOCD, and the question mark symbolizes the new backend which
we will introduce later in this thesis. Adapted from [44].

A target backend is implemented through the specialization of the EEA classes,
primarily via the SimulatorController and Manager classes.

11
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Figure 2.4: This depicts the control flow of FAIL*. The SimulatorController runs
the ExperimentFlow and the ExperimentFlow interacts with the Sim-
ulator in the backend. The simulator is in a separate coroutine from
the SimulatorController and the ExperimentFlow. [44].
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2.4 Candidates for the New Backend

In this section, we first introduce the main reason for the speed difference be-
tween the new candidates for extending the backend and, after that, introduce
the candidates. First, Valgrind is introduced, and then QEMU.

2.4.1 Dynamic Binary Translation

A difference between the newly introduced candidates and the Bochs emulator
is that the new candidates utilize dynamic binary translation while Bochs uses a
simple interpreter loop.

A dynamic binary translator performs a runtime conversion of target CPU in-
structions to host instructions and saves the resulting binary code in a translation
cache [5]. The target instruction set can be the same as the host instruction set
but this is not necessarily the case.

It has the advantage over an interpreter loop of only needing to fetch and decode
instructions once, if the cache is big enough. This vastly increases the speeds of
dynamic binary translators over simple interpreters like Bochs if instructions are

12
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executed more than once, for example, in a loop, which is the main reason why
the candidates are considered at all.
An example of dynamic binary translation can be seen in figure 2.5.

Target Code Intermediate Code Host Code
Idr  woO, [sp, #0x5c] movi_i64 tmp3,$0x5c¢ addq  $0x5c, %rbx
dd_i64 tmp2,sp,tmp3 shlg ~ $8, %rbx
d 4, #0x484000 adad_ p<,Sp,tmp 4 '
adip X X »Imovi_i64 tmp4,$0x8 »Isarq  $8, %rbx
adrp  x2, #0x482000 shl_i64 tmp3,tmp2,tmp4 movl  0(%rbx), %ebx
str - wi, [x4, #0x5f0] movi_i64 tmp4,$0x8 movg  %rbx, 0x40(%rbp)

sar_i64 tmp3,tmp3,tmp4
gemu_ld_i64 x0,tmp3,leul,0

movi_i64 x4,$0x484000

movg  $0x484000, 0x60(%rbp)
movg  $0x482000, 0x50(%rbp

. movg  0x48(%rbp), %rl13
movi_i64 x2,$0x482000 movl  $0x4845f0. %r14d

movi_i64 tmp3,$0x4845f0 movl  %r13d, 0(%r14)
gemu_st_i64 x1,tmp3,leul,0

Figure 2.5: This shows an example of a dynamic binary translation from aarch64
instructions to x86-64 instructions. We translated the instructions
with QEMU. Some dynamic binary translators do not need the inter-
mediate step and translate directly from target to host code.

2.4.2 Valgrind

This subsection describes Valgrind [39], a dynamic binary instrumentation frame-
work for writing dynamic binary analysis (DBA) tools.

Valgrind is unique in its capability of using shadow values, which are essentially
values that describe every memory and register value. The most well known DBA
tool implemented with Valgrind is Memcheck [45], a tool that can detect undefined
value errors. To do this, it leverages the shadow values to track the definedness
of values.

To support the shadow values, Valgrind needs to access large amounts of anal-
ysis data and update them in irregular patterns. Because of this, Valgrind runs
comparatively slow but is useful to implement tools that are difficult to impossible
to implement with other DBI frameworks.

Valgrind is entirely focused on dynamic binary analysis in user-mode emulation;
it is not suited for full system emulation. Valgrind uses an architecture-neutral
intermediate representation in which the translation units are superblocks, which
are single-entry, multiple-exit code fragments. This leads to a rather large amount
of supported platforms, which include: x86, x86-64, PPC32, PPC64, PPC64LE,
S390X, ARM, ARM64, MIPS32, MIPS64 on GNU/Linux. Some of these archi-
tectures are supported in other operating systems as well (Details [49]).

13
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2.4.3 QEMU

This subsection introduces QEMU, the Quick EMUlator.

QEMU [5] is a machine emulator, that supports many platforms (Alpha, ARM,
CRIS, HPPA, x86, x86-64, LatticeMico32, 68K, MicroBlaze, MIPS, Moxie, Nios2,
OpenRISC, Power, PowerPC, RISC-V, SH4, Sparc, s390x, TileGX, TriCore, Uni-
core32,Xtensa) and operating systems. It does full system emulation as well as
user-mode emulation. Dynamic binary translation allows running a GNU/Linux
or BSD program on multiple machine architectures, even those the program was
not compiled for, e.g., an ARM program on an x86-64 machine.

QEMU is developed with execution speed in mind as a primary goal. It prefers
speed over emulation accuracy and thus outperforms many other comparable em-
ulators [5]. It is not a cycle-accurate emulator, but it is good enough to run
the major operating systems like GNU/Linux, Windows, or macOS. QEMU also
supports hardware virtualization, mostly via KVM. However, for this thesis, hard-
ware virtualization is not used; instead, the Tiny Code Generator (TCG) is used.
The TCG is a binary translation engine that translates guest machine code to
an intermediate representation and then back to machine code for the host sys-
tem. It is considerably more comfortable and versatile to develop with the TCG
in comparison to hardware virtualization; additionally, hardware virtualization is
supported only for full system emulation and not for the user-mode emulation.

2.5 QEMU Foundations

We now take an in-depth look into the architecture and implementation of QEMU
as this will prove necessary to understand the further design and implementation.
Particular emphasis is placed on the differences between user-space emulation and
system emulation.

2.5.1 Implementation

QEMU consists of multiple different subsystems, among others of the Tiny Code
Generator (TCG), which translates target code to intermediate code and then to
host code, the dynamic binary translation.

This translation is done for translation blocks (TBs). A TB is a part of a basic
block. A basic block is a block of code only ended by a branching instruction. The
basic blocks can not be of arbitrary length, so they are split up into translation
blocks. Every TB consists of up to 65535 instructions. A basic block is the same
as a TB, if and only if a basic block consists of no more than 65535 instructions.
Figure 2.6 shows the translation and execution process of QEMU.

First, an instruction is fetched and translated into an intermediate instruction.
This is repeated until either a branching instruction is encountered, or 65535
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instructions are translated. The resulting TB then consists of the translated host
code by the TCG and additional information of which a rough summary can be
seen in figure 2.7. This TB is then stored in a pysically indexed cache, and after
this, it is executed. After the execution of a translation block is complete, the
program counter is examined, and the cache is searched for a TB starting with this
instruction. The next TB can either be found in the cache, or else the next TB
needs to be translated. This next TB is then linked to the previously executed TB
so that the next time the execution does not need to be interrupted for the search
of a new TB but can instead just run the TBs directly after another without the
overhead. This linking of TBs is called T'B chaining and is one of the fundamental
reasons for the speed of QEMU. The TBs can only be chained to TBs which are
on the same page. QEMU does this, together with the physically indexed caches,
to avoid invalidating TBs when the MMU mappings change. Thus it should be
avoided to disable TB chaining so as not to impact performance dramatically.
We found a slowdown by an order of magnitude in the case of a loop that was
executed a substantial amount of times.

Retrieve TB
from cache

PC++

A

PC already seen? Execute

[ gen_intermediate_code() ] Dynamic binary translation : | Check for normal
: ¢ ;| breakpoints.

Fetch » Decode

Yes

Code generation is adapted
for dynamic breakpoints.

[y T

|
Target | Tinycode | >
O ) |
application Intermediate |:> | 8enerator | |:{> T8
binaries code : | cache
| Hostcode
: generation :

Figure 2.6: This shows the Dynamic Binary Translation from QEMU. Right before
the execution of a TB it is checked for breakpoints and a callback is
issued if it is hit to allow for fault injections. The intermediate code is
adapted for the TCG to allow for counting every instruction. Adapted
from [20].
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Translation Block
pc — This is the program counter.
icount — This is the number of emulated target instructions.
size — This is the size of the target code for this block.

jmp_target_arg[2] — A TB can directly jump to one of two other TBs.
This is the target address or an offset to these other TBs.

tb_tc.ptr — This is the pointer to the translated host code.

L]

Figure 2.7: This figure depicts a translation block in QEMU. The TB consists
of a number of translated target instructions. The variable pc is the
address of the first target instruction. It is not the address of the
translated host code. This is stored in the variable tb_tc.ptr. Size
and number of target instructions are saved in the variables size and
icount. Additionally, the target addresses of other translation blocks,
which this TB can directly jump to, are saved in jmp_target_arg[2].

2.5.2 Execution Flow

The execution flow of QEMU begins like every C program with its main () function.
In the main function, QEMU is initialized in the function qemu_init (), where the
virtual CPU (vCPU) threads are started. With the parameter -smp, the amount
of vCPUs can be controlled. After gemu_init (), the main function does handle,
for example, timers, but the main functionality now lies in the vCPU threads.

A vCPU thread begins with the function gemu_tcg_cpu_thread fn() which
handles exceptions which stop the vCPU and calls tcg_cpu_exec (). This function
waits for exclusive operations and calls the next function cpu_exec(). cpu_exec()
is the main execution loop for a vCPU. In every iteration of the loop it handles
exceptions in the function cpu_handle_interrupt() or returns if the exception
can not be handled here. Then in another loop inside the main execution loop,
interrupts are handled by the function cpu_handle_interrupt (). If the interrupt
could be handled, the procedure described in the subsection above starts. The
function tb_find () is called which tries to find a TB in the translation cache, or if
it finds no cached TB, calls the function tb_gen_code () which does the translation
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from target to intermediate and then to host code. If chaining is possible the func-
tion tb_add_jump() chains the last TB and the next. After that tb_find returns
the next TB. Then this TB is executed in the function cpu_loop_exec_tb(). Af-
ter this, host and virtual clocks are aligned, and the main execution loop iterates
again. This Execution Flow can be seen in figure 2.8.
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generate a TB

gen_intermediate_code()
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intermediate code

v
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Figure 2.8: QEMU execution flow diagram.
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2.5.3 Translation Block Chaining

To understand why it is so important for the execution speed that the TBs get
chained, the procedure is now illustrated in more detail in figure 2.9. When the
main loop starts execution (in cpu_loop_exec_tb()), it can not directly jump to
the generated host code of the TB that is to be executed, it must take the detour
over the prologue. The processor is initialized by the prologue for the execution
of the generated host code, and only after the initialization is complete, the jump
to the generated host code occurs. After a TB is finished executing, it is either
chained to another TB, in which case the execution can continue, or it is not. In
the latter case, the epilogue is called. The epilogue restores the normal state, for
example, restores callee-saved registers saved in the prologue, and enters the main
loop again. The usage of epilogue and prologue is necessary but introduces an
additional overhead that can be avoided if the TBs are chained.

Translation Cache

Prologue

Main loop

| TB TB

Epilogue

Figure 2.9: Chaining of QEMU translation blocks. If a TB is chained to another
TB, the execution can continue, even in loops. If the TB is not chained,
a return to the main loop is necessary via the epilogue. Execution can
then later begin again via the prologue. The arrows denote chains.
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2.5.4 Differences between User-Mode and System
Emulation

Here a few differences between QEMU user-mode emulation and system emulation
are described. The QEMU user-mode and system emulation are quite different in
many aspects but have some big parts in common, too. This section tries to bring
to light some of these aspects.

The first big difference between user-mode and system emulation is the absence
of interrupts?, as they are encountered on various CPU models. The handling of
those is unnecessary for user-mode emulation and is consequently not compiled
into the emulator. However, there is a mechanism similar to interrupts, Unix
signals.

Signals play a similar role to interrupts, the difference being that the interrupts
are handled by the CPU or kernel, and that signals are typically handled by a
user-space process. For example, the x86 exception "divide-by-zero error' would
be issued by the CPU, handled by the kernel, and would lead to a "SIGFPE"
signal, at least in the case of GNU/Linux. Another analogy between an exception
and a signal would be the "general protection fault" x86 exception and the signal
SIGSEGYV, which both mean a memory access violation. QEMU passes some
signals directly from the host to the emulated program and generates others itself,
for example, SIGFPE.

The memory management unit is simulated by the QEMU system emulation,
virtual vs. physical address translation is implemented as well as a translation
lookaside buffer. In the user-mode, this is not necessary. Here simply a region of
memory is allocated, and in our observations, the host addresses mostly did not
differ from the addresses the emulated program uses.*

In system emulation QEMU provides multiple different timers called
QEMUTimers [9]. These timers allow calling a given function after some specified
amount of time has elapsed. These timers can run against different clocks:

e The virtual clock. This clock runs at a high resolution and only when the
emulator is running.

e The real-time clock. This clock runs at a resolution of 1000hz and runs even
if the emulator is not running.

e The host clock. This clock is nearly the same as the real-time clock but
reacts to changes to the system clock.

QEMU does not provide any of these timers in user-mode emulation.

3or traps or exceptions
40ur understanding of the source code is that the addresses are only translated in case of an
address space conflict

20



2.6 Foundations

The next feature only supported in system emulation is the ability to take live
snapshots of the emulator. Snapshots images have to be saved in a specific QCOW2
or QED image format. This can be but does not need to be the original image.
Snapshots of raw images are also supported.

Another difference between user-mode and system emulation are syscalls. Syscalls
do not leave the system emulator, as the operating system itself resides in it. In
user-mode emulation, however, a special mechanism is needed to handle syscalls.
For example, a binary compiled for a little-endian architecture must be able to use
syscalls, even when a host system is a little-endian machine. Therefore QEMU
includes a generic system call translator. This translator translates the system call
parameters and handles issues with different endianness and differences between
32- and 64-bit architectures.

2.6 Summary

This chapter explained the foundations, which are necessary for further under-
standing.

First faults are explained and how they need to be externalized in order for the
user to be impacted. Additionally, we introduced the fault space and different FI
techniques, such as hardware-based FI, software-implemented FI, and simulation-
based FI.

In the next section, we presented the FI tool FAIL* and established key termi-
nologies of it such as fault injection campaigns, experiments, the golden run, and
the different result types. After establishing these terms, we took a closer look at
the Architecture of FAIL*.

The candidates for extending FAIL*, Valgrind, and QEMU are introduced in
the next section, and QEMU’s internal mechanisms are examined as well.

In the next chapter, the problem on hand is examined in detail, and require-
ments are synthesized for the following design.
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3 Problem analysis

As was shown in the previous chapter by now, there is no possibility of using simple
user-mode FI with FAIL*. This constitutes a hindrance to the easy adoption of
fault tolerance measurements. Therefore it is the first goal of this thesis to address
this. Other problems we identified were potentially long-running FI campaigns and
the effort needed for introducing new backends for new architectures. We analyze
these problems further in this chapter and synthesize the requirements for the
design.

3.1 User-Mode Fault Injection

Currently, if a researcher wants to test a new fault tolerance measure, the re-
searcher needs to

1. build a program that implements some fault tolerance measure,
2. have an operating system ready in which he can start the program,
3. and build an image from the operating system and the program.

This process is time consuming, complicated, and therefore not beginner-friendly
at all. Support for user-mode FI would reduce the last two steps to a simple com-
piling step. This leads to faster iteration times and easier introduction into the
evaluation of fault tolerance measures.

3.2 Efficiency

As FAIL* currently uses the Bochs emulator, which only uses a simple interpreter
loop, there is probably room for improvement, maybe through the usage of a dy-
namic binary translator. The current solution probably leads to longer running
campaigns than ultimately necessary. This problem is somewhat mitigated by the
architecture of FAIL*, as one can use extreme amounts of computing power, in
order to mitigate long campaign running times, but this comes at a cost nonethe-
less.

A faster target backend would still be preferable, especially so if efficient energy
use is a concern.
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3.3 Ease of Porting to Different Architectures

In FAIL* as of now, every target backend supports exactly one instruction set
architecture. For example, Bochs supports i386 and gemb supports ARM. This
is not optimal in terms of implementing new architectures for FAIL*. This ap-
proach is wasteful in the regard that every new backend must be adapted for
FAIL* completely from scratch. There is nothing that helps with implementing
new architectures. Only if a new backend for an already present architecture is
implemented, the execution-environment abstraction carries over partly. But, for
example, from the x86 Bochs backend, nothing carries over to the ARM gemb
backend.

It would be preferable to have a backend that could be used for multiple archi-
tectures, with only minor architecturally dependent parts.

3.4 Requirements for the Design

In this chapter, we synthesize requirements for the design from the previous ob-
servations.

1. To simplify fault tolerance measure evaluation the new backend for FAIL*
must be able to run campaigns in user-mode.

2. It must be possible to trace all memory accesses and instructions.
3. It must be possible to modify target memory and registers.

4. Breakpoints must be supported at specific program counters and after a
specific number of instructions are executed.

5. FAIL* must be able to run experiments significantly faster than it does
currently with the Bochs backend.

6. The new backend should be more flexible with regards to the target archi-
tecture so that it is more easily portable to new architectures.

3.5 Summary

In this chapter, we analyzed the problems, especially no support for user-mode FI,
potentially suboptimal execution speeds, and the difficulty of porting a backend
to different architectures. Additionally, we derived the requirements, which will
serve as the basis for the design established in the next chapter.
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In this chapter, we first choose a valid new target backend for FAIL*. We evaluate
the two candidates Valgrind and QEMU, in their suitability for the requirements
given in the previous chapter, and then we explain why we chose one over the
other. After choosing a candidate, aspects of the design of the new backend are

described.

4.1 Comparison between Valgrind and QEMU

We now explain the choice of QEMU over Valgrind with regards to the require-
ments outlined in the Problem Analysis chapter.

The first four requirements of the ability to run in user-mode, memory access
tracing, memory modification, and breakpoints are satisfied by both.

The requirement of speed seems to be better satisfied by QEMU. QEMU is
considerably faster than VALGRIND, in our experiments, about 2x faster for a
bubble sort implementation. A comparison from Bellard between QEMU and
Valgrind says QEMU is 1.2x faster [5], but this is from 2005, and QEMU has seen
substantially more development effort since then.

The last requirement is that porting to new architectures must be more easily
possible. This is in parts satisfied by Valgrind as it supports many architectures
and is explicitly designed to implement other dynamic binary analysis tools in
contrast to QEMU. The problem is that Valgrind does not support system emu-
lation. QEMU supports even more architectures and supports system emulation
too, so this requirement is satisfied better by QEMU.

In total, the support for system emulation and the faster speed outweigh the

ease of integration of Valgrind, and accordingly, QEMU is chosen as the new target
backend.

4.2 Architecture Overview

With the foundations of QEMU established already in section 2.5 we now provide
a bird’s eye view of the architecture of the new FAIL* backend. It shows the
changes we did to FAIL*, which were needed to integrate the new backend. We
largely oriented this on the architecture from different backends and the already
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present rudimentary QEMU implementation. An overview of the architecture can
be seen in figure 4.1.

From a conceptual standpoint, the experiment instruments the parts of the
EEA to do all things necessary for the execution of the experiment. This aspect
is unchanged from the normal FAIL*. In order to conduct the fault injections,
several features need to be present, which we establish now.

The main component of the EEA to control the execution of the experiment is
implemented in the QEMUController class. At the start, QEMU initializes FAIL*
through the QEMUController. The QEMUController is responsible for calling
functions from the backend such as saving and restoring snapshots, adding break-
points, or adding timers. Additionally, in the user-mode, the QEMUController en-
sures that there is no difference between the stack starting address in the golden
run and the later experiments. This could happen if FAIL* were invoked with
different environment variables for the experiments and the golden run.

The QEMUMemoryManager is responsible for all memory accesses. It interacts
with the backend to read from or write to the memory of the target program
which QEMU runs; this is used for the actual injection of bit flips.

An additionally needed function is it to read or write registers of the virtual
CPU. This is implemented through the architecture-dependent QEMUarchCPU, for
example, the QEMUX86CPU. This encapsulates details about the specific architec-
tures; for example, the program counter can be queried independently of the
underlying architecture, as a program counter is present in most architectures. In
the case of x86, the EIP register and in the case of ARM, the PC register would
be returned. Reads to architecture-specific registers, however, are not designed in
an architecture-independent way.

Many experiments capture the serial output to get results. This is, however, not
possible in user-mode since GNU/Linux user-space programs typically do not use
the serial output. Most programs instead use the standard output (stdout) and
standard error (stderr) to emit their results. Therefore a new plugin for FAIL* is
conceptualized, which has the capability of capturing the stdout. The plugin is
called StdoutLogger and is designed in a similar way to the SerialOutputLogger.
It uses a new listener, the StdoutListener which is triggered by system calls
which print to stdout or stderr.

Timers are implemented in the backend; they callback to the EEA when they
expire. Additionally, it is necessary to provide a way to trace memory accesses,
which is implemented through the QEMU plugin system. This will be discussed
in the next section in more detail.
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4.3 Memory Access Tracing and Watchpoints

This section explains how memory accesses are traced with the new QEMU back-
end and additionally how watchpoints are derived from this.

Since version 4.2, QEMU provides a plugin system for the TCG. Plugins can
passively monitor every instruction and memory access. To do this, they subscribe
to events, which happen during the execution or translation, for example, events
such as memory accesses. The plugin is then notified if an event is encountered.
Plugins are not able to change any aspect of the system state; instead, they are
limited to be mere observers. Plugins are shared libraries that are dynamically
linked to QEMU at runtime.

For FAIL*, a new plugin was implemented for memory access tracing. It regis-
ters callbacks at the initialization at the beginning, which are called upon memory
accesses.

Watchpoints are special breakpoints, which can stop execution whenever mem-
ory at a specific address is read or written to. Watchpoints can be derived rather
easily with the already present memory access tracing. As every memory access
leads to a callback, it is checked whether a watchpoint is set for this memory
address, and if it is, the watchpoint is triggered.

4.4 Instruction Counting

In this section, we discuss the concrete design for target instruction counting and
breakpoints. Target instruction counting is important to implement breakpoints,
which trigger after a specific amount of instructions passed. For the remainder of
the thesis, every time we speak of instruction counting, target instruction counting
is actually meant.

The first method we propose to use for instruction counting is to disable the
chaining of TBs and then add up instruction counts of each TB before they are
executed. This seems to have the advantage of being easy to implement, but
this has a few tedious corner cases which complicate the implementation. For
example, it can happen that after a TB started executing, it first checks whether
an exception is pending and aborts immediately if it is, so the instructions, which
we want to count, are not executed at all. In this case, the counter needs to be
decreased again, but this can lead to other issues that must be handled too. This
leads to increased complexity and a more error-prone implementation. Also, the
disabling of TB chaining comes with a hefty performance hit. In our observations,
this can lead to an order of magnitude slower execution speed.

The second method we designed avoids counting instructions before TBs are ex-
ecuted; instead, the TBs themselves are augmented so that they count instructions
executed while running. This ensures that the instruction count is only increased
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if the instructions are actually executed, in contrast to the first method. Addi-
tionally this method does not depend on entering tb_find () for every executed
TB, therefore TB chaining can stay enabled.

We ultimately chose the second method first and foremost because the perfor-
mance hit from disabling TB chaining is to big to be tolerated.!

4.5 Breakpoints

This section considers two variants for implementing breakpoints, which trigger
after a specific amount of instructions are passed. In the following, we call these
breakpoints dynamic breakpoints to distinguish them from breakpoints that trigger
a specific program counter. After this, we discuss two methods for implementing
normal breakpoints, which trigger at a specific program counter.

The first method for implementing dynamic breakpoints we describe is achieved
through altering an already present QEMU feature.

QEMU has a feature called “icount”, which guarantees that only a specific
number of instructions are executed every 2V nanoseconds. It utilizes essentially
dynamic breakpoints for this, but these are only supported in the system mode
since they work only in conjunction with the QEMUTimers, which are not present
in the user-mode. To do this, every virtual CPU in QEMU has a budget that saves
the number of instructions the CPU can execute until the budget is increased again
after some amount of time has passed. So the first thing each TB does is check
whether the CPU still has the budget remaining to execute all instructions in the
TB. If it has enough and no interrupt is pending, the budget is decreased by the
number of instructions in the TB. If it has not, the TB does not resume execution
but instead returns to the CPU main loop.

This “icount” feature is not really useful for FAIL*  as it does not support
user-mode, so it is completely taken over for a different purpose. The budget
now gets a different meaning; it now means the number of instructions until the
next dynamic breakpoint. If the execution now returns to the main execution
loop without an interrupt pending, we know that a dynamic breakpoint resides
inside the current TB. This TB is then split? to ensure that the instruction, which
triggers the breakpoint, begins a new TB and can be caught before it is executed.

The other method for dynamic breakpoints is very similar to the second method
for instruction counting. For this, TB chaining is disabled, and before every TB
is executed, it is checked whether a dynamic breakpoint is present inside this TB.

Regarding normal breakpoints, the first possible method we considered were
the breakpoints QEMU provides, which are used with GDB, for example. The
downside is that only 4 breakpoints at a time are supported.

!This is evaluated and shown in section 6.4
2This splitting is explained further in section 4.7.
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The second approach for implementing breakpoints we considered works in a
similar way to the first method for instruction counting. Before the execution of a
TB, it is checked whether a breakpoint needs to be activated or whether splitting
is needed.

Additionally, setting a breakpoint requires invalidating a potentially previously
generated TB because the TB could already be chained to another TB. This
would lead to missing the TB since the breakpoints are only checked for before
the execution runs and not while it runs.

We chose the second approach because this method is not limited in the number
of breakpoints.

4.6 Timers

For injecting a fault or aborting an experiment, as it takes too long, stopping the
execution after a certain time is necessary. For this, timers are a needed element
which we design in this section.

As detailed in section 2.5.4 QEMU provides the QEMUTimers to callback to a
given function. For the full system emulation, this suffices as the way to implement
a timer. More specifically, a timer against the virtual clock is chosen as the best
option, as it is undesirable to have the clock running while no target instructions
are being executed.

For the user-mode, this solution is not feasible as the QEMUTimers do not exist
here. The solution we designed was creating a new thread that sleeps for the time
specified and then issues a callback. This has the disadvantage of running even
while the execution is not running, but for the benchmarks at hand, execution time
always dominated the overall runtime anyway, so this is only a minor drawback. A
possible remedy would be to measure, for example, the time needed for translating
new TBs and increasing the time slept accordingly, but we decided against this
as the difference is very small.

4.7 Varying Sizes for Translation Blocks - or TB
Splitting

The nature of QEMU to only execute TBs with no way to interfere while a TB
is executed poses a problem for fault injection. If a fault is to be injected at an
instruction in the middle or at the end of a TB, this is not immediately possible.
Only if an instruction is the first instruction in a TB it is possible to inject a fault
right at this instruction.

One obvious solution to this problem is to use the single-stepping mode of
QEMU that only allows one instruction per TB. Unfortunately, this incurs a
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big overhead as bigger TBs are better for performance, and single-stepping is
ultimately unnecessary for the vast majority of instructions, which are not affected
by fault injections.

In order to solve this, the master’s thesis [8] of Bhat adapted the translation so
that only the instruction that will be executed directly after the fault injection is
limited to be the sole instruction in a TB. This improves the overhead by a lot,
but it is possible to do even a little better.

There is no need at all to limit the TB, in which the instruction in question
resides, to single-stepping; it is sufficient to guarantee that the instruction is the
first instruction of a TB. This is enough to inject faults at any point in the program.
A visualization of this splitting can be seen in figure 4.2.

The instruction where the fault is injected at

1: movl $0x70000022, %ecx 1: movl $0x70000022, %ecx 1: movl $0x70000022,
2: subgqg %rax, %rcx 2: subqg %rax, %rcx 2: subq %rax, %rcx
3: movqg %rex, Ssrax 3: movq Srex, %rax 3: movqg %rex, Ssrax
4: movqg %rdx, @(%rsi, %rax, 8) 4: movq %rdx, e(%rsi, =rax, 8) 4: movqg %rdx, @(%rsi,
5: addg $0x10, %rdx
6: movg 0(%rdx), %rax 1: addg $0x10, =rdx 1: addg $0x10, %rdx
7: ?estq %rax, %rax }b§&&§§§§$- 2: movq 0(%srdx), %rax
8: je 0x3001a01f80 N 1: movq 0(%rdx), %rax 3: testq %rax, %rax
: 2: testqg srax, %srax 4: je 0x3001a01f80
1: negq %rax 3: je 0x3001a01f80
2: movg %rdx, @(%r8, %rax, 8) 1: negqg %rax
3: jmp 0x3001a01f37 1: negq %rax 2: movq %rdx, 0(%r8, %
2: movq %rdx, 0(%r8, %rax, 8) 3: jmp 0x3001a01f37
\ 3: jmp 0x3001a01F37 <
\
\\\ \\\\
AN &

\\\\ N
SNAN S
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Figure 4.2: Translation block splitting. The left column is without any additional
TB splitting at all. The middle column shows the the approach from
Bhat which splits the affected instruction into its own TB and the
right column shows the improved design.

4.8 Architecture-Dependent Design Aspects

We kept the implementation architecture-independent in the parts where this was
possible. This section delves into the design decisions we made for choosing either
an architecture-independent approach for a specific component or an architecture-
dependent one.

Reading and writing from the Registers of a virtual CPU needed to be conducted
in an architecture-dependent way, as the registers differ between architectures.
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The second architecture-dependent design element was the recording of traps.
These are handled differently for the architecture, and as such, the implementation
also needed to do this.

We did design instruction counting in a completely architecture-independent
way, as we did change the intermediate representation code of the TCG to achieve
this.

Watchpoints, breakpoints, and dynamic breakpoints were also designed to work
in an architecture-independent way. As these features did not depend on architecture-
specific aspects, this was straightforward to achieve, as a program counter is
present for all architectures that QEMU supports. It is a part of its internal
architecture-independent CPU state.

Additionally, snapshots and timers are also implemented independently of the
architecture. QEMU handles the architectural details of snapshots in the back-
ground and does not expose any differences between architectures to carry them
out.

Memory access tracing works architecture-independent, too, as the QEMU plu-
gin system does not even provide a way to handle architecture differences.

The translation blocks also exist for every architecture, so there is no reason to
introduce architecture-dependent parts for the TB splitting.

Writes or Reads to the memory also pose no problem, as there is a mechanism
internally to QEMU to deal with issues that arise here, for example, issues with
the host system being a little-endian system and the target architecture being
big-endian.

4.9 Summary

To summarize, we did establish the design of the new backend in this chapter.
First, we chose QEMU as the new backend, first and foremost to its support for
system-mode emulation in contrast to Valgrind. Then we gave an overview of
the new backend architecture and explained how we intend to implement memory
access tracing and watchpoints. After this, we discussed different approaches for
introducing instruction counting and chose to augment TBs in order to achieve it.
Additionally, we described the design decisions taken for breakpoints and timers.
At last, we discussed an optimization to TB splitting and listed aspects of the
design, which could be conducted in an architecture-dependent and -independent
manner.

Now with the design introduced, we can describe the implementation in more
detail in the next chapter.
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5 Implementation

This chapter describes the implementation of the new backend for FAIL*.

5.1 Differences between User-Mode and System
Emulation

We describe the implementation differences between user and system-mode emu-
lation in this section. Challenges are described, and countermeasures are taken.

5.1.1 Program Behaviour Differences

We observed differences in the behavior of programs themselves, which may be
obvious but are nonetheless not present in system emulation. We depict these
differences now.

First, the stack begins at a different address depending on the environment in
which the user-space binary is started. At the guest stack’s initialization, QEMU
puts all environment variables in a memory region directly above the stack. This
means if there is an environment with many environment variables set, the stack
will begin at a different address, whereas typically, addresses in system emulation
do not change depending on the emulator’s environment.

Another point that changes the start address of the stack is the length of the
program’s path, which the program was executed with. This is passed in C pro-
grams typically as the first element on the argv array, given as a parameter to the
main function. For example, a path “./a.out” will have another stack starting
address than the path “/some/random/very/long/path/a.out”. Another differ-
ence is that a program can query things about the way in which it is run. For
example, some programs test whether their standard output is sent to a terminal
or something else, as a pipe or a file.

The chosen solution was to implement a detection for differences in the stack
start address between an experiment and the golden run and abort if differences
are detected. For this, the stack starting address is saved for the golden run in a
file with the filename extension .state. The experiment then loads the file and
compares the stack starting address, aborting, or continuing accordingly.

Address Space Layout Randomization (ASLR) is a security technique which is
useful for preventing the exploitation of memory corruption vulnerabilities [40].
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It is designed to randomize addresses between program executions and add a
stackgap, so that memory addresses are not predictable. This is not tolerable if
the memory addresses shall be in any way consistent between the golden run and
the later experiments.

To achieve execution in user-mode in a way that the behavior and stack starting
address does not differ between the tracing in the golden run and experiments, we
found these measures to be effective:

1. To keep the environment variables the same, run both the golden run and
the experiments with the command env -ignore-environment.

2. Keep the arguments of the program the same and especially the length of
the program path.

3. Execute both with the output redirected into a file or both without it.

4. Disable ASLR. For example with the command
echo 0 | sudo tee /proc/sys/kernel/randomize_va_space.

5.1.2 Implementation Differences

Some Aspects of user-mode and system emulation are handled differently in QEMU.
We list some passages to show this.

QEMU is organized in many ways through C macros; the general way in which
the QEMU source code differentiates between user-mode code and system mode-
code is via the macro CONFIG_USER_ONLY. If it is defined, the user-mode is being
compiled, and if it is not, the system-mode. Similarly, the macro TARGET_X86_64
indicates the parts of code which are to be compiled for x86-64 targets; similar
macros exist for every target architecture. The newly added functions to QEMU
also adhere to this principle. As an example, the differing translation between
guest (or target) to host addresses can be seen in listing 5.1. This additionally
illustrates some of the complexity incurred by having a memory management unit
or not.

Another difference between user-mode and system-mode are snapshots. As
snapshots are unsupported in the user-mode, the loading of snapshots is hijacked
to instead implement the detection for an invalid stack start address.
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5.2 Implementation

1 uint64_t failgemu_guest_to_host (CPUState *cpu, uint64_t virt_addr) {
> #ifndef CONFIG_USER_ONLY
// 6 Lines of variable declarations omitted

5 cpu_synchronize_state (cpu);

7 page_virt_addr = virt_addr & TARGET_PAGE_MASK;

8 page_phys_addr = cpu_get_phys_page_attrs_debug(cpu,
9 page_virt_addr, &attrs);

10 /* if no physical page mapped, return an error x*/
11 if (page_phys_addr == -1)

12 return -1;

14 //21 Lines omitted

16 ram_ptr = ramblock_ptr(block, addril);
17 return (uint64_t) ram_ptr;

18 #else

19 return (uint64_t) g2h(virt_addr);

20 #endif //CONFIG_USER_ONLY

21 }

Figure 5.1: This listing shows the translation from guest to host addresses. The
parts from line 3 to 17 are for the system-mode, and only line 19
is for the user-mode, as split by the #ifndef directive. As can be
seen, the amount of code needed for translating memory addresses
in the user-mode is much simplified compared to the system mode.
The system emulation first calculates a page virtual address, then a
physical address as well. In the omitted part, further components such
as an address space and a RAM block are involved.

5.2 Memory Tracing Plugin

We aim to explain the implementation of the memory tracing plugin for QEMU
in this section.

To use the TCG plugins QEMU needs to be compiled for them. This can be
done by the configure option configure -enable-plugins.

To compile a plugin it needs to be compiled as a shared library which exports
a gemu_plugin_version symbol. QEMU TCG plugins are designed with API
stability in mind. The QEMU developers try to keep breaking changes in the api
behind version number changes and thus we need to declare which version of the
API we intend to use with the gemu_plugin_version symbol.

Upon starting QEMU the memory tracing plugin is loaded and the
gemu_plugin_install function is called. This registers callbacks for plugin events,
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in this case for memory accesses. The plugin can choose to listen to either read
accesses, write accesses or both. The callbacks are registered for every instruction
as the translation of a TB finishes. If such an instruction is then executed and
does a memory access the callback is called. The plugin then notifies FAIL* of
the memory access. Listing 5.2 shows the plugin.

QEMU_PLUGIN_EXPORT int qgemu_plugin_version = QEMU_PLUGIN_VERSION;
static enum qgemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;

//Callback function for memory access
static void vcpu_mem(unsigned int cpu_index,
gemu_plugin_meminfo_t meminfo,
uint64_t vaddr, void *udata) {
fail _watchpoint_hit (cpu_index, meminfo, vaddr, udata);

}

//Callback function for translation of TBs
static void vcpu_tb_trans(gemu_plugin_id_t id,
struct qemu_plugin_tb *tb) {
//register memory access callback for every instruction
size_t n = gemu_plugin_tb_n_insns (tb);
for (size_t i = 0; i < n; i++) {
struct gemu_plugin_insn *insn;
insn = qemu_plugin_tb_get_insn(tb, 1i);
gemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem,
QEMU_PLUGIN_CB_NO_REGS,
rw, NULL);

}

//Initialization function
QEMU_PLUGIN_EXPORT int gemu_plugin_install (gemu_plugin_id_t id,
const qgemu_info_t *info,
int argc, char x**xargv) {
//omitted initialization of read or write tracing from params

//register callback for TB translation

gemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
return O;

Figure 5.2: This listing shows the important parts of the memory tracing plugin.
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5.3 Instruction Counting and Dynamic
Breakpoints

This section looks at the implementation of instruction counting and dynamic
breakpoints in detail.

In order to achieve instruction counting for TBs, which only counts if the TB
is run and not aborted at the start, we added a few additional instructions to the
intermediate representation code, which is generated for each TB. These instruc-
tions load the instruction count from host memory and increase it by the number
of target instructions present in the TB.

The dynamic breakpoints are implemented in a somewhat more complicated
way than described before, in order to avoid unnecessary branches. As already
mentioned in section 4.5 the QEMU feature “icount” introduces a budget for
every virtual CPU that saves the number of instructions the CPU can execute in
a given amount of time. We chose this budget to implement dynamic breakpoints;
the budget now means instructions left until the next dynamic breakpoint. The
remaining instruction budget resides in the lower 16 bits of a 32 bit signed integer
value. The upper 16 bits of the value are supposed to indicate pending interrupts.
If the whole value is less than zero after the TB returns to the main execution
loop, it indicates an interrupt. If it is still greater than or equal to zero, it means a
return was done because of an insufficient instruction budget for the virtual CPU.

This limits dynamic breakpoints to 2! —1 instructions in the future. To address
this, the size of the signed integer value was increased to 64 bits, such that there
is a 32 bit signed integer for setting a dynamic breakpoint. This means a dynamic
breakpoint can be set up to 23! — 1 instructions into the future.

The adaptation of TBs for instruction counting and dynamic breakpoints can
be seen in listing 5.3.
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static inline void gen_tb_start (CPUState *cpu)
{
tcg_ctx->exitreq_label = gen_new_label ();
TCGv_i32 tb_icount_i32 tcg_temp_new_i32();
/* We emit a movi with a dummy immediate argument.
* Keep the insn index of the movi so that we later
* (when we know the actual insn count) can update
* the immediate argument with the actual insn count. */
tcg_gen_movi_i32(tb_icount_i32, Oxdeadbeef);
icount_start_insn = tcg_last_op();

TCGv_i64 new_icount = tcg_temp_new_i64 () ;
TCGv_i64 tb_icount_i64 = tcg_temp_new_i64 () ;

TCGv_ptr ptr = tcg_const_ptr(&(cpu->dynamic_instruction_counter));

// Add the insn count of this TB to the overall counter.
tcg_gen_1ld_i64 (new_icount, ptr, 0);

tcg_gen_extu_1i32_1i64 (tb_icount_i64, tb_icount_i32);
tcg_gen_add_i64 (new_icount, new_icount, tb_icount_i64);
tcg_gen_st_i64 (new_icount, ptr, 0);

// Load the remaining instruction budget for next breakpoint.
TCGv_i64 count = tcg_temp_local_new_i64 () ;
tcg_gen_1ld_i64 (count, cpu_env,

offsetof (ArchCPU, neg.icount_decr.b64)

- offsetof (ArchCPU, env));

tcg_gen_sub_i64 (count, count, tb_icount_i64);

/* Check whether a dynamic instruction breakpoint is hit
* or an interrupt is pending. x*/

tcg_gen_brcondi_i64 (TCG_COND_LT, count, O, tcg_ctx->exitreq_label);

// Save new instructions left until dynamic instruction breakpoint.

tcg_gen_st32_i64 (count, cpu_env,
offsetof (ArchCPU, neg.icount_decr.b32.low)
- offsetof (ArchCPU, env));

Figure 5.3: This listing shows the added instructions to the QEMU intermediate
representation code. First, a movi instruction with a placeholder value
is introduced. This placeholder denounces the number of instructions
in the TB. As this number is unknown at the start of generating a
new TB, the placeholder is needed, which is replaced at the end of TB
generating. Then the global instruction count is increased, and it is
checked for breakpoint triggers and pending interrupts.
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5.4 Usage Detalils

In order to use the new implementation some information about the usage is
necessary which we will provide here. First we explain some aspects about the
compilation process and then explain how to conduct an examplary golden run
and a FI campaign.

In order to compile FAIL* with the QEMU backend the CMake-based configu-
ration needs to be changed. The variables BUILD QEMU and BUILD X86 64 need to
be enabled in order to build the system-mode backend for the x86 64 architecture.
For the user-mode the variable BUILD QEMU_USER needs to be activated instead of
BUILD QEMU. Additionally the correct FAIL* plugins need to be activated, either
the stdout plugin for the user-mode or the serialoutput plugin for system-mode.

First the golden run needs to be conducted. For this the fail-client compiled
for tracing needs to be run with the FAIL* command line parameters given in
table 5.1 and the gemu specific parameters listed in table 5.2. The tables are to
be read in such a way that all fitting parameters are to be used. For example, all
parameters for the user-mode except those which are only for the experiments.

For conducting the FI campaign typically many experiments need to be run.
An experiment can be run in much the same way as described for the golden run
except the parameters need to be chosen from the tables for the experiment and
not the golden run.

As many experiments need to be conducted, we opted to use GNU parrallel
[48] to parallelize the execution of the experiments. “GNU Parallel is a command-
line tool for Unix-like operating systems which allows the user to execute shell
commands in parallel” [48].
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Mode  Parameter Description

System state-file=X Specifies the name -X of the snapshot to be
saved inside the qcow2 image.

User state-file=X Specifies the file -X in which to save the
stack starting address.

Both start-symbol=X Specifies the symbol -X at which to start
tracing.

Both end-symbol=X Specifies the symbol -X at which to stop
tracing.

System state-dir=X Specifies the name -X of the snapshot to be
loaded from the qcow2 image.

User state-dir=X Specifies the file =X from which to load the
stack starting address.

Both ok-marker=X Specifies a symbol -X at which to stop the
experiment, with the indication, that no
error was encountered.

Both detected-marker=X Specifies a symbol -X at which to stop the
experiment, with the indication, that an
error was detected.

Both trap Specifies to abort on traps encountered.

Both timeout== Specifies a time -X in microseconds after
which the experiment is aborted.

Both serial-file=X Specifies the file -X in which to save (or
load) the serial output or standard output.

Both trace-file=X Specifies the trace file -X.

Both elf-file=X Specifies the elf file -X.

Table 5.1: Command line parameters for FAIL* with the QEMU backend. All
options need to be preceded with -Wf,--. The yellow highlighted rows
(the upper four rows) symbolize golden run specific parameters, while
blue highlighted symbolize experiment specific parameters. No color
means the parameter applies to both.
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Mode  Parameter Description

System -m XM Specifies the amount of memory in -X
Megabytes.

System -serial stdio Instruments QEMU to redirect the serial
output to the standard output.

Alternatively -nographic can be used if
only a terminal is used without a screen.

System -drive file=X.qcow2 Specifies the name X.qcow2 of the gcow2
system image.

Both -plugin X.so,arg=rw Specifies the file -X.so to be loaded as a
TCG plugin. arg=rw passes the rw as an
argument to the plugin.

User last parameters Specifies the name of the target program to
execute and its parameters.

Table 5.2: Command line parameters for FAIL* with the QEMU backend which

are passed to QEMU.
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5.5 Summary

We explained some details about the implementation of QEMU as the new back-
end of FAIL*. With this, differences between user-mode emulation and system
emulation were shown, and the arising challenges, such as ASLR were listed and
countermeasures presented. After this, elements of the new implementation were
presented, most notably the implementation of dynamic breakpoints. We high-
lighted the changes done to the TB to count instructions in listing 5.3. Addition-
ally, we described how the QEMU plugin system was leveraged for tracing memory
accesses. Following this, we explained the changes to the build process, and clar-
ified which command line parameters need to be passed in order to conduct the
golden run and the experiments.

At last, every important implementation detail is established, and so the eval-
uation in the next chapter can begin.
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We quantitatively evaluate the new backend of FAIL* in this chapter with regards
to runtimes and outcomes of FI campaigns.

First, we evaluate a bubble sort implementation with several increasing elements
to sort. Then we evaluate a more diverse set of benchmarks and examine asymp-
totic execution speeds. After this, we discuss some aspects of the boundaries of
determinism and then evaluate user-mode FI and compare it to system-mode FI.
At last, 64 bit ARM support is shortly discussed.

6.1 Small System Software Benchmark

This section compares the Bochs and QEMU backend on a small system software
benchmark. First, two fault space plots are shown to compare the results of fault
injections across the two backends. Second, the results’ qualities are compared
against each other by comparing the raw values for SDCs, timeouts, and traps.
After that, the runtimes of the fault injection campaigns are compared, and an
average experiment runtime is inspected in detail.

A fault space plot visualizes the different memory areas in a system and what
consequences arise from injecting bit flips at specific locations. The fault space
plots resulted from a system software implementation of a bubble sort with 24
elements with either Bochs or QEMU as a backend where the timeout was set to
500 ms. The timeouts behave differently for Bochs and QEMU; while Bochs uses
a guest time, which depends on how fast instructions are executed on a particular
machine, QEMU does use the host clock for this. The whole fault space was
covered, which was possible with 2990 experiments. From the start of the main
function to the call of the function FAIL_FINISHED, which marks the end of the
program’s execution, there were 4144 instructions. The faults injected always
flipped every bit of one whole byte. There is one difference between the images
used for QEMU and Bochs; the Bochs image uses the port 0xe9 for serial output,
whereas the QEMU image uses the standard port 0x3f8. However, this should not
alter the benchmark results, as the instructions themselves stay the same.

In direct comparison, the QEMU fault space plot and the Bochs fault space
plot, which can be seen in figure 6.1, look quite similar. The data to sort resides
in a global array called input_data, which can be seen in the upper part of the
diagram from the symbol input_data to the top of the plot. If anything of the
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data to be sorted is changed, the program ends up with SDC with both backends.
If the length of the array saved in the variable input_data_length is changed,
the bubble sort takes longer and sorts even some random parts of the memory.
This happens in both cases, and depending on how high the length is after the
injection, this either times out or leads to SDC.

The only visible difference in the fault space plots is at RAM address 2.101 x 10°+
175, where a fault injection leads to a timeout in the case of Bochs and an SDC in
the case of QEMU. In this case, QEMU continued pretty much unimpacted and
finished in the usual time it takes for a run, while Bochs takes a far longer time
and prints a lot of garbage to the serial output. This indicates a similar quality
for the QEMU backend as the Bochs backend, as there is only this one difference,
which actually stems from a single experiment.

Backend Number of occurrences Runtime in s

SDC Timeout  Trap Trace FExperiments

QEMU 141433 30348 10627 1.61 40.05
BOCHS 137189 34328 10632 3.75 48.01

Table 6.1: Benchmark values with both the QEMU and Bochs backend.

As is apparent in table 6.1 the differences in the number of traps encountered
are very similar with both backends, and the difference in timeout results stems
entirely from the single experiment at RAM address 2.101 x 10° +175. Therefore
the results here are not much different.

Other aspects of comparison are the runtimes of the different fault injection
campaigns. We measured both campaign runtimes’ on an Intel® Core™ i7-
9750H CPU, with turned off Intel® Turbo-Boost Technology and the frequency
fixed @ 2.60GHz. This CPU has 6 cores and 12 threads, and the benchmarks were
done with 12 threads for both backends.

QEMU was 20% faster in regards to the experiments, but QEMU exhibited a
significant speedup of 232% for tracing. The time for a complete campaign did not
differ much from the time needed for the experiments, so the tracing speedup is
rather insignificant for the overall time needed for a campaign in this benchmark.

A typical runtime of a single experiment is now further discussed and can be
seen in figure 6.2.

With the Bochs backend, loading a snapshot took on average a time of 138 ms,
while with the QEMU backend, loading a snapshot took only 25ms on average.
This is the sole reason why QEMU is faster than Bochs for this benchmark. The
average execution times for the 4144 instructions were only on the order of less
than 1ms for both backends and are therefore insignificant for the runtimes at
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large. The obvious question now immediately becomes where QEMU loses its
advantage and why it only comes out ahead 20% over Bochs.

o, O O L O O LR
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Figure 6.1: Fault-space plot for an x86 FI campaign with QEMU and Bochs as
backends. The yellow color depicts timeouts, turquoise depicts traps,
white depicts no effect, and red depicts SDC. Note the completely red
area from the memory address 168 to 175 in the upper plot which can
be seen as a timeout in the lower plot.

The big reason for this is that FAIL* with the QEMU backend can currently
only handle one experiment for one execution of a fail-client process. This leads
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Figure 6.2: Stacked bar plot, which compares different components of overall time
needed, for a very small experiment.

to another significant amount of time incurred, which must be calculated as well
for QEMU, which is the initialization and dynamic loading of shared libraries.
Initialization takes an additional 30 ms in QEMUSs case, while this takes less than
1ms in Bochs’ case. Dynamic loading of shared libraries delays program execution
on average by an additional 35 ms.

If QEMU as a backend had the capability to run multiple experiments per FAIL*
process, significant speedups could be possible, at least for small benchmarks,
where loading the snapshot takes the longest amount of time.

6.2 Large System Software Benchmark

The next section compares the Bochs and QEMU backend for FAIL* on a larger
system software benchmark. As there is such a large fault space, full fault space
coverage is not feasible, and instead, 10000 samples are taken for each backend.

The benchmark is very similar to the one in the previous section, as this is again
a bubble sort implementation with the only difference being 2000 elements instead
of 24. As the runtime of bubble sort is O(n?), differences in execution times are
large. The benchmark runs for 28 883 867 instructions.

Backend Number of occurrences
SDC Timeout Trap

QEMU 58065013271 123180652 93851926
BOCHS 58053279793 158375119 58657452

Table 6.2: Benchmark values with both the QEMU and Bochs backend.

As can be observed in table 6.2, the SDC counts with the QEMU and Bochs
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backend vary very little. This can be attributed to sampling inaccuracy (standard
deviation 207064 285). Bochs had 28% more timeouts, which might be explained
by a higher execution speed from QEMU. The timeouts seem to have been largely
turned into traps as the number of traps encountered was nearly as much higher
with the QEMU backend as the number of timeouts was less.

Backend Runtime in s

Trace Importing Pruning Experiments

QEMU 92.5 254.7 13.3 450
QEMU + memtrace plugin ~ 92.5 254.7 13.3 3297
BOCHS 81.0 281.8 13.6 3218

Table 6.3: Benchmark runtimes with both the QEMU and Bochs backend. The
times for taking the golden run were called “Tracing”. “Importing”
means to import the trace into a database, “Pruning” reduces the num-
ber of experiments needed, and “Experiments” refers to the time needed
for the fail-clients to complete all generated experiments.

The first observation that can be made from the benchmark runtimes depicted
in table 6.3 is the amount of time spent for importing the traces. The tracing
runtime seems almost irrelevant in contrast to the time spent for importing the
traces generated by the tracing steps. This problem only intensifies if an even
bigger benchmark is chosen, i.e., the time spent importing grows faster than the
time spent tracing, irrespective of the backend. Regardless of this, Bochs comes
out ahead 12% faster in tracing than QEMU.

Bochs has a tiny edge in experiment runtimes above QEMU with the memory
tracing plugin enabled. However, QEMU without the memory tracing plugin is
7.32x faster than Bochs, which is a significant reduction in the time needed for
the experiments.

The plugin capabilities of tracing memory accesses are only needed in the trac-
ing part of the campaign. The experiments benchmarked did not need to trace

memory accesses; therefore, the memory tracing plugin is unnecessary to use and
should be avoided.

The explanation for such a large performance hit is the implementation of the
memory tracing. Each memory access leads to a callback from optimized TCG
code. Every callback needs to call an epilogue first, which saves the execution
state, and on reentry, the saved state must be loaded again in the prologue. This
amounts to a substantial overhead, as can be observed in the runtimes.
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6.3 eCos Benchmarks

This section evaluates the QEMU versus the Bochs backend in a diverse range of
algorithms implemented on top of the embedded Configurable operating system
(eCos) [35].

Interrupts were turned off before entry to the main function. Otherwise, the
current QEMU backend can not run the experiments in a deterministic manner.
The benchmarks were conducted on different hardware than the other benchmarks
in this chapter. It was run on four Intel® Xeon® CPU E5-4640 @ 2.50GHz. All
in all, there were 32 cores and 64 threads. All values are median values from three
runs each. Timeouts were chosen as 3 x the instructions Bochs can execute per
second X the respective instruction count for every benchmark.

1. “basicmath” calculates a few basic mathematical calculations like cubic func-
tions, integer square roots, and exclusive ors. It was the largest of the
benchmark runs, which shows in the times needed for the tracing. It runs
for 71176 202 instructions.

2. “bitcount” tests different bit manipulation functions. It runs for 4397163
instructions.

3. “rijndael” is an implementation of the Rijndael encryption algorithm (also
known as AES) [15]. It runs for 1058 537 instructions.

4. “gsort” is an implementation of the quick sort algorithm [26]. It runs for
4943909 instructions.

5. “bfs” is an implementation of breadth-first search from “Introduction to
Algorithms” [13]. It runs for 4994 492 instructions.

6. “swaptions” computes various option prices.! It runs for 5049 367 instruc-
tions.

The results of the benchmarks are shown in table 6.4. Overall the results are
rather consistent across all benchmarks except for the “basicmath” benchmark.
SDCs are very similar between the QEMU and Bochs benchmarks in all of the
benchmarks. Traps were noticeably more common with the QEMU backend, but
accordingly, there were fewer timeouts with QEMU, again probably because the
execution speed is higher.

The “basicmath” benchmark ran slower than the other benchmarks, and there-
fore it was not sufficient to use the same way for choosing a timeout value as
with the other benchmarks, as the time would not be enough for even a single

LOptions as in financial instruments.
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experiment with a fault injection at the beginning. So the timeout was increased
by a factor 3 for QEMU in this benchmark. The low execution speed can likely be
explained by the high amount of instructions that write to serial output. These
instructions lead to a callback and leave the optimized TCG code, which slows
down the QEMU backend considerably. The experiments are overall still faster

than in the Bochs case, but the difference is not that big as in the other cases.

Backend Number of occurrences Runtime in s
SDC Timeout Trap Trace FExperiments

basicmath

Bochs 28759836469 1257390252 8837318280 201.8 1737.0

QEMU 29785914734 1607324351 7977310896 242.4 986.3

bitcount

Bochs 1991219736 225745968 497725221 18.1 120.4

QEMU 2029482 367 91191195 600714027 20.4 21.5

rijndael

Bochs 18954792 530 28 320928 89008 631 7.9 137.3

QEMU 18914 354076 18206 330 93054576 7.7 49.9

gsort

Bochs 134782059 388 355428054 692149 368 19.9 198.3

QEMU 134464077 624 299307908 804390002 21.3 52.3

bfs

Bochs 655669937904 20269922371 413671885 35.0 229.3

QEMU 652636 645836 22614073509 551562769 25.4 62.6

swaptions

Bochs 2885191 666 658 588808 584139639 18.7 215.3

QEMU 2939024 374 539470179 628809 190 21.0 48.6

Table 6.4: Benchmark values
backend.

with QEMU system- and QEMU user-mode as a

6.4 Asymptotic Speedup in a Best Case

This section compares the Bochs and QEMU backend for use with very high
instruction breakpoints. Once again, an implementation of bubble sort was used
as the benchmark, the only difference being a much longer array to sort. These
are nearly ideal conditions for dynamic binary translation, as the same parts of
the code are executed over and over again. It is, therefore, likely to show QEMU
in a favorable light. This is intended to estimate the upper bound of the speedups
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to be realized with the current implementation of the QEMU backend versus the
Bochs backend.

The breakpoint was set 182 536 109 796 instructions in the future and was reached
after 403 s by the QEMU backend. That corresponds to 456.3 millions of instruc-
tions per second (MIPS).

The Bochs backend does not currently support breakpoints more than 232 — 1
instructions in the future. It is nevertheless possible to extrapolate from a smaller
breakpoint. For this, a breakpoint was set at instruction 232 — 1 for Bochs and
was reached after 223s. That corresponds to 19.3 MIPS, which is 23x slower than
QEMU. We provide a visualization of the different backend speeds in figure 6.3.

The QEMU user-mode backend was even faster; it only needed 182 s to reach the
breakpoint, which corresponds to 1002.9 MIPS. The QEMU user-mode backend
for 64 bit ARM needed 437s and thus ran at 416.8 MIPS.

As the user-mode binary can be run natively as well, this was done also. The
execution of approximately 412316859272 + 1% instructions took 60s. This
can then be calculated as 6871.9 MIPS. An unmodified QEMU ran the same
412316859 272 + 1% instructions in 310s, which means 1330.1 MIPS.

The performance impact, for this program at least, of the unmodified QEMU
can be determined to be the factor 5.16. FAIL* together with the QEMU user-
mode backend then incurs an additional slowdown of factor 1.32, or 6.85 versus
the native execution speed.

Additionally, this setup allows us to evaluate the impact of the design decision
discussed in section 4.4, which allowed the chaining of TBs. Hence this test was
repeated with TB chaining disabled. In user-mode, the execution took 3399s
which leads to 53.7 MIPS, a slowdown of a factor of approximately 18.7. Thus
it can be inferred that the design decision in question contributes to a higher
execution speed.
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user-mode |

system-mode |

user-mode AArch64

user-mode without TB chaining | [] B
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Figure 6.3: Bar chart which compares execution speeds under optimal conditions.
All values except for Bochs are values with different versions of the
QEMU backend.

6.5 Boundaries of Determinism

This section shows instances in which the current implementation of QEMU as
a backend for FAIL* is behaving nondeterministically. Nondeterministic means
that some external factor which the current backend can not cope with leads to a
different sequence of instructions in the experiment than protocolled in the tracing
step, even before injecting. This can happen due to a multitude of factors, which
are examined in this section.

The most obvious introduction of nondeterminism in a program is the time. If a
program reads the Real-Time Clock (RTC) at specific points in the program and
behaves differently depending on the time, then the current backend is unable to
provide the time which was present at the time of tracing. Instead, the current
RTC is shown.

Interrupts are a problem too, they can happen at unpredictable times, and if an
interrupt happens at a different time than in tracing, the program will likely not
behave the same. In our observations, the interrupts happened at different instruc-
tions in multiple experiments. We hypothesize that those were timer interrupts,
although this aspect needs more research.

In user-mode emulation, the results are very much dependent on the environ-
ment the program finds itself in. For example, an obvious case would be a program
that opens a file. This program behaves differently depending on whether the file
exists or not.

Also, the environment must be kept the same between experiments and tracing
to ensure determinism, as is mentioned in more detail in chapter 5, section 2.5.4.
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6.6 User-Mode Fault Injection

User-space programs have a multitude of advantages over system software, for
example, a simpler build process and easier debugging. Is a developer, therefore,
better advised to use user-mode, or do the drawbacks outweigh the benefits after
all? This section attempts to answer this question.

The program again implements bubble sort with 24 elements similarly as in
section 6.1, only slightly modified in order to be usable as a GNU/Linux program
and in 64 bit. The program is statically linked, compiled with optimization, and
without stack protection?, and executed without Address Space Layout Random-
ization. Timeouts were set at 50 ms.

We tried to minimize differences between the full-system and user-space vari-
ants of the bubble-sort program, but there are nonetheless some. One is the usage
of the GNU C Library (glibc), which was not used in the system software case.
The biggest difference between the two is input/output (I/0O). In the user-space
program, 1/0O is not done via a serial port; instead, the glibc wrapper function for
the write system call was used, as an equivalent to the x86 assembly instruction
QUT. This leads to a somewhat longer trace, as the write function has a greater
overhead than one instruction. This lead to a runtime of 3887 instructions, ap-
proximately 7% more than the 3642 in the full system implementation. As in the
full system implementation, the whole fault space was covered, but this needed
15% more experiments.

Now the execution speeds, SDCs, timeouts, and trap counts are compared for
user-mode and system mode in the upper half of table 6.5.

First, it is apparent that there are about 37% more SDCs in the full system-
mode, in contrast to the user-mode. This might be due to the higher instruction
count. The trap-result count was about 23% in the user-mode. This hints at a
tendency to fail more often in user-mode, which might be explained by the dif-
ferences between exceptions and signals or stricter memory protection. Timeouts
were less pronounced than in the full system case. This is to be expected since
the execution speeds of the user-mode are higher.

Execution speeds were rather different in comparison. Especially the tracing
is drastically faster in user-mode, 30.4z faster for this benchmark. This stems
from a much lower overhead of user-mode binaries. While in the system software,
over 60 million instructions were executed to even reach the main function, in
the user-mode, only approximately 5000 are needed to reach the main function.
The experiments also took less time. This was mostly the fact due to not needing
to restore snapshots, which takes 30 ms each in the system software case. In
user-mode, it takes only about one ms to reach the main function.

2With the compiler options: -m64 -Wall -g -fno-stack-protector -0
-fno-threadsafe-statics -fno-use-cxa-atexit -fno-rtti -fno-exceptions
-static -z max-page-size=0x1000 -Wl,-gc-sections.
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Backend Number of occurrences Runtime in s

SDC Timeout  Trap Detected Trace Experiments

No detection

system 85983 9910 28711 0 1.52 19.35
user 62 583 6257 35590 0 0.05 12.13
With detection

system 1647 10306 28829 103934 1.53 19.30
user 1647 6781 36340 111768 0.05 13.01

Table 6.5: Benchmark values with QEMU system- and QEMU user-mode as a
backend in a bubble sort with 24 elements.

To estimate if the user-mode is similarly effective in gauging the effect of fault
tolerance mechanisms, a simple fault tolerance mechanism is employed in both
cases. A sum of the elements is calculated at the beginning of the program and
then again at the end. The results of this can be seen in the latter half of table
6.5. The number of experiments and instructions was barely impacted by this,
less than 3%.

In the system software case, the mechanism reduced the amount of SDCs down
to 1647, down to exactly the same amount as in the user-mode example. This is
likely the case due to program parts which are responsible for the introduction of
SDCs, being identical.

An additional observation made was that it is important to program in a careful
way with regards to the output in user-space programs. If, instead of the write
function, the putchar function from glibc is used, the amount of SDC observed is
as high as 47415, which is a drastic difference. This difference can be explained
by the big overhead and unnecessary copying of data that occurs in this case but
is a hindrance for implementing and testing fault tolerance mechanisms.

The observed results make a compelling argument for the use of the user-mode.
The user-mode proved to be sufficient for evaluating the fault tolerance mechanism
in question and is likely suited for the evaluation of other such mechanisms as well.
The reduced execution time is an added bonus that is helpful in achieving fast
iterations in an iterative software developing process.

6.7 64 bit ARM Support

This section presents a simple test of the functionality of the 64 bit ARM im-
plementation. As the ARM implementation was only a side goal, it is the least
refined part of the implementation.
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The test was once again a user-mode implementation of the bubble sort al-
gorithm, but this time it was cross-compiled for the 64 bit ARM architecture
AArch64. It was compiled with optimizations, and the main function consisted of
3542 ticks. This resulted in 918 experiments to be conducted.

This resulted in 194 028 SDCs, 39 timeouts, and 63 269 traps. The tracing took
67 ms, and the experiments took 5.23s.

The results seem plausible; only the timeouts are a little rare. This would need
further investigation in the future.

6.8 Summary

We showed in this chapter that across every benchmark done the QEMU backend
was faster compared to the Bochs backend. The speedups ranged from 2z to 23x
from the worst to the best case. Very similar amounts of SDCs were encountered
with both backends. Because of the faster execution speed, QEMU did time out
less frequently than Bochs. Traps, however, increased in occurrences across the
two backends, likely they were converted from timeouts.

The user-mode showed promise for the evaluation of fault tolerance mechanisms.
No significant drawbacks over the system emulation were encountered. Addition-
ally, it could be shown that the ARM 64-bit backend is at least functioning.

After this chapter we will now discuss some related works to this thesis.
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This chapter gives an overview of related works which did implement fault injec-
tion tools. We give particular emphasis to the works which used QEMU as the
base. First, we discuss interface-based approaches and then modifications built
on QEMU.

7.1 Interface-Based Approaches

In this section we focus on approaches, that instrument QEMU from the outside
through an interface such as the gdb interface.

David and Campbell, together with Chan and Carlyle, developed a method for
injecting faults with QEMU, without modifying QEMU itself, called QInject [17].
QInject injects fault using the gdb debugger interface built into QEMU. There are
multiple limitations to this approach, however. The gdb interface only allows for
basic functionality like setting breakpoints and lacks more advanced capabilities,
such as instruction counting.

Chytek also proposed a fault injection tool built on QEMU, which is called
QEMU Fault Injector or QEFI [11]. It uses the monitor and gdb interface of
QEMU to instrument fault injections from a supervisor framework. There are
multiple different ways QEFI implements to determine the time at which to in-
ject a fault. At random points, at program counter breakpoints, and custom
instructions which the target program can invoke to trigger a fault injection itself.
Additionally, device-triggered injections are supported, which inject, for example,
when interactions with USB devices are observed. There were no benchmarks
with regards to execution speeds conducted, but the author warns that “its speed
may be decreased”[12].

7.2 QEMU Adaptations

In this section we describe approaches, which built on QEMU itself to inject faults.

David and Campbell examined a self-healing operating system, which can re-
cover from faults and exceptions through various techniques such as code reload-
ing, micro-rebooting or watchdog timer based recovery [16]. To test their operat-
ing system, they injected faults with a modified QEMU. The fault injection tool
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supports ARM targets, is capable of injecting faults into memory and registers,
and can raise CPU exceptions. The implementation is relatively small and can be
found online [37]. The authors did not provide benchmarks for their implementa-
tion, but it is likely that it is with a high overhead because the injector code runs
at every executed instruction according to the source.

Di Guglielmo et al. built a fault injection tool based on dynamic binary transla-
tion and in particular on QEMU [18]. Tt leverages the dynamic binary translation
aspect of QEMU to inject faults into CPU registers, flags, and instructions at
translation time. This was done with the user-mode part of QEMU that is capa-
ble of running user-space programs on top of the GNU/Linux operating system.
There are, however, limitations of their approach as fault injection into memory is
not supported, and only breakpoints at specific program counters are used for de-
termining the point of injection. Additionally, the implemented caching by QEMU
of the translated code was disabled, which does not bode well for performance.

Ferraretto and Pravadelli expanded on this and presented an efficient fault injec-
tion approach based on QEMU with a focus on emulator performance [20]. They
could prevent disabling caching but did need to enable single-stepping, which is
also detrimental to QEMUs performance. Injection into memory is also not pos-
sible with this approach.

FIES is a fault injection tool built on QEMU by Holler et al. It is designed
specifically with software-based self-tests in mind. It supports fault injection into
CPU registers and memory. Timer and memory access based triggers for the fault
injection are supported. Additionally, program counter breakpoints are supported.
However, a shortcoming is that it is not possible to inject a fault at a specific
instruction.

A notable optimization in contrast to the work of Ferraretto and Pravadelli was
implemented by Bhat in his masters’ thesis [8]. Here all instructions executed are
counted in a golden run, and a fault can be injected at a specific instruction in the
experiment later. In order to avoid single-stepping all instructions, only the precise
instruction at which the fault injection should happen is run in a single step. To
do this, the corresponding translation block is isolated to a single instruction. This
guarantees the possibility to inject at the right instruction. As the implementation
is proprietary and no benchmarks are provided, it is impossible to estimate the
execution speed accurately, but it is likely on a high level.

7.3 Summary

Multiple approaches for FI with QEMU were brought up; from gdb or monitor
based approaches to more advanced approaches which modify QEMU from the
ground up. None of the listed approaches, except for the gdb-based approaches,
have the capability of conducting FI campaigns in user-mode as well as in full
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system emulation. However, the gdb-based approaches are limited in their control
of the emulator. We overcame this shortcoming in this thesis; it is now possi-
ble to conduct such campaigns for both cases. Additionally, we did extensive
benchmarks, which were also lacking in the previous works.

After the discussion of the related work, we now get to the closing chapter.
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8 Summary and Conclusions

In this chapter we summarize the thesis, and then give an outlook and propose
further work.

8.1 Summary

The first and foremost goal of the thesis was to implement a usable user-mode
for FAIL*. To achieve this, Valgrind and QEMU were evaluated, and QEMU was
chosen for its higher speed and additional support for system emulation.

The implementation of the new backend was done in a largely architecturally
independent way, which should help with porting to new architectures. To achieve
dynamic instruction counting and dynamic breakpoints with the new QEMU back-
end, the architecturally independent intermediate representation from QEMU was
modified.

The newly implemented backend was benchmarked in a variety of ways. It
showed that the new backend could achieve a 23z faster execution speed in a
best-case scenario if compared to the Bochs backend. The user-mode showed to
be approximately twice as fast in this best-case benchmark.

In the general case, large speedups could be realized as well, albeit not to the
same degree; around 2x to 6x speedups were observed for practical benchmarks.
In addition, the amount of SDCs encountered was mostly very similar between
the two backends, while timeouts were less pronounced with QEMU, likely due
to higher execution speeds. Traps were often more pronounced with the QEMU
backend, but not in every case.

Additionally, it is noteworthy that evaluating a fault tolerance mechanism with
the newly implemented user-mode looked promising. The observed amounts of
SDCs before and after applying a fault tolerance mechanism were similar to the
system case. Additionally, speeds with the user-mode, especially of the tracing
step, were higher across the board.

8.2 Outlook

Something to be considered for future work could be determinism. In the current
implementation, interrupts needed to be turned off for some benchmarks, in par-
ticular, those using the eCos operating system. QEMU offers a way to introduce
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more deterministic behavior with the “icount” option. This records, for instance,
interrupts. At a later time, it can playback this recording to keep the interrupts
exactly as in the first run. The impact on execution time is likely heavy as a big
overhead is introduced by this. For example, to achieve a more deterministic time
behavior, the execution is limited to a specific amount of instructions executed
per second.

An additional option for the future would be to use hardware virtualization
with KVM. This would make another big speedup possible. Possibly near-native
speeds could be achieved. The drawbacks of this, however, would be large. First,
no dynamic translation of target code between architectures would be possible
as the TCG is doing this work. This would limit the backend to native images.
Secondly, the user-mode would not be supported, and instructions could not be
counted. Normal hardware breakpoints would have to suffice.

One more open problem is the handling of parallelism. QEMU can use multiple
virtual CPUs, so this could possibly be integrated into FAIL* as well. This will
probably worsen the problems with determinism, though, so this aspect would
need to be closely watched.
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