Query Compilation of Dataflow Programs for Heterogeneous Platforms

Felix Beier & Kai-Uwe Sattler
DBIS@TU Ilmenau
www.tu-ilmenau.de/dbis
Outline

1. Requirements of Engineering Applications
2. Dataflow Programming in PipeFlow
3. Query Compilation
4. Outlook
Motivation

• Data-intensive engineering applications
 – Improved sensing technology
 – Complex models
 – „Smart“ devices

• Relying on database technology?
 – Not really, but Matlab & friends
Nanopositioning Machine

- Find defects in electronic components
- 3D surface measurement (x,y position, z measure)
- Resolution: nm (100s MB - 10s TBs per scan)
- Static data CAD circuit models (if available)
Nanopositioning Machine
Online Source Localization

- Identification of neurophysiologically active areas
- N EEG/MEG sensors, data rate: 600-5000 Hz
- Static brain model with K - M vertices, brain atlas
- Complex analysis pipeline: signal filtering, decomposition, matrix inversion, time-based folding
- Indexing for brain model & decomposition dictionary
Particle Simulation

- Blood simulation for medical filters
- N particles of different kinds (blood, water, ...)
- Static scene with dynamic particles
- KNN-queries with index-rebuild in each step
DB Technology Inside?

• Database technology = providing abstractions
 – Data manipulation (query language etc.)
 – Hardware (storage, storage hierarchies, …)
 – Scalability (indexing, parallel processing, MapReduce)

• Simplifies development
 – Code reuse
 – Providing correctness and performance guarantees

But, are these still the right abstractions?
Lessons Learned

• Very large, spatiotemporal data sets
• Large gaps between computer science and engineering contexts
 – Domain-specific languages
 – Tooling ecosystem
• Reinventing the wheel
 – Data management algorithms
 – Specializations for parallel hardware
 – Optimizations
Requirements

• Extensibility by user-defined operations
 – Optimization, parallelization, recovery, …

• Complex data types
 – Spatio-temporal data, time series, matrices, …

• Low latency, online processing
 – Data stream processing, CEP

• Dealing with uncertainty in measurements and models
Dataflow Programming in PipeFlow

Big Dynamic Engineering Data
Dataflow Programming

• Model flow of data between transformation steps
• Inject data management & processing primitives
 – Partitioning & merging steps
 – Parallelization
 – Mapping to (specialized) hardware
 – Distributed workload management at cluster-scale
 – Flow optimizations
 – Fault tolerance
• Keeping framework usable for engineers
 – No new languages / paradigms
 – Reusable programs
 – Integration of domain-specific data types & libraries
Programming Model

Store & Process

Continuous Query Processing

Query Compilation of Dataflow Programs for Heterogeneous Platforms

Publish-Subscribe Pattern

Source Operator Sink

typed pipes

Workshop on System Software Support for Big Data

Query Compilation of Dataflow Programs for Heterogeneous Platforms

25.09.2014 Felix Beier 14 / 29

Technische Universität Ilmenau
PipeFlow

Dataflow specification → PipeFlow Compiler

graph checking and rewriting

C++ code generation

embedded in application

standalone process

distributed processes in clusters

PipeFlow

Query Compilation of Dataflow Programs for Heterogeneous Platforms
25.09.2014 Felix Beier 15 / 29
Operator Model

- Encapsulated functionality
 - Computation (possibly stateful)
 - Implementation in domain-specific languages
 - Specialization for hardware platforms (CPU/GPU)
 - Wrapper for library functions

- Meta-information
 - Typed input, output and parameter channels
 - State handling
 - Operator location
 - Profiling information
PipeFlow: Overview

- Dataflow specification language inspired by Pig
- Specification = sequence of operators connected by typed „pipes“
- Large set of predefined operators (sources, joins, aggregation, windows, CEP, …)

```
$pipe1 := operator1(…) params;
$pipe2 := operator2(…) params;
$out := operator3($pipe1, $pipe2, …) params;
```

- Supported by the PipeFabric engine: C++ library of operator templates & utility functions
Query Compilation
PipeFlow: Operators & Expressions

• Type-specific template instantiation for operators

• Expressions are compiled into native code

```cpp
typedef Tuple<int, double, MatrixXd> MyTuple;
auto op = new Filter<MyTuple>([&](MyTuplePtr tp) {
    return std::get<0>(*tp) > 10;
});
```

```plaintext
$o := \text{filter}(\text{in}) \text{ by } i1 > 10;
```
Dataflow Parallelization

- Providing abstraction for data parallelism
 - Partitioning of input data stream: tuple-wise, batch-wise, column-wise
 - Execution environment: threads for multi-core CPU, threads for GPU, distributed processes for compute cluster
- Result merging
- Supporting user-defined operators!

Semantics

![Diagram showing split, merge, and operators](image-url)
Parallelization in PipeFlow

- Make parallelization explicit but hide the implementation details by a parallelize operator.

```plaintext
define calc_statistics ($in) returns $out {
    $x := myOp($in);
    $out := mySecondOp($x) ...;
}

$res := parallelize($in) on slice(x) 
    do calc_statistics 
    using (mode = "thread", partitions = 10);
```
Slice, Split & Merge

- Physical algebra operators
 - **Slice**: split a single tuple or tuple value into multiple instances, i.e. vertical partitioning, vector/matrix decomposition
 - **Scatter**: route tuples to subqueries based on PartitionID
 - **Gather**: collect partial results from parallel subqueries
 - **Merge**: combine partial results, i.e. merge streams, join tuple components or even values, final aggregation

Workshop on System Software Support for Big Data

Query Compilation of Dataflow Programs for Heterogeneous Platforms

25.09.2014 Felix Beier 22 / 29
GPU Processing

- GPU: vector processor attached to host system
 - SIMD / SIMT operations
 - Input copy -> compute -> output copy
GPU Processing Example

- Vector addition and scalar multiplication
 - \(R = (V_1 + V_2) \times c \)
- Generate parallel GPU Kernel
- Parallelize for multiple GPUs

\[
\begin{align*}
V_1 & \\
V_2 & \\
c & \\
+ & \\
* & \\
R &
\end{align*}
\]
GPU Processing Example

- Fine granular parallelism: SIMD
- Vectorize on element index
- Mapping to thread ID

```cpp
template< typename E >
__global__ void gpuVecAddMul(c,v1,v2,scatter,gather){
    int t = calculateThreadID(); // consider grid
    E e1 = scatter(v1,t); // read v1[t]
    E e2 = scatter(v2,t); // read v2[t]
    E r = c * (e1 + e2);
    gather(r,t); // write to result[t]
};
```
GPU Processing Example

- Coarse granular parallelism: multi-GPU
- Partition input vectors
- Mapping (disjoint) partitions to each GPU
- Collect & merge (partial) results

```c
// Multi-GPU vector addition and multiplication example

template< typename E >
void multiGpuVecAddMul(c,v1,v2,slice,scatter,proc,gather,merge){
    slices = slice(c,v1,v2); // partition input vectors
    scatter(slices,gpus); // host-to-device copy partitions
    results = in_parallel_do(gpuVecAddMul(...)); // launch kernels
    collected = gather(results); // device-to-host copy
    merge(collected); // combine in result vector and publish
};
```
Query Compilation: Rewriting

- Option 1: determine functions based on datatype + operation + X? automatically
- Option 2: user-provided functions

<table>
<thead>
<tr>
<th>datatype</th>
<th>operation</th>
<th>slice</th>
<th>scatter</th>
<th>gather</th>
<th>merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic</td>
<td>filter, projection, ..</td>
<td>stream</td>
<td>hash, key</td>
<td>union</td>
<td>-</td>
</tr>
<tr>
<td>atomic</td>
<td>aggregate</td>
<td>stream</td>
<td>hash, key</td>
<td>union</td>
<td>post-aggregation</td>
</tr>
<tr>
<td>vector, matrix</td>
<td>+, scalar mult.</td>
<td>1-dim decomposition</td>
<td>slice-id</td>
<td>union</td>
<td>compostion</td>
</tr>
<tr>
<td>matrix</td>
<td>advanced</td>
<td>decomposition</td>
<td>slice-id</td>
<td>union</td>
<td>problem-specific</td>
</tr>
</tbody>
</table>
Outlook
What’s next?

• Modules for domain-specific types
 – First-class types, e.g., events, signals, images, matrices, tensors, graphs, …
 – Library integration, e.g., OpenCV, Pregel, …
 – Modeling uncertainty

• Aspect-orientation for injecting data management routines
 – Functional models as monads, arrows
 – Parallelization primitives
 – Automatic & manual partitioning
 – Elastic scaling

• Multi-level optimizations
 – Rule-based graph optimizations
 – Domain-specific optimization rules
 – Machine-specific optimizations for hardware
Discussion
References

(2) http://www.tu-ilmenau.de/cc-npmm/projekte/

(3) http://www.itwissen.info/definition/lexikon/Chip-chip.html

(5) http://people.ee.ethz.ch/~cattin/MIA-ETH/02-IntensityBasedRegistration-media/figs/labelled-brain.png

(7) http://www.nvidia.de/object/tesla_c1060_de.html