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Abstract
For fine-grained synchronization of application and kernel

threads, the Linux kernel provides a multitude of different

locking mechanisms that are being used on various individ-

ually locked data structures. Understanding which locks are

required in which order for a particular member variable of

a kernel data structure has become truly difficult, even for

Linux-kernel experts themselves.

In this paper we introduce LockDoc – an approach that,

based on the analysis of execution traces of an instrumented

Linux kernel, automatically deduces the most likely locking

rule for all members of arbitrary kernel data structures. From

these locking rules, LockDoc generates documentation that

supports kernel developers and helps avoiding concurrency

bugs. Additionally, the (very limited) existing documentation

can be verified, and locking-rule violations – potential bugs

in the kernel code – can be found.

Our results include generated locking rules for previously

predominantly undocumented member variables of 11 dif-

ferent Linux-kernel data structures. Manually inspecting

the scarce source-code documentation for five of these data

structures reveals that only 53 percent of the variables with

a documented locking rule are actually consistently accessed

with the required locks held. This indicates possible docu-

mentation or synchronization bugs in the Linux kernel, of

which one has already been confirmed by kernel experts.
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1 Introduction
The Linux kernel was originally not designed for fine-grained

synchronization of application and kernel threads accessing

the global kernel state concurrently. However, the trend

towards multi- and many-core platforms of the last two

decades forced the kernel developers to first introduce the

Big Kernel Lock [4] and later a whole zoo of mechanisms for

various individually synchronized data structures [4, 19, 24].

The literature provides a holistic overview over the variety

of synchronization primitives, and what contexts they can be

used in. However, day-to-day kernel development requires

concrete and reliable knowledge on which particular lock

– or, sometimes, which set of locks in which locking order

– must be acquired to access specific kernel data-structure

elements.

This knowledge is currently hard to obtain: The Linux

kernel does not provide a centralized documentation for

such locking rules. In fact, this information is scattered across

source-code comments in the kernel tree and only available

for a subset of data-structure members at all. In the best case,

locking rules can be found in the include/ sub-tree in the

header file defining the data structure in question. Other

promising locations include the subsystem implementation

that uses the particular data structure the most: e.g., locking

information on struct inode can be found in the first

source-code lines or in comments at the beginning of C

functions in central files in fs/.
If an inexperienced developer is lucky enough to discover

a locking rule for a particular data-structure member, they

often soon realize that locking is documented – if at all –

only informally and with inconsistent wording. In many in-

stances, the source-code comments do not even spell out the

name of the locking variable to be used. Instead they assume

it to be implicitly evident – possibly because at the time of

their writing there only existed one lock to come into con-

sideration. Documented locking rules may also simply have

been forgotten as the code evolved, and are consequently

outdated – or simply had been wrong from day one.

The Linux source-code comments also indicate that – in all

likelihood due to the aforementioned sorry state of locking-

rule documentation – even seasoned kernel developers some-

times are not sure which locks were to be acquired for data-

structure accesses. Consequently, some parts of the code

take a “better safe than sorry” locking strategy instead of

rectifying the situation; other parts may even completely

lack essential lock acquisitions, opening chances for all sorts

of synchronization issues (e.g. data races, dead- or livelocks).

In summary, locking rules are a) only partially and not

well documented, b) the documentation is sometimes wrong
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and inconsistent with the actual code, which c) can lead to

and may very well already have led to locking-related bugs.

In this paper, we propose an approach to overcome these

problems: Running in a virtual machine (VM), we trace data-

structure accesses and lock acquisitions in an instrumented

Linux kernel. From the reconstructed control flow we ana-

lyze observed lock combinations for read and write accesses

to every data-structure member. We use the results of this

analysis in three different ways: 1) We investigate whether

the currently documented locking rules reflect what the code

actually does – i.e. we look for documentation bugs, – 2) we

fill in the documentation gaps by generating locking rules

that do not exist yet (from the most likely of a set of locking-

rule hypotheses), and 3) we look for memory accesses that do

not adhere to the complete set of locking rules, which may

be – and in part, according to kernel experts when presented

with our data, are – bugs in the code.
To summarize, the contributions of this paper are:

• An approach to record accesses to data-structure
members and lock acquisitions of an instrumented

Linux kernel running in a virtualized environment

(Sec. 5 and 6),

• a method to infer locking-rule hypotheses for each
member based on such a recorded trace (Sec. 4, 5 and 6),

• and in-depth analyses based on the trace data and

locking rules, including an examination (Sec. 7.3)

and extension (Sec. 7.4) of the rules documented
in the Linux kernel’s source code, and an automated lo-
calization of locking-rule violations (Sec. 7.5) that
potentially represent locking-related kernel bugs.

Sec. 2 gives an overview why locking is a complex issue

especially in the Linux kernel. Sec. 3 discusses related work,

and Sec. 8 concludes the paper.

2 Background
This section illustrates the relevance of locking in the Linux

kernel by a quantitative analysis and discusses the complex-

ity involved for kernel developers, potential bugs related to

locking, and the state of the documentation.

2.1 Lock Usage
Locks are an essential mechanism used for the implementa-

tion of operating systems. While early UNIX systems only

had to deal with interrupt synchronization on single-CPU

machines, a modern Linux supports multi- and many-core

hardware and has various different kinds of control flows

executing in the kernel context concurrently. When Linux

started to support multi-core hardware, synchronization was

still simple: a single “Big Kernel Lock” [4]. That, however,

turned out to be a bottleneck and over timemore fine-grained

locks of different kinds have been introduced.

Fig. 1 depicts the development of lock usage for various

lock types. The X-axis denotes the major releases of the
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Figure 1. Increase of lock usage and lines of code (LoC) from
Linux 3.0 to 4.18.

Linux kernel from version 3.0 up to 4.18 – a period of 7

years. The left Y-axis shows the number of calls to lock-

related initialization functions in the source code for the

most common lock types.

The number of used mutexes, for instance, has increased

by about 81% in the given period. Despite the slight decrease

during the last releases, Spinlock usage has increased by

about 45% with an absolute number in the order of thou-

sands and a linearly rising trend. The source code base itself

increased by 73%, as is shown on the right Y-axis on Fig. 1.

2.2 Locking Complexity
The Linux kernel offers a variety of synchronization meth-

ods. Depending on the current and the potential opponent’s

execution context, which can both be a task, a bottom half, or

an IRQ handler, the developer has to choose among various

locking-related primitives, e.g. spin_lock[_(bh|irq)],
read_seqbegin, write_seqlock[_(bh|irq)], mutex_

lock, down, local_(bh|irq)_disable, and preempt_

disable combined with the respective data structures [19].

Besides the contexts there are often other, even more subtle

criteria to be considered to identify the most efficient primi-

tive under the specific circumstances. For example, sequence

locks (read_seqbegin, write_seqlock*) are more effi-

cient than spinlocks if data races are unlikely. If it is known

that the concurrent control flow must run on the same CPU

as the current control flow, lightweight mechanisms such

as preempt_disable, local_bh_disable , and local_

irq_disable can be used. Depending on the expected dura-
tion for which the lock is going to be held, either blocking or

non-blocking functions are more appropriate. Finally, there

are subtle differences in the semantics of the locking mecha-

nisms. For example, a down operation on a semaphore is not

equivalent to a mutex_lock. Making matters even worse,



many of the primitives are available in reader/writer vari-

ants or special killable/interruptible flavors. There is also the

alternative of choosing a lock-free data structure or a simple

synchronization based on atomic operations.

Beyond the problem of synchronizing accesses to parts of

one data structure, several of them can be deeply nested or

linked by pointers in an arbitrary manner. Therefore, often

a hierarchy of locks must be taken in the correct order to

make sure that no race conditions or deadlocks are possible.

2.3 Potential for Locking-Related Bugs
Even experienced programmers can easily produce various

kinds of bugs and performance issues by wrong lock usage.

In the following we will describe a few simple examples.

Following a “better safe than sorry” strategy, it would

make sense to acquire all locks that seem to be related to the

data structure of interest. This might unintentionally limit

parallelism and thus lead to performance degradation. On the

other hand, if locking is too permissive, race conditions may

occur leading to silent data corruption or system crashes.

When multiple locks are needed, the locking order be-

comes important. Here, a wrong order could result in a live-

or deadlock depending on the lock type. That in turn can

freeze the whole kernel.

Finally, it is not unlikely that programmers simply forget

to release a lock that has been acquired. For example, in a

function that returns early if some error situation is detected,

the releasing operation might never be reached. The Linux

source code contains about 10% more unlock calls than lock

calls because of functions returning early.

2.4 Lock Documentation
In order to cope with the complexity of locking and con-

sidering the severity of locking-related bugs, detailed doc-

umentation of necessary locks to be acquired before using

any kernel data structure would be needed to support kernel

developers. However, we will show in the following that

the current state of lock-related documentation in Linux is

clearly insufficient.

The first location where a new developer would probably

look for locking rules would be the header file in which the

data structure is defined. In the case of struct inode, e.g.,
there is only a single comment of questionable usefulness in

include/linux/fs.h:

s p i n l o c k _ t i _ l o c k ; / ∗ i _ b l o c k s , i _ by t e s , maybe i _ s i z e ∗ /

Another promising starting point is one of the central C
files of a subsystem, e.g., fs/inode.c. The beginning of

that file is shown in Fig. 2. To the best of our knowledge,

these are the only two source code locations in the Linux

kernel that tell something about locking rules for members

of struct inode. The remaining information, if present,

is distributed across C files under fs/, and the header files

located in include/.

1 / ∗

2 ∗ Inode l o c k i n g r u l e s :

3 ∗

4 ∗ inode −> i _ l o c k p r o t e c t s :

5 ∗ inode −> i _ s t a t e , inode −>i_hash , _ _ i g e t ( )

6 ∗ Inode LRU l i s t l o c k s p r o t e c t :

7 ∗ inode −> i_ sb −> s_ i node_ l r u , inode −> i _ l r u

8 ∗ [ . . . ]

9 ∗ i node_ha sh_ l o ck p r o t e c t s :

10 ∗ i n ode_ha sh t ab l e , inode −> i_ha sh

11 ∗ [ . . . ]

12 ∗ /

Figure 2. An extract of the locking rule documentation in

fs/inode.c

Besides source code comments, the kernel comes with a

variety of documentation in the Documentation/ directory.
One part is dedicated to filesystem-related locking

1
. This

part, however, provides locking rules per use-case such as

dropping an inode, mounting a filesystem, or comparing a

dentry. It does not cover how to lock when using individual

members in other situations.

In addition to the aforementioned diversity in location,

it gets even worse for the wording of locking rules. Scan-

ning the source files of the file-system subsystem in fs/*.c
reveals a mixture of vocabulary being used in function com-

ments. Different expressions are used to tell the developer

which lock has to be acquired, e.g., “holds, “is held”, or “to

be grabbed”. This complicates the automatic extraction of

locking rules. The same applies for the name of a lock. In-

stead of using the variable name, e.g., i_lock, various names

and descriptions are used. An example where the documen-

tation and the code are telling different stories can be found

in fs/inode.c: The find_inode() function, which traverses the

inode list using member i_hash, should be called with “in-

ode lock held”. However, the inode_hash_lock is used when

calling find_inode() from iget5_locked(). The documentation

shown in Fig. 2, lines 4, 5, 9 and 10, advises the developer

to use both locks. As a consequence, it is not clear to a new

kernel developer which lock should be used by just reading

the documentation. Finally, even the kernel developers are

not sure which lock should be acquired. Fig. 3 shows a func-

tion comment which demonstrates that kernel developers

do not always know the proper locking method. Moreover,

the source code itself contains proofs for that: “We don’t
actually know what locking is used at the lower level; but if
it’s a filesystem that supports quotas, it will be using i_lock as
in inode_add_bytes().”2 In both cases the developers make

best-effort assumptions.

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/filesystems/Locking
2
A comment found in fsstack_copy_inode_size() in fs/stack.c.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/Locking
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/Locking


1 / ∗

2 ∗ i n o d e _ s e t _ f l a g s − a t om i c a l l y s e t some inode f l a g s

3 ∗

4 ∗ Note : the c a l l e r shou ld be ho l d i ng i_mutex , or

5 ∗ e l s e be su r e t h a t they have e x c l u s i v e a c c e s s to

6 ∗ the inode s t r u c t u r e ( i . e . , wh i l e the inode i s

7 ∗ be ing i n s t a n t i a t e d ) . The rea son f o r the

8 ∗ cmpxchg ( ) loop −−− which wouldn ' t be n e c e s s a r y

9 ∗ i f a l l code pa th s which modify i _ f l a g s a c t u a l l y

10 ∗ f o l l owed t h i s ru l e , i s t h a t t h e r e i s a t l e a s t

11 ∗ one code path which doesn ' t today so we use

12 ∗ cmpxchg ( ) out o f an abundance o f c au t i on .

13 ∗

14 ∗ In the long run , i_mutex i s o v e r k i l l , and we

15 ∗ shou ld p robab ly look a t u s ing the i _ l o c k

16 ∗ s p i n l o c k to p r o t e c t i _ f l a g s , and then make su r e

17 ∗ i t i s so documented in i n c l u d e / l i n u x / f s . h and

18 ∗ t h a t a l l code f o l l ow s the l o c k i n g conven t i on ! !

19 ∗ /

Figure 3. Documentation of function inode_set_flags
in fs/inode.c (reformatted).

The kernel comes with a variety of documentation in

Documentation/. One part is dedicated to filesystem-related

locking
3
. This part however provides locking rules per use-

case such as dropping an inode, mounting a filesystem, or

comparing a dentry. It does not cover how to lock particu-

lar members. Since a new kernel developer needs explicit

locking rules dedicated to specific members,

2.5 Summary
To sum it up, Linux kernel developers and especially devel-

opers who are not the original authors of the component

they are maintaining have a very difficult job. Dealing with

thousands of ubiquitous locks in the kernel source code of

many different kinds is very complex, and the risk of induc-

ing bugs is high. It is likely that a tremendous amount of

effort is wasted by searching the code and internet forums

for help and for debugging locking-related problems. More

and better documentation for the locking requirements of

all kernel data structures is urgently needed.

3 Related Work
The analysis of lock usage in multi-threaded software and

in OS kernels in particular can either be performed ahead

of time by static code analysis, at runtime, or ex-post based

on an execution trace. We will now discuss related work in

each of these areas.

3.1 Ahead-of-Time Analysis
Due to the dynamic nature of locking, static analysis can iden-

tify problems in many cases, but is not complete. Especially

the use of pointers in C creates aliases for variables, which

are hard to analyze [11]. This also affects inter-procedural

3https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/filesystems/Locking

control flow analysis as it might depend on arbitrary state

whose value cannot be determined ahead of time.

Breuer et al. are able detect points of wrong spinlock usage

in Linux kernel source code that might lead to a deadlock

[5]. However, only one kind of locking mechanism is ad-

dressed and only simple coding errors are detected such as

locking the same spinlock twice. Another example is the

SLAM project [3], which follows a more general approach: It

can check API usage rules in a flexible manner. This includes

simple properties of correct locking, such as pair-wise usage

of lock and unlock primitives. However, SLAM can only an-

alyze sequential control flows and is unaware of different

execution contexts such as threads, first-level and second-

level interrupt handlers, etc. Another example is the work of

Engler et al. [9, 10] who use templates to find bug patterns in

Linux and OpenBSD via static code analysis, also including

locking-related patterns. Engler’s approach to assume that

deviant behavior might indicate a bug was an important

inspiration for LockDoc.

3.2 Runtime Analysis
Runtime analysis does not suffer from the pointer alias prob-

lem, but comes with performance loss and the limitation that

only code that is actually executed can be analyzed.

Most modern general-purpose operating systems provide

some means for lock debugging in order to support kernel

developers in finding the root cause of race conditions, dead-

locks, and other lock-related problems. For example, the

Linux kernel contains an in-situ lock analysis mechanism

called lockdep [23]. It aims at detecting deadlocks, livelocks,

and lock inversion at runtime. Therefore, it tracks every lock

access and incrementally creates a model of valid access pat-

terns per lock class. A lock class is a set of locks that follow

the same locking rules such as a lock in the inode struct.

While each inode has its own lock instance, they are rep-

resented by only one lock class. The lockdep mechanism

is in particular useful for detecting cyclic lock acquisitions

and lock access from the wrong execution context. If a viola-

tion to the created model is detected, a warning is printed

to the system’s kernel log. FreeBSD comes with a similar

mechanism called the witness system [22].

Besides these built-in mechanisms there is only little help

for kernel developers to deal with the locking-related com-

plexity (at runtime). Our literature study only revealed Lock-
meter [6] and HaLock [13]. Both papers describe approaches

for gathering statistics on lock usage, which is aimed at iden-

tifying performance bottlenecks. While Lockmeter is based

on a Linux kernel patch, HaLock requires hardware support,

namely a dedicated DIMM module, and thereby reduces the

overhead.

Jeong et al. developed a complementary approach: They

combine static and dynamic analysis in a tool called Razzer
to find race bugs in the Linux kernel[14]. They determine

potential races via static analysis, and use syscall fuzzing to

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/Locking
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/Locking


generate a multi-threaded program that reproduces a race

condition.

Outside the OS kernel there exists far more support for

debugging lock usage. Examples for application-level lock

profilers and locking-bug detectors are Critical Lock Analysis
by Chen and Stenstrom [7], Eraser by Savage et al. [25], and

Agarwal and Stoller’s deadlock-potential checking algorithm

[1]. Similarly, a deadlock-preventing approach is taken by

Jula et al. [15] who provide deadlock immunity for multi-

threaded applications.

3.3 Ex-Post Analysis
Trace-based ex-post analyses of OS kernel behavior has been

performed by many researchers for various purposes. The

approach shares most pros and cons with runtime analysis,

but is more convenient for developers as the recorded execu-

tion traces can be easily archived and analyzed in arbitrary

ways.

There are examples of intrusion detection tools based on

system call traces of applications [17] and scheduler improve-

ments based on context switch traces [2].

A more versatile approach has been presented by Matni et

al. who use LTTng to instrument the Linux kernel in order

to trace various kinds of events [21]. Finite state machine

models are used to describe valid kernel behavior and devia-

tions from that can be detected in the traces automatically.

In one example the authors used their approach to check

the rule that a thread must not block while it is holding a

spinlock.

Other frameworks for obtaining kernel execution traces

are Pin [20], which can instrument arbitrary x86 executables,

and Tralfamadore [18], which executes a system in a VM

environment and produces complete traces of all executed

machine instructions. The latter could have been used as a

basis for LockDoc’s analyses, but we preferred to re-use our

own framework.

3.4 Summary
Until now researchers seem to have focused on finding bugs

in existing code and profiling to avoid bottlenecks. However,

the presented approaches do not support kernel developers

in writing correct code in the first place. Up-to-date docu-

mentation on where to use which lock is the key to achieve

correct multi-threaded kernel code faster. The availability of

locking-related documentation in Linux has been discussed

in Sec. 2.4. In FreeBSD the situation is better, as the docu-

mentation is more complete and well-structured, but it still

has to be maintained manually. To the best of our knowl-

edge, no approach has so far automatically derived locking

rules and revealed potential bugs. This paper fills that gap

by linking the documentation with the reality of locking in

the respective OS kernel using a trace-based approach.

Of all aforementioned approaches the work by Engler

et al. [10] has probably the most resemblance to LockDoc.

1 l o ck (& s e c _ l o c k ) ; / / t r a n s a c t i o n a − s t a r t

2 seconds = seconds + 1 ;

3 i f ( s econds == 60 ) {

4 l o ck (&min_lock ) ; / / t r a n s a c t i o n b − s t a r t

5 seconds = 0 ;

6 minutes = minutes + 1 ;

7 un lock (&min_lock ) ; / / t r a n s a c t i o n b − end

8 }

9 un lock (& s e c _ l o c k ) ; / / t r a n s a c t i o n a − end

Figure 4. Implementation of a clock counter.

The main difference of Engler’s contribution is that it is

based on a static code analysis instead of trace analysis,

which has advantages and disadvantages, and the lack of

a comprehensive case study on the locking rules in Linux,

which we provide here. Both approaches are complementary,

as they look at the same problem from a different angle.

4 Approach and Challenges
Sec. 2 already stressed the importance of locking in modern

operating systems as well as the consequences of faulty lock-

ing. Being able to automatically derive locking rules from

execution traces could help to write correct code, check doc-

umentation, and even find bugs in existing kernel code. In

this section, we now discuss the key assumptions behind

the approach as well as challenges. For this purpose we first

introduce a simple and contrived example.

4.1 Setting: A Shared ‘Time’ Data Structure
Fig. 4 shows code for incrementing the time, which is repre-

sented by the two shared variables seconds and minutes.
In order to guarantee mutual exclusion, seconds is pro-

tected by the lock sec_lock. When seconds reaches 60,

the lock min_lock is acquired as well and minutes is incre-

mented. In a hypothetical execution trace the code fragment

appears 1000 times. Besides this, the trace also contains one

execution of a similar function with an important deviation:

The developer forgot to acquire min_lock when seconds
reaches 60 – a bug that could cause a race condition.

The relation of 1000 correct lock usages to one incorrect us-

age reflects a fundamental assumption of LockDoc: Locking-

related bugs are rare in the systems we are targeting. If they

were not, the respective system would suffer from frequent

misbehavior, which is usually not the case. Most of the time

the system uses the correct lock – or set of locks in the right

order.

To automatically derive locking rules for the given exam-

ple two steps are necessary: (1) Analyze which locks are

being held for each interesting variable in the trace at the

moment of an access and (2) derive locking hypotheses and

select a winning hypothesis – the one which is most likely

the locking rule for the variable.



Table 1. Accesses to seconds and minutes grouped by

access type for one execution. Each entry lists the number of

actually observed accesses (Observed), aggregated accesses

(Folded), and cases where writes won over reads (WoR =
Write over Read).

Variable Access Type

Observed Folded WoR

a b a b a b

seconds
r 2 0 1 0 0 0

w 1 1 1 1 1 1

minutes
r 0 1 0 1 0 0

w 0 1 0 1 0 1

4.2 Analysis of Locks per Variable
In order to explain the analysis of lock usage for the variables

seconds and minutes (step 1), we first introduce how we

use the term transaction (txn) in this context. A transaction

is a – potentially interrupted – sequence of memory accesses

in the execution trace with a fixed set of held locks. For now,

an execution trace consists of variable accesses and lock op-

erations. A transaction starts upon lock acquisition and ends

when the same lock gets released (see comments in Fig. 4).

Each access belongs to only one transaction. Thus, if another

lock is acquired within a transaction, the following accesses

are assigned to the new transaction. When the nested trans-

action ends by an operation that releases the second lock,

the following accesses are assigned to the first transaction,

because the set of held locks is the same again.

Now each variable access can be assigned unambiguously

to a transaction and the corresponding set of held locks.

The resulting 4-tuples, which consist of the number of the

element in the trace, the name of the accessed variable, the

access type (read or write), and the set of locks being held,

form the set of observations that are used as positive or

negative examples for the locking rule hypotheses.

Tab. 1 provides statistics on one execution of the transac-

tions a and b from Fig. 4. The variable seconds, for example,

is read two times in transaction a (column Observed/a). The
distinction between reads and writes is necessary because

different locking rules might apply. For locking rule deriva-

tion it is not relevant how often a variable is accessed within

a transaction. Therefore, we create a binary matrix (see col-

umn Folded), which denotes whether there was at least one

access of the respective variable in the transaction. Another

important information for locking rule derivation is whether

a transaction contains both a read and a write operation

on the same variable. In this case it is unclear whether the

locks were held because of the read or the write. As locking

rules for write operations are typically more restrictive (more

locks), we assume that combined read/write transactions are

treated as write transactions – the reads are ignored in this

case. The result is shown in the last column (WoR = Write
over Read).

Table 2. Possible locking rules for writing variable minutes
with their absolute and relative support (sa and sr ).

ID Locking Hypothesis sa sr
#0 no lock needed 17 100%

#1 sec_lock 17 100%

#2 sec_lock → min_lock 16 94.12%

#3 min_lock 16 94.12%

#4 min_lock→ sec_lock 0 0%

4.3 Deriving Locking-Rule Hypotheses
Locking rule derivation for a variable (step 2) starts by enu-

merating all locking rule hypotheses. For example, Tab. 2

shows locking hypotheses for write operations on minutes
(second column). The construction algorithm first finds all

transactions in which minutes is written (based on column

WoR in Tab. 1) and inserts the associated locks into a set of

related lock objects. Then all subsets of these locks are enu-

merated in every possible order. The third column shows the

absolute number of observed rule-complying accesses/trans-

actions that are found in the trace – the absolute support sa .
It is important to note that even though transaction b has the
associated locks sec_lock and min_lock, we also consider
it possible that only min_lock, only sec_lock, or no lock
have been actually needed for safely writing to minutes.4 In
the example, transaction b was executed 16 times (1000/60),

which contributes to #0, #1, #2, and #3. Hypotheses #0 and

#1 are also supported by the one faulty transaction that only

acquired sec_lock before changing minutes. Column four

shows the relative support sr . This is the quotient of sa and

the number of transactions in which the variable was ac-

cessed – 17 in the example. Both metrics – sa and sr – can be

used to quantify the confidence we can put in the hypothesis,

as they grow with the number of observations “backing” it.

As a naïve approach for identifying the true locking rule,

one could choose the hypothesis with the highest (absolute

or relative) support if the relative support exceeds an em-

pirically determined accept threshold tac , e.g. 90%. However,
this leads to two problems: First, the “no lock needed” rule

(#0) would always win, as no transaction is regarded as a

counterexample. Second, even if a special treatment of the

“no lock” hypothesis would fix the first issue, hypothesis #1

would dominate #2. This contradicts with the fact that in the

example #2 is the correct locking rule for writes to minutes.
The reason for the wrong rule being preferred is that the

true locking rule is not a counterexample for the wrong alter-

native rule. Hence, the approach would be unable to detect

such bugs.

To overcome this problem, we propose a different selec-

tion strategy: We assume that all hypotheses above the (high)

4
If there were many other observations with only one of these locks

held while accessing minutes, transaction b shall not be regarded as a

counterexample.



accept threshold (sr ≥ tac) are related. For example, all obser-

vations that contributed to #2 also contributed to #1 and #3.

In the described fault scenario the wrong rule would have a

higher support value. Therefore, we choose the rule with the

lowest support from this group (tac ≤ sr ≤ 1). If – as for #2

and #3 – the support values are equal, the hypothesis with

more locks is selected. As the “no lock” rule is always above

the threshold, a result will always be found.

In summary: The LockDoc approach is to assume that

locking in the target operating systems, such as Linux or

similar, is done correctly most of the time. Thus, we can au-

tomatically derive the locking rules from an execution trace.

Rare deviations from the normal behavior can be detected

and might be a symptom of bugs.

5 Design: LockDoc for Linux
As an aid in improving locking in complex software systems –

discussed on the example of the Linux kernel in Sec. 1 and 2 –

LockDoc’s goal is to improve locking-related documentation,

and to uncover potential bugs. The basic idea has already

been explained in Sec. 4.

This section discusses concrete prerequisites and assump-

tions of our approach when using it for Linux, dissects sep-

arate analysis phases, and describes how we harness the

results to check preexisting (incomplete, and potentially

wrong) locking rules, to fill in the documentation gaps with

locking rules for currently undocumented data-structure

members, and to look for potential locking bugs in the code.

5.1 LockDoc Workflow Overview
The LockDoc approach comprises three phases, as depicted

in Fig. 5:

❶ Themonitoring/tracing phase runs the target system in

a VM environment, and monitors and records several

types of events for a defined set of data structures: Dy-

namic memory allocations/deallocations, read/write

accesses to memory occupied by such allocations, and

lock acquisitions/releases. The output is a complete

trace of these events during a run of a specific work-

load. During the following post processing, the trace
is loaded into a relational database.

❷ The locking-rule derivation phase takes this trace as
an input: It analyzes each recorded memory access,

determines which data structure and member it ad-

dressed, and which locks were held during that access.

From this information, the locking-rule derivator gen-
erates a set of locking-rule hypotheses, i.e. proposals

for locking rules for each data-structure member. From

these hypotheses, the tool picks the most likely one

(see Sec. 4.3) for each member and writes it to a set

of generated locking rules. However, LockDoc is cur-
rently limited to locking-rule derivation for individual

members, which is also the scope the Linux locking

documentation is limited to. It does not consider re-

lations between members, e.g. for a consistent view

both members a and b have to be accessed with lock c .
❸ The analysis phase takes the outputs of phases ❶ and

❷ and processes them further to aid the developer

in dealing with the particular locking-related prob-

lems discussed in Sec. 1 and 2: The locking-rule checker
takes the officially documented locking rules (e.g. from

the Linux-kernel source code) and checks each rule

whether it matches all – or at least the majority of – the

observed events in the trace. The documentation gen-
erator takes the generated locking rules and generates

human-readable output that could replace or extend

the official documentation. The rule-violation checker
helps identifying member accesses that do not adhere

to the complete set of locking rules, and tracking them

to the source-code line that caused them.

The following sections provide details on the design of the

tools involved in each phase.

5.2 Target-System Monitoring/Tracing
Monitoring and tracing of dynamic-memory allocations/

deallocations and acquisitions/releases of locks for a spe-

cific data type is easily accomplishable by instrumenting the

target system’s source code with logging functionality. How-

ever, logging arbitrary memory accesses to instances of the

observed data structures is harder – especially for systems

implemented in C and assembly.

Consequently, LockDoc uses a hybrid approach. The tar-

get system is instrumented to log heap allocations and lock

operations. It then runs in a VM environment that is capable

of recording memory accesses. In essence, this VM envi-

ronment passes through events emitted by the source-code

instrumentation to a trace file, and additionally logs accesses

to memory that belongs to dynamic allocations of observed

data structures during their lifetime.

5.3 Trace Post-Processing
For locking-rule derivation and the later analysis steps, the

raw event trace is in phase ❶ transformed into a relational

database with relations suitable for analysis queries. The

database schema is presented (slightly simplified) in Fig. 6:

Memory accesses go to one of many allocations, which in

turn are instances of the observed data_types. Each data type

– in the form of the type_layout – comprises a set of members

with a size in bytes at a specific struct offset. In case one or

more locks were held during amemory access, it is assigned a

transaction (table txns) that refers to all held locks in locking

order. Each lock, in turn, may be embedded in an allocation.
Additionally, each memory access has an associated function-

call stack_trace to determine the concrete context of an access

with insufficient locking later on (e.g., when hunting for bugs

in Sec. 7.5).
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Figure 5. LockDoc overview: Based on a memory-access and lock acquisition trace from the Linux kernel (phase ❶), we

infer the most probable locking rules for a specific set of data structures (❷). Using this information, we look for locking-rule

documentation bugs, locking bugs in the code, and generate exhaustive locking documentation (❸).

Figure 6. LockDoc database schema storing the recorded

trace in a structured form, revolving around the central mem-

ory accesses table.

In the post-processing step, we also deal with three prop-

erties of real-world system software that go beyond the doc-

trinal locking theory outlined in the previous sections:

1. Althoughmany system-programming languages – such

as C – do not provide explicit language support for

class inheritance, this OOP mechanism can be emu-

lated. For example, the Linux kernel implements filesys-

tem-specific subclassing of struct inode by means

of struct nesting, function pointers, and the i_private
member variable intended for filesystem-specific “pri-

vate” use. It turns out that inode member accesses

are also synchronized differently throughout Linux’s

filesystems; for example, the proc filesystem does not

lock-protect some members because it only imple-

ments a subset of all filesystem operations. Conse-

quently, we handle data-structure subclassing in Lock-

Doc by recording each object’s subclass in the monitor-

ing/tracing phase (table subclasses in Fig. 6), allowing

us to derive struct inode locking rules separately

for, e.g., the proc and the ext4 filesystem.

2. Object initialization and teardown is usually donewith-

out taking otherwise necessary locks – deliberately

violating locking rules – because such objects are not

visible to concurrent control flows. Including member-

variable accesses from these phases in the objects’

lifetime would possibly lead to wrong conclusions:

Locking-rule derivation might wrongly conclude that

these members can be accessed without locks, or the

rule-violation finder would mark these accesses as

potential bugs. Consequently, we maintain a list of

(de)initialization functions and filter out member ac-

cesses emitted in their contexts.

3. Additionally, we filter out memory accesses to mem-

bers we define to be out of scope for our experiments

(e.g., nested structures that are related to parts of the

system we do not observe), or we know to need no

locking at all: members defined with the atomic_t
data type

5
, or lock variables themselves. We also filter

accesses to other (usually integer) members done via

e.g. atomic_read(), as they are meant to explicitly

bypass the “official” locking mechanisms for perfor-

mance reasons.

5.4 Locking-Rule Derivation
Informally, a locking rule specifies a set of locks and a lock

ordering required for a read or write access to a particu-

lar data-structure member. As discussed in Sec. 2.3, holding

only a strict subset of the specified locks during an access

creates potential for a data race, while taking locks in the

wrong order can create a dead- or livelock. However, holding

5atomic_t members might theoretically also need locks if they are part of

a larger critical section.



additional and potentially completely unrelated locks not

specified in a locking rule is not harmful, and can be consid-

ered a common case when, e.g., conducting data-structure

accesses in a nested context. If, for example, a locking rule

specifies that locks a and b must be taken in the order a → b,
a memory access with the locks a → c → b held – and taken

in this order – complies with the locking rule: All locks in

the locking rule are held, and a was taken before b.
The locking-rule derivation builds on the previously men-

tioned assumption that the observed system accesses data

structures with the correct locks held at leastmost of the time.

This means that for the searched locking rule, i. e. the correct

set of locks in the right order for a specific data-structure

member, there must be a high number of memory-access

observations that comply with it.

Consequently, the locking-rule derivator (Fig. 5) exhaus-
tively enumerates locking-rule hypotheses for each data-

structure member, and determines the metric for each hy-

pothesis’s sa and sr .
As complex software systems such as the Linux kernel

use a large number of fine-grained locks, it is obviously not

possible to naïvely iterate over all possible lock combinations

and determine their support in the memory-access observa-

tion trace. Instead, the locking-rule derivator iterates over all

observed lock combinations (or, transactions), and generates

hypotheses by enumerating all subsets of each combination.

This ensures that all possible hypotheses with sa ≥ 1 are

enumerated and quantified in a reasonable time frame.

5.5 Analysis Phase
The three analysis tools in phase ❸ build on results of the

previous phases – the structured trace information in the

database, and the generated locking rules – and puts them

to practical use for the kernel developers.

For the Locking-Rule Checker, the officially documented

locking rules –which are put to trial in this step – first need to

be manually converted into LockDoc’s internal locking-rule

notation. The tool then determines the absolute and relative

support sa and sr for each rule, and categorizes each rule as

either correct (sr = 1), ambivalent (0 < sr < 1), or incorrect
(sr = 0). Ambivalent or incorrect rules are inconsistently or

never followed in the code, and should be either reexamined

by kernel developers or replaced by our generated rules.

The Documentation Generator takes the generated locking
rules with sufficient sr from the previous phase and gener-

ates human-readable documentation that can, e.g., replace

currently documented but ambivalent/incorrect rules, or add

new documentation for data-structure members that were

not documented before.

The Rule-Violation Finder, in contrast to the Locking-Rule

Checker, assumes the generated locking rules to be correct,

and scans the event trace for member accesses that violate

their associated rule. With the help of additionally recorded

data and debug information, the developer is presented nec-

essary information to track down this possible locking bug:

the data-structure and member name, the locks that should
have been held (i.e., the locking rule), the locks that actu-
ally were held, and the context the access originated from –

source-code file and line, and a stack trace from that moment.

6 Implementation
This section provides implementation details on target-system

monitoring, database import and filtering, the locking-rule

derivator, and the analysis tools harnessing the resulting

locking-rule set.

Target-SystemMonitoring For target-systemmonitoring,

we use the Fail* fault-injection framework [26] (v. 1.0.1) as a

means to automatically run the target system in a virtualized,

single-core environment (in our case the Bochs x86 emulator

[16] in version 2.4.6), and to monitor and control it from

a Fail* experiment description. This monitoring/controlling

experiment is implemented in 646 lines
6
of C++.

As described in Sec. 5.2, memory allocation/deallocation

and lock-operation events in the target system are instru-

mented; these events are communicated through a virtual

I/O port to the experiment implementation, where they are

logged in the trace accompanied by a time stamp. Addition-

ally, each allocation event for a data-structure we want to

monitor enables aMemoryAccessListener via Fail*’s API that
ensures that future accesses to the data structure are logged

as well. Vice versa, the corresponding deallocation disables

this listener again.

Regarding the target system itself, few changes are nec-

essary to monitor new Linux data types after the initial,

manual effort of instrumenting the APIs for the different

lock types: Just two function calls have to be added per data

type, as Linux uses its own standard interfaces for allocation/

deallocation of central data types. The chance of missing lock

operations or allocations due to code ignoring these inter-

faces is rather low, as their usage is strongly enforced for

code contributions – especially to central subsystems like

the VFS layer.

To ensure no optimization takes place, i.e. eliding spin-

locks
7
, we built the Linux kernel with SMP support

8
. More-

over, the module support is disabled to get one statically

linked binary.

Trace Post-Processing Trace post-processing, filtering and

database import – as described in Sec. 5.3 – is implemented

in 1490 lines of C++, and a small shell script that coordi-

nates and automates the whole post-processing step. The

script runs the C++ tool with parameters from a separate

configuration file, including “black lists” of data-structure

6
Effective lines of code (excl. empty lines/comments), counted with cloc [8].

7https://www.kernel.org/doc/htmldocs/kernel-locking/uniprocessor.html
8
The configuration option CONFIG_PREEMPT is not set.

https://www.kernel.org/doc/htmldocs/kernel-locking/uniprocessor.html


members and functions to be filtered out, and subsequently

imports several generated CSV tables into a MariaDB data-

base. The function black list comprises 99 entries for 9 dif-

ferent data types plus 58 globally ignored functions, e.g.

atomic_inc(), whereas the data-structure member black

list holds 30 entries.

Locking-Rule Derivator The locking-rule derivator is im-

plemented in 612 lines of C++. It provides several command-

line switches configuring the accept threshold tac , an addi-

tional cut-off threshold tco limiting the output to locking-rule

hypotheses with a minimum relative support, and several

human- and machine-readable report modes.

Analysis-Phase Tools The locking-rule checker is imple-

mented as a 150-line Python script that compares the manu-

ally extracted locking rules from the documentation, and a

specific summary-mode output of the locking-rule deriva-

tor. The documentation generator is completely built into

the locking-rule derivator and merely implements a differ-

ent output format. The rule-violation finder is implemented

as a parametrizable SQL statement (executed in MariaDB)

and a post-processing script that converts static instruction

addresses into human-readable source-code locations.

7 Evaluation
This section evaluates the LockDoc approach with several

file-system related data structures in the Linux kernel. In the

following we provide details on the evaluation setup, give

an impression on the resource requirements of our tooling,

and discuss results of locking-rule checking, documentation

generation, and rule-violation finding.

7.1 Evaluation Setup
We used vanilla Linux 4.10 as the target system, running a

custom set of benchmarks primarily intended to trigger file-

system specific code paths in the kernel. We instrumented

Linux manually by replacing several locking-related func-

tions (spinlock_t, rw_lock_t, semaphore, rw_semaphore,mutex
and rcu) with macros that additionally call a new logging

function, which communicates context information – source-

code file/line, calling function, lock-variable address, and

name of the lock function – to the Fail*-based experiment

environment. Additionally, we record lock/release events for

synthetic softirq and hardirq locks. We also modified allo-

cation/deallocation functions for 11 file-system related data

structures (listed in the first column of Tab. 6), for example

alloc_inode(), to log each allocation’s start address, size,

and data type. For struct inode, we additionally log the

type of the backing filesystem to realize subclassing.

Note that some Linux-kernel data structures use union
compounds containing differently named members (for ex-

ample i_pipe, i_bdev etc. in the inode data structure) to

save memory. To distinguish these members just by the

Table 3. Code coverage generated by our benchmark mix:

Each line summarizes the coverage across all files that are

located in the respective directory.

Directory Line Coverage Function Coverage

fs 30.95 % (5757/18598) 33.33 % (608/1824)

fs/ext4 31.52 % (4863/15429) 43.67 % (345/790)

fs/jbd2 43.29 % (1106/2555) 43.18 % (76/176)

logged memory address we “unrolled” these unions by em-

bedding their contents in the encompassing struct, essen-

tially giving them different offsets within the data type.

In search of a benchmark that triggers many file-system re-

lated code paths and locking operations, we realized that cur-

rently no systematic coverage-testing benchmark suite exists

for Linux. A (possibly automatically generated) statement-

or path-coverage benchmark suite would be ideal for our

purposes, but is currently subject to future work. Instead we

resorted to a custom mix of benchmarks with the intention

of emitting a wide variety of different system calls: a sub-

set of tests from the Linux Test Project [12] (fs-bench-test2,
creating files, changing owner/permission, and randomly ac-

cessing them; fsstress, randomly carrying out I/O operations

on a directory tree; fs_inod, allocating/deallocating inodes),
and our own test programs using pipes, creating/deleting

symbolic links, and changing permissions.

The code coverage generated by our custom mix of bench-

marks is shown in Tab. 3. We gathered the code coverage

using GCOV with the Linux kernel
9
. Each line shows the

coverage for all source code files that reside directly in the

respective directory.

All evaluation experiments took place on a dual-socket

Intel® Xeon® Gold 6152 machine, while the database server

ran on a dual-socket Intel® Xeon® E5345.

7.2 Tracing and Locking-Rule Derivation
Monitoring and tracing of the target system/benchmark

setup in Fail* took about 34 minutes (3-4 seconds with-

out instrumentation) and produced a trace with about 27.4

million recorded events – 13 million locking operations, 14.4

million memory accesses (13.9 million remain after filtering),

33,606 allocations and 18,660 deallocations. The LockDoc

database lists a total of 41,589 different locks, 821 of them

statically allocated and 40,768 as part of dynamically allo-

cated data structures. Filtering and database import ran for

another 8 minutes, the query generating the locking-rule

derivator input took 77 minutes, and locking-rule derivation

itself finished in 3.02 s. Extraction of all counterexamples

from the database took 172 minutes.



Table 4. Summary of validated locking rules: Each row

shows how many locking rules are documented (#R), and

how many of the corresponding members have not been

observed (#No) and observed (#Ob). The last three columns

denote the portion of correct (sr = 1), ambivalent (0 < sr < 1)

and incorrect (sr = 0) rules (cf. Sec. 5.5).

Data Type #R #No #Ob ! (%) ~ (%) # (%)

inode 14 3 11 18.18 45.45 36.36
journal_head 26 3 23 56.52 17.39 26.09
transaction_t 42 13 29 79.31 13.79 6.90
journal_t 38 8 30 56.67 33.33 10.00
dentry 22 0 22 27.27 63.64 9.09

Table 5. Overview of check rules for struct inode: ES
indicates that the mentioned lock is embedded in the same

data structure instance the member access goes to, while

inode_hash_lock is a global lock.

Member r/w Locking Rule sr OK?

i_bytes w ES(inode.i_lock) 100% !

i_state w ES(inode.i_lock) 100% !

i_hash w inode_hash_lock→

ES(inode.i_lock)

98.1% ~

i_blocks w ES(inode.i_lock) 93.56% ~

i_lru r ES(inode.i_lock) 50.6% ~

i_lru w ES(inode.i_lock) 50.39% ~

i_state r ES(inode.i_lock) 19.78% ~

i_size r ES(inode.i_lock) 0% #

i_hash r inode_hash_lock→

ES(inode.i_lock)

0% #

i_blocks r ES(inode.i_lock) 0% #

i_size w ES(inode.i_lock) 0% #

7.3 Locking Rule Checking
To illustrate the practicality of our approach, we now present

the results from comparing existing locking-rule documen-

tation with the rules learned by LockDoc. For this experi-

ment we chose five relatively well documented kernel data

structures from the VFS layer, namely the inode, dentry,
journal_t aswell as transaction_t and journal_head
structs from the filesystem-independent Journaling Block De-

vice (JBD2) used by the OCFS2 and ext4 filesystems. The doc-

umentation was found in the first lines of fs/inode.c and

fs/dcache.c, in include/linux/journal-head.h, in
include/linux/dcache.h (line 83 ff.), and in include/
linux/jbd2.h (around lines 543 and 795). Especially for

the latter three structs almost all member variables are com-

mented with locking requirements.

9https://www.kernel.org/doc/html/v4.10/dev-tools/gcov.html

Tab. 4 shows a summary of our results. In total the Linux

documentation contains 142 locking rules (column #R), cov-

ering 71 members as we handle read and write accesses sep-

arately. Column #No contains the number of rules for which

LockDoc did not produce any result, because the benchmark

code did not trigger any access to the respective member

variables. For the other cases (column #Ob) LockDoc could

approve the documentation in 18.18%, 79.31%, 56.67%, 27.27%,

and 56.52% of the rules, respectively (column!). An approval

means that 100% of the observations followed the rule. The

next column (~) shows the share of members for which the

documented rule was not always followed. Finally, the col-

umn # shows for how many members the rule was not

obeyed at all. Tab. 5 shows an example of the detailed results

for struct inode.
Kernel developers can learn from these results that either

the documentation needs to be improved – or that the code

does not follow the rules, which might have the aforemen-

tioned negative effects such as performance degradation or

locking-related bugs. As there is no authoritative “ground

truth” besides the cumulative knowledge of all involved de-

velopers, we cannot decide whether the documentation or

the code is wrong without submitting patches and hoping

for a thorough kernel-community review process.

Furthermore, the statistics can be used as an indicator for

documentation quality. A visual inspection quickly shows

that the structures transaction_t and journal_t are

more thoroughly documented than inode and, hence, the

LockDoc results are better. However, we identified three

members of transaction_t that have been transformed

from an int into an atomic_twithout updating the respec-

tive locking documentation.

7.4 Locking Rule Mining
We now present our results regarding yet undocumented

data-structure members. Our generated locking rules can

be used to create new documentation for every data type

listed in Tab. 6, which also summarizes the results: Column

#M shows the number of members and #Bl how many of

them are black-listed/filtered (see Sec. 5.3). #Rules shows

how many locking rules with sufficient support (sr ≥ tac ,
with tac = 0.9) could be generated, and #Nl (= No Lock)

counts the subset of #Rules indicating that accesses to their

corresponding member does not need a lock at all.

Of course, decreasing the acceptance threshold below

tac = 0.9 would allow us to accept even more locking-rule

hypotheses that differ from “no lock”, and in turn generate

more documentation. We adopted this threshold from Engler

et al., who successfully used pcorrect = 0.9 in their statisti-

cal analysis on finding semantic bugs [10]. We discuss the

selection of tac later in this section.

Tab. 6 shows that a certain number of members per data

type is seemingly accessible without locks. The reason is am-

bivalent: a) The member can really be accessed without locks,

https://www.kernel.org/doc/html/v4.10/dev-tools/gcov.html


Table 6. Summary of mined locking rules for 11 data types

and 10 subclasses of struct inode: the number of mem-

bers (#M), the number of black-listed/filtered members (#Bl),

the number of members we actually generated locking rules

for (#Rules). #Nl counts the subset of #Rules indicating that

the corresponding member does not need any lock at all

(similarly divided into rules for read and write accesses).

Data Type #M #Bl #Rules #Nl

r w r w

backing_dev_info 43 2 25 20 11 3

block_device 21 2 14 15 6 6

buffer_head 13 0 10 8 7 5

cdev 6 0 2 6 2 4

dentry 21 1 19 18 13 6

inode:anon_inodefs 65 5 11 2 8 0

inode:bdev 65 5 24 18 14 6

inode:debugfs 65 5 0 1 0 0

inode:devtmpfs 65 5 32 24 26 5

inode:ext4 65 5 45 30 36 4

inode:pipefs 65 5 30 7 29 3

inode:proc 65 5 33 10 31 2

inode:rootfs 65 5 38 19 35 3

inode:sockfs 65 5 19 3 17 0

inode:sysfs 65 5 30 14 26 1

inode:tmpfs 65 5 37 20 29 3

journal_head 15 0 13 12 6 0

journal_t 58 11 34 20 21 1

pipe_inode_info 16 1 13 7 4 0

super_block 56 3 35 8 21 2

transaction_t 27 1 20 16 9 1

or b) the correct hypothesis has low relative support. We

have several conjectures regarding the reasons for locking

rules with particularly low absolute or relative support:

• Low absolute support – with the extreme case of sa = 0

– is relatively clearly caused by the benchmarks’ inabil-

ity to systematically trigger accesses to that particular

data-structure member often enough. We believe this

could be remedied with better benchmarks, especially

ones that aim at improved kernel-code coverage.

• Low relative support, however, could mean several

things: We missed instrumenting a part of the kernel

code (and the true sr is in fact a lot higher), our initial

assumption that the code gets locking right at least

most of the time does not hold (and we found a po-

tential locking-related kernel bug, but cannot decide

automatically what locking behavior would be correct),

or we hit general limitations of our approach. Unfor-

tunately, either requires deeper manual inspection of

the observations and the related source code, and will

involve interviewing domain experts. We intend to

follow this road in future work.

r
w

 70  80  90 100

0

25

50

75

100

0

25

50

75

100

Acceptance Threshold

F
ra

c
ti
o

n
 o

f 
"n

o
 l
o
c
k
" 

h
y
p
o
th

e
s
e
s

Data Type

backing_dev_info

block_device

buffer_head

cdev

dentry

journal_head

journal_t

pipe_inode_info

super_block

transaction_t

Figure 7. Fraction of “no lock” locking-rule hypotheses for

different acceptance thresholds tac , separately plotted for

each observed data type and read vs. write accesses.

One example that may fall into the “potential locking-

related bug” category revolves around inode.i_hash, for
which we generate a locking rule claiming only the global

inode_hash_lock needs to be held to modify it. The kernel

documentation claims i_hash is protected by the embedded

i_lock; the kernel source code, however, seems to take both
locks, for example in __remove_inode_hash(). Looking
closer reveals that this function, which removes an inode

from a doubly linked list, writes to i_hash of three inode
instances: The to-be-removed one it holds the i_lock for,

and its predecessor and successor in the list whose i_lock
is not held. In effect this leads to numerous write accesses to

i_hash without the corresponding i_lock held, allowing

LockDoc to conclude that it is not needed for this operation

– but contradicting both the documentation and parts of the

kernel source code. This confusion can only be cleared up

by a kernel expert.

As described in Sec. 4.3, tac divides the set of hypotheses
in those being relevant and those considered to be noise. The

choice of tac , therefore, impacts the outcome of our approach

in several ways: Due to a higher (or lower) tac , a different
hypothesis might be chosen as winner. That in turn leads

to a different documentation. That again advises a kernel

developer to use different locks. Finally, based on thewinning

hypothesis different locking rule violations are found. To

sum it up, the value of tac is crucial to our approach.

To show the actual impact, we examined the number of

“no lock” hypotheses. As stated above, LockDoc can end up

selecting the “no lock” hypothesis over hypotheses with

locks. Besides the fact that really no locks are needed to a

access a specific member, the “no lock” hypothesis can be

selected if no hypothesis exists with tac ≤ sr . Consequently,
the choice of tac and the number of “no lock” rules directly



1 / ∗

2 ∗ i node l o c k i n g r u l e s :

3 ∗

4 ∗ No l o c k s needed f o r :

5 ∗ i _ d a t a . a_ops , i _ d a t a . n r e x c e p t i o n a l , i _ rdev ,

i _ d a t a . gfp_mask , i _ g en e r a t i o n , i _ s e c u r i t y ,

i _ n l i n k , i _ f l c t x , i _ s i z e , i _ a t ime , i_mtime ,

i _ d a t a . , i _ d a t a . host , i _ s b

6 ∗

7 ∗ EO(wb . l i s t _ l o c k in ba ck i ng_dev_ i n f o ) p r o t e c t s :

8 ∗ d i r t i ed_when , i _ i o _ l i s t

9 ∗

10 ∗ EO( i_rwsem in inode ) p r o t e c t s :

11 ∗ i_op , i _ l i n k , i _ f op , i _ a c l , i _ d e f a u l t _ a c l ,

i _ p r i v a t e

12 ∗

13 ∗ EO( s_umount in supe r _b l o ck ) p r o t e c t s :

14 ∗ i _ d a t a . w r i t e b a ck_ i ndex

15 ∗

16 ∗ ES ( i_rwsem in inode ) p r o t e c t s :

17 ∗ i _ f l a g s , i _u i d , i _ g i d , i _ v e r s i o n , i _ c t ime ,

i _ s i z e _ s e q c o u n t

18 ∗ [ . . . ]

19 ∗ /

Figure 8. An excerpt of the exemplarily generated lock-

ing rule documentation for fs/inode.c: EO (“embedded

other”) indicates a lock embedded in another object, ES

(“embedded same”) a lock embedded in the same object that

holds the protected variable.

affect each other: A higher value of tac intuitively creates

higher confidence in the winning hypothesis, but also in-

creases the number of “no lock” rules – i.e., more hypotheses

with locks are rejected. Fig. 7 depicts the fraction of “no lock”

rules chosen as winner for 0.7 ≤ tac ≤ 1 for ten different

data types (excluding the 11 inode subclasses for clarity).

For many of the data types the fraction levels off at 90% with

a high sr . For some data types, the fraction of “no lock” rules

never reaches 100%. For only 50% of the members of dentry
– for write accesses – the “no lock” rule is the winner having

tac = 1, for example. That implies that the other half has

a winning hypothesis with sr = 1 providing a high confi-

dence. However, tac needs some refinement in the future

once the body of resulting hypotheses is manually reviewed

and verified by kernel experts.

Based on the mined locking rules, we can than generate

locking documentation to replace (or update) the existing

documentation. Fig. 8 gives an example of what such doc-

umentation looks like. When accepted as a patch, it could

update the existing documentation in fs/inode.c that has

already been presented in Fig. 2.

7.5 Locking Rule Violations
For each generated rule from Sec. 7.4 that has a relative sup-

port sr < 1.0, the rule-violation finder can locate memory-

access events that violate this rule. Tab. 7 shows a summary

Table 7. Summary of locking-rule violations: Number of

violating memory-access events (total: 52,452 events at 986
contexts), associated members, and number of distinct con-

texts.

Data Type Events Members Contexts

backing_dev_info 267 4 61

block_device 1 1 1

buffer_head 45325 4 635

cdev 0 0 0

dentry 749 5 58

inode:anon_inodefs 0 0 0

inode:bdev 5 2 5

inode:debugfs 0 0 0

inode:devtmpfs 29 2 10

inode:ext4 355 6 28

inode:pipefs 0 0 0

inode:proc 0 0 0

inode:rootfs 1720 5 42

inode:sockfs 0 0 0

inode:sysfs 57 1 21

inode:tmpfs 59 4 12

journal_head 0 0 0

journal_t 3845 7 99

pipe_inode_info 9 3 5

super_block 31 3 9

transaction_t 0 0 0

Table 8. Locking-rule violation examples: For each viola-

tion, LockDoc provides information in which context the

access happened (stack-trace omitted), and which locks were

– against the underlying locking rule – held at that time.

Analogously to ES meaning “embedded in the same object”,

EO indicates embedding in another object.

Data Type/Member Locks held Location

inode:ext4.i_hash inode_hash_lock→

EO(i_lock)

fs/inode.c:507

journal_t.j_committing_

transaction

EO(i_rwsem)→

ES(j_state_lock)

fs/ext4/inode.c:

4685

dentry.d_subdirs EO(i_rwsem)→rcu fs/libfs.c:104

of violations per data type with the number of rule-violating

memory access events, the data-structure members involved,

and the number of distinct contexts (source locations and

associated stack traces, i.e. one location would be counted

multiple times if it was reached from different functions) the

violations occurred in.

Tab. 8 gives an impression what information the rule-

violation finder can present the developer as a starting point

to look into a possible locking-related kernel bug: For ex-

ample the i_hash access seems to add another case to the

locking-rule mystery discussed in the previous subsection.



Note that not all 52,452 rule-violating memory access

events (Tab. 7) are necessarily symptoms of real synchroniza-
tion bugs. False positives can be caused by several issues:

• Linux-kernel code tends to deliberately violate its own

locking rules for performance reasons. For example,

word-sized variables are sometimes read without locks

when consistency with other data is not relevant. Al-

though we filter accesses to atomic_t variables and

atomic memory accesses using specialized functions

like atomic_read() (see Sec. 5.3), parts of the code

make such accesses by other means.

• Similarly, parts of the kernel omit locking primitives

when it is clear from the context that no concurrent ac-

cesses can happen.We already filter the most prevalent

case – object initialization and teardown (see Sec. 5.3) –

but know from feedback by domain experts that there

exist more, data-structure specific contexts that allow

skipping the locks.

• The noise caused by these issues, combined with a

suboptimally chosen tac (see Sec. 7.4), can lead to Lock-
Doc picking the wrong locking hypothesis; memory

accesses violating such a wrong locking rule are also

probably false positives.

Currently, false positives must be identified manually with

the help of domain experts. Without a reliable “ground truth”

and under a flexible interpretation of what’s “correctly” syn-

chronized, any attempts of estimating the false-positive rate

are futile. Of the violations presented, one bug
10

has already

been confirmed by a kernel developer: the member i_flags
in struct inode is accessed without proper synchroniza-

tion in one code path, as the developer comment in Fig. 3

already suspected.

8 Conclusions
In huge and highly optimized software projects such as the

Linux kernel, where hundreds of developers with different

levels of experience use and extend each other’s code, up-to-

date and complete documentation is essential. In the case of

locking rules we found that learning them from examples in

the running system is a promising approach to check existing

documentation, generate new documentation, and to find

rule violations – potential bugs. The LockDoc approach is by

no means specific to the Linux kernel and could be applied

to other projects with concurrent control flows and huge

numbers of locks – today more the rule than the exception

especially in the operating-systems domain.

As our next step, we intend to extend the still rather sim-

plistic model behind our locking rules: a sequence of locks

– global, embedded within the same object, or member of

“some” other object – to be held before a member access. This

model in particular does not yet capture object interrelations,

10https://lkml.org/lkml/2018/12/7/532
https://lkml.org/lkml/2018/12/14/277

which we believe might further improve result quality and

allow deriving rules such as “acquire lock L in the list head
before accessing a member of a list element”.
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