
Generative Software-based
Memory Error Detection and Correction

for Operating System Data Structures

Christoph Borchert, Horst Schirmeier and Olaf Spinczyk
Department of Computer Science 12

Technische Universität Dortmund, Germany
e-mail: {christoph.borchert, horst.schirmeier, olaf.spinczyk}@tu-dortmund.de

Abstract—Recent studies indicate that the number of system
failures caused by main memory errors is much higher than
expected. In contrast to the commonly used hardware-based
countermeasures, for example using ECC memory, software-
based fault-tolerance measures are much more flexible and can
exploit application knowledge, such as the criticality of specific
data structures. This paper presents a software-based memory
error protection approach, which we used to harden the eCos
operating system in a case study. The main benefits of our
approach are the flexibility to choose from an extensible toolbox
of easily pluggable error detection and correction schemes as
well as its very low runtime overhead, which totals in a range
of 0.09–1.7 %. The implementation is based on aspect-oriented
programming and exploits the object-oriented program structure
of eCos to identify well-suited code locations for the insertion of
generative fault-tolerance measures.

I. INTRODUCTION

Errors in main memory are one of the primary hardware
problems for failures of today’s computer systems [1], [2],
[3], [4]. A recent study [1] reports that about one third of
all machines in Google’s server fleet suffer from at least one
DRAM error per year. This, already severe, problem is expected
to worsen in the future [5], [6], as VLSI technologies move to
higher chip densities and lower operating voltages, dramatically
increasing sensitivity to electromagnetic radiation.

A remedy to this problem is the use of memory-error
protection hardware, nowadays common on almost every
server system. A widespread form of protection is found in
memory chips with error-correcting codes (ECC), such as the
single-bit-error correcting and double-bit-error detecting (SEC-
DED) extended Hamming code [7]. By its very nature, this
code cannot recover from word-wise multi-bit errors, which
nonetheless contribute to at least 17 % of all DRAM errors in
practice [3], [4]. IBM’s high-end Chipkill [8] technique tolerates
such multi-bit errors (typically 4 adjacent bits) by interleaving
a word to independent DRAM chips. However, this comes at
the cost of reduced performance and up to 30 % higher energy
consumption due to forced narrow-I/O configuration [9], so
that Chipkill remains useful solely for very expensive, highly
reliable systems. Low-cost systems, primarily addressed in this
paper, cannot afford such advanced protection.

Hardware-based solutions usually protect the entire memory
space – the overhead of redundancy is paid for every single bit,
even if never used by the software. Often, bit errors in the used
parts of the main memory do not affect the system’s behavior,

for example if not read before the next write access. This highly
depends on the application software (including the operating
system) that, as we show in Section II, can be analyzed to find
a partition into critical and non-critical memory spaces.

For these analyses, we assume a transient single-bit and
burst fault model of the dynamic RAM. The read-only text
segment, holding the program instructions, is stored in a
far more reliable ROM. For instance, Flash memory used
commonly in embedded systems is 3–5 orders of magnitude
less susceptible to radiation than DRAM and SRAM [10].

We propose a purely software-based memory-error protec-
tion that exploits the application’s knowledge of critical memory
accesses, which are extracted from the software’s source code
at compile time and enforced by compiler-generated runtime
checks. The greatest challenge is the placement of the runtime
checks in the control flow of the software, that is, to analyze
which instructions work on which parts of the memory. In
general, this is an undecidable problem. Therefore, we focus
our analysis on object-oriented software, for which this problem
becomes solvable with certain restrictions (see Section III).

In the following sections, we apply our software-based
memory-error protection to the embedded Configurable operat-
ing system (eCos) [11], which is written in object-oriented C++.
Our software-based approach offers great flexibility in error
detection and correction mechanisms, as it is configurable at
compile time whether errors should be detected or additionally
corrected, whether single-bit or multi-bit errors should be
detected/corrected, and whether permanent or transient errors
are considered. These decisions can be taken independently on
each object-oriented data structure.

We make three contributions:

• We analyze the vulnerability of the embedded Config-
urable operating system (eCos) to memory errors on
bit-level granularity (Section II). It is shown that only
a small fraction of RAM is susceptible in a sense that
the operating system crashes or misbehaves. Errors
in large parts of RAM do not affect the operating
system’s stability. We find that most error-susceptible
memory is aligned to the operating system’s internal
data structures, such as Scheduler and Thread objects.
However, this highly depends on the user applications
that run on eCos.

• We precisely describe a generative algorithm for
software-based error detection and correction in object-
oriented data structures (Section III and IV). This
approach offers the flexibility to choose from an
extensible toolbox of error-correcting codes, for ex-
ample Hamming codes. By exploiting aspect-oriented
programming [12], our algorithm can be easily applied
to arbitrary C++ software, as a compiler automatically
inserts the chosen protection mechanisms. This is the
primary contribution of this paper.

• By applying our algorithm to the eCos kernel test
suite, we prove the effectiveness and efficiency of our
approach (Section V). The likelihood that the operating
system fails due to transient single-bit and multi-bit
errors is significantly reduced at a very low total
runtime overhead of 0.09–1.7 %. Our evaluation points
out the trade-offs between several error-correcting
codes, showing that a two’s complement addition
checksum plus replica is very efficient.

II. PROBLEM ANALYSIS

“... the only DRAM bit errors that cause system
crashes are those that occur within the roughly 1.5 %
of memory that is occupied by kernel code pages.” [2]

In general, the operating-system (OS) kernel is the most
important piece of software with regard to dependability, as all
other software components depend on the OS. Surprisingly, in
spite of their impact on total system resiliency and – compared
to the rest of the system – their very small memory footprint,
state-of-the-art OS kernels are not equipped with software-
based protection against memory errors: An efficient software-
based fault-tolerance technique would offer an enormous
potential to reduce system failures. Unfortunately, most earlier
attempts to apply software-based memory protection suffer
from excessive runtime overhead, ranging between 30 % and
260 % [13], [14], [15], [16]. These studies only address user-
level applications; such extreme performance degradations are
considered unacceptable for the OS layer, especially in the case
of general-purpose OS.

The key to efficient software-based memory protection is
to exploit knowledge on the application’s behavior and its OS
usage profile. Focusing on special-purpose embedded systems,
this profile can be assumed to remain largely unchanged over a
system’s lifetime. Our working hypothesis is that only a small
– application-dependent – subset of the OS’s state is actually
“mission critical”, and faults in other parts of memory do not
affect the system’s stability. Accordingly, only the critical
memory space needs protection, calling for a configurable and
highly localized application of error detection (EDM) and error-
recovery mechanisms (ERM).

A. Baseline Assessment: eCos Fault Susceptibility

To assess the validity of this working hypothesis, we
examined the fault resiliency of a set of benchmark and test
programs for eCos by fault-injection experiments. Both the
benchmark programs, bundled with eCos itself, and the eCos
kernel are implemented in object-oriented C++, and compiled

0 2000 4000 6000 8000 10000 12000
Time (Cycles)

1108000

1110000

1112000

1114000

1116000

1118000

1120000

1122000

1124000

D
a
ta

 M
e
m

o
ry

 (
R

A
M

)

thread

stack

Cyg_RealTim
eClock::rtc

Cyg_Scheduler::scheduler

hal_interrupt_handlers

idle_thread

idle_thread_stack

cyg_libc_m
ain_stack

Figure 1: eCos fault susceptibility: Each point denotes the
outcome of an independent benchmark run (THREAD1), after
injecting a single-bit flip at a specific time and data-memory
coordinate. Injections in white areas have no observable effect.
Blue marks illegal memory accesses and jumps. CPU exceptions
are colored red and timeouts yellow respectively. Green data
points show benchmark runs that finish, but yield wrong output
(silent data corruption).

for an i386 target. We used FAIL* [17], a versatile fault-
injection (FI) and experimentation framework, to inject single-
bit flip faults (in Section V we additionally evaluate a burst-
error fault model) into Bochs, an IA-32 (x86) emulator, and to
observe the benchmark behavior afterwards.

The fault-injection result excerpt in Figure 1 shows that the
vast majority of injections have no effect on the benchmark
run (white areas), and that failures often originate in the
same memory locations (horizontally aligned, colored address-
space/time coordinates): These locations seem to represent the
critical memory space for this particular benchmark and the
chosen eCos configuration. Table I confirms this assumption –
the top ten program symbols respectively contiguous memory
areas that caused the THREAD1 benchmark to fail amount to
99.87 % of all observed abnormal program terminations. The
MUTEX1 results (in the same table) display a similar address-
space clustering, yet with a different distribution: As MUTEX1
exhibits a different OS usage profile, a different subset of the
program state is the most critical.

This baseline assessment reveals that in the chosen set
of benchmarks, the kernel and application stacks and the
scheduler-related kernel data structures (thread, scheduler,
cyg_libc_main_thread, idle_thread, thread_obj, . . .) are
the most susceptible. For the remainder of this paper, we will
focus on the scheduler data structures that are more static in
nature, and postpone the protection of dynamically growing
and shrinking stack data to future work.

B. Solution Requirements

Our analysis in this section shows that, depending on the
structure of the OS and the way it is used, the memory space
exhibits “neuralgic spots”, i.e., data objects that are much more
critical than the remaining memory regions. By protecting only
these critical objects, a protection mechanism could improve

THREAD1 MUTEX1
Symbol Address Size #Failures (%) Symbol Address Size #Failures (%)

thread 1,108,640 224 1.008×1010 (39.4 %) stack 1,109,664 10,224 3,189,208 (19.1 %)
stack 1,108,864 6,816 5.730×109 (22.4 %) thread_obj 1,109,312 352 3,107,236 (18.7 %)

Cyg_RealTimeClock::rtc 1,124,256 64 3.865×109 (15.1 %) hal_vsr_stats 1,108,800 256 2,721,620 (16.3 %)
Cyg_Scheduler::scheduler 1,117,760 132 8.537×108 (3.3 %) cvar1 1,109,264 8 827,282 (5.0 %)

Cyg_Interrupt::dsr_list_tail 1,117,744 4 8.530×108 (3.3 %) Cyg_Scheduler::scheduler 1,121,984 132 764,988 (4.6 %)
hal_interrupt_objects 1,123,328 896 8.530×108 (3.3 %) cvar0 1,109,256 8 761,936 (4.6 %)

hal_interrupt_handlers 1,121,536 896 8.530×108 (3.3 %) m1 1,109,244 12 546,710 (3.3 %)
cyg_scheduler_sched_lock 1,108,016 4 8.529×108 (3.3 %) m0 1,109,232 12 523,754 (3.1 %)

pt1 1,115,684 4 8.528×108 (3.3 %) Cyg_Interrupt::dsr_list 1,121,964 4 508,128 (3.1 %)
Cyg_Scheduler_Base::current_thread 1,117,748 4 7.197×108 (2.8 %) cvar2 1,109,272 8 499,968 (3.0 %)

Table I: Quantitative fault-injection results: Top ten fault-susceptible symbols (or, contiguous memory areas) for the unmodified
THREAD1 and MUTEX1 benchmarks.

the system’s dependability significantly with only minimal
overhead.

However, the approach poses some software engineering
challenges: As the set of critical objects depends on the
application scenario, the mechanism has to be implemented in
a generic way so that it can be reused in all possible scenarios.
Ideally, the solution would be modular and completely separated
from the protected software component. This would allow
developers to reuse the generic protection mechanism in
different operating systems or even on the application software
level.

III. GENERIC OBJECT PROTECTION

“A little redundancy, thoughtfully deployed and
exploited, can yield significant benefits for fault
tolerance; however, excessive or inappropriately
applied redundancy is pointless.” [18]

Fine-grained protection of kernel objects calls for a fault-
tolerance measure that can monitor the data flow between main
memory and the protected software component – in our case the
eCos operating system. Ideally, the solution would guarantee
that when the software reads data, its value is always the
same as the last value written into the memory cell, regardless
of any bit flips that happened in between. Yet, data flow
monitoring is difficult to realize, as we have to deal with
low-level infrastructure software that is compiled to machine
code. Running the entire eCos in a virtual machine would be
one way to approach the problem. However, this is not only a
very costly approach but also infeasible for many embedded
hardware platforms that do not support virtualization. Therefore,
the memory-error protection has to become an integral part
of the protected software itself. This could either be achieved
by using an extended compiler or, as we did, by means of
aspect-oriented programming [12].

During the design of the mechanism, special care has to be
taken to avoid any runtime overhead. For instance, comparing
all accessed memory locations with a set of monitored address
ranges in software at runtime is out of the question. Thus, to
provide a highly-efficient mechanism, our solution follows two
main design principles:

1) We exploit application knowledge at compile time
and, thus, minimize the number of runtime checks.

2) We abandon the aforementioned goal to detect every
bit flip in accessed data, but try to balance the trade-
off between the cost of injected checks and the gained
error-detection rate.

A. Exploiting Object-Oriented Structure

A running program generates a sequence of read and
write operations on memory cells with different addresses.
Additionally, each memory cell may be subject to a non-
deterministic hardware fault, which causes one or more bit flips.
While a write is not susceptible to a preceding fault, a read with
a preceding fault will make the program use wrong data. This
might cause program failure. To avoid this, the write operation
can additionally store some redundant data about the written
value, which can be used to detect and even correct bit flips by
the read operation. However, doing this for every memory cell
that is occupied by a critical data structure is very expensive.
We thus follow design principle 2 by identifying groups of
subsequent read and write operations with temporal locality.
When we find such a group, the check can be performed only
once before the first operation of the group and the redundant
information about the memory cell can be saved once after
the last operation. The underlying assumption is that there are
long periods in which the memory cell is unused between one
group and the next. If a fault happens at a random point in
time, the probability that it hits such an inter-group time frame
is very high. This means that we can still detect most faults,
but have a drastically reduced overhead.

The overhead can be reduced even more if we also merge
groups that share a similar memory access pattern. In other
words: Two groups whose operations access different memory
locations can be merged into a multi group if they overlap
in time significantly. The implementation can then calculate
shared redundancy information over multiple memory cells,
which is more efficient. Furthermore, checks and calculations
can be performed only once per multi group.

The key question for the efficient implementation of the
sketched mechanism is how to detect the temporal and spatial
connections of read and write operations at compile time
(design principle 1). Object orientation is the most natural
solution: If the program was designed in an object-oriented
manner, there is an implicit connection between its data objects
(instances of classes) and the program code that manipulates
them (methods of the class). We can thus approximate a multi

group as the sequence of read and write operations performed
by a method of a class while it manipulates an object. This
means that . . .

• before a method of a critical object is executed, our
mechanism checks whether the object suffered from a
memory fault.

• after the execution of the method, redundancy informa-
tion about the object’s state is calculated and stored.

Aspect-oriented programming is the implementation technique
that we find most suitable for this task.

B. Exploiting Features of Aspect-oriented Programming

The idea behind aspect-oriented programming (AOP) is
to provide language features that support the modular im-
plementation of crosscutting concerns, i.e., concerns of the
implementation that affect various different locations of the
program in a systematic way. This is achieved by defining rules
such as the following:

“In programs P, whenever condition C arises, perform
action A.” [19]

As P, C, and A can be provided by the programmer, AOP offers
a very generic mechanism to instrument arbitrary programs
(P) with error detection and correction code (A) whenever
a member function of a critical object is executed (C). A
tool called aspect weaver, which typically performs a code
transformation at compile time, makes sure that the demanded
adaptation of the control flow is actually performed. Besides
this adaptation mechanism, aspect-oriented languages typically
also provide an introspection mechanism, which allows the
programmer of the rules to write generic actions that may
depend on the target program’s structure. Aspect-oriented
language extensions are, for instance, available for Java (AspectJ
[20]) and C++ (AspectC++ [21]). The latter is strongly focused
on compile-time code adaptation and can exploit the C++
template mechanism for powerful code synthesis. With these
three ingredients, namely the code adaptation feature, the
introspection mechanism, and C++’s code synthesis capabilities,
AspectC++ is a powerful tool for writing reusable fault-
tolerance mechanisms, which are woven into the protected
software component at compile time.

Figure 2 on the following page shows a simplified ver-
sion of our generic object-protection mechanism written in
the AspectC++ language. The aforementioned rules are de-
fined with the advice keyword, as in lines 3, 8 and 10.
In AspectC++, rules (advice definitions) that implement a
common concern are grouped in an aspect. The definition
of our GenericObjectProtection aspect starts in line 1 with
the keyword aspect. One of the benefits of aspect-oriented
programming over other implementation techniques is that for
crosscutting concerns the source code almost directly reflects
the software developer’s intention. For example, the pieces of
advice in lines 8 and 10 are almost a literal translation of the
two rules mentioned at the end of Section III-A on the previous
page: In line 11, a function check() is called before any call
to a member function of a protected class. In line 9, a function
update() is called after the construction of a protected class’
instance or a member function call.

The built-in pointer tjp1 can be used by advice code to
access context information about the condition that triggered
its execution in a generic way. tjp->target() yields the target
object of the construction or function call, respectively. Besides
the target() function, the AspectC++ JoinPoint-API [22]
provides much more context information, especially static type
information such as the type of the calling and the called object
(JoinPoint::That and JoinPoint::Target).

Advice definitions are also generic in the sense that they
use the pointcut protectedClasses() to address the points of
adaptation. A pointcut is merely an alias for a reusable part of
a condition. In line 2 it is defined to match the Cyg_Scheduler
class and the Cyg_Thread class.2

In AspectC++ the adaptation mechanism can not only affect
the control flow – it can also inject structural extensions. The
advice in line 3 demonstrates this feature. Here the protected
classes are extended by three new members: A data member
replica, which will store the object’s information redundantly,
and the two member functions check() and update(). The
details of the implementation can be easily replaced to support
different protection algorithms, e.g., using Hamming code,
cyclic redundancy checks (CRC), or triple-modular redundancy
(TMR). An essential language feature needed by our protection
mechanisms is, again, the JoinPoint type. For structural
extensions, this built-in type is the interface to the introspection
mechanism of AspectC++, which provides the injected members
with information about the target type of the extension. For
example, it describes all data members of the target class
including their type. We can exploit this information by using
it as a parameter for generative C++ template metaprograms,
such as the JPTL::MemberIterator. It is important to note
that a template metaprogram “runs” at compile time. This
means that it does not consume any runtime. It is a powerful,
Turing-complete [23] code-synthesis mechanism.

C. Summary of the Benefits

In summary, our approach is an economic kind of software-
based fault-tolerance mechanism, which can be used to detect
and correct transient memory faults. It exploits the temporal
locality of memory access operations in member functions of
classes in object-oriented software. Section V will present the
achieved error detection and correction rate in comparison to
the performance overhead and increased code size.

From the software-engineering point of view the implemen-
tation is also interesting. Due to aspect-oriented programming
the solution is very convenient for users. The source code of the
protected software component does not have to be changed for
deploying a reusable memory-error-protection aspect. It suffices
to list the most critical classes in a pointcut definition. The
design also facilitates the selection of application-specific fault
models. For example, in a very harsh or critical environment
one could deploy an aspect that can deal with multiple bit
flips in the same object. Finally, as the approach is based on
source-to-source transformation with AspectC++ (weaving), it
is inherently portable.

1tjp is an abbreviation for “this joinpoint”.
2AspectC++ also allows programmers to declare pointcuts as “pure virtual”,

which means that they can be defined in a derived aspect. We have not shown
this here to simplify the listing, but in practice it is a basic mechanism needed
for writing completely generic and reusable aspect libraries.

1 aspect GenericObjectProtection {
2 pointcut protectedClasses() = "Cyg_Scheduler" || "Cyg_Thread"; // list of critical eCos classes
3 advice protectedClasses() : slice class { // generic class extension ("introduction")
4 char replica[JPTL::MemberIterator<JoinPoint, SizeOfNonPublic>::EXEC::SIZE]; // redundancy data
5 void check() { JPTL::MemberIterator<JoinPoint, CheckReplica>::exec(this); } // detect/handle errors
6 void update() { JPTL::MemberIterator<JoinPoint, UpdateReplica>::exec(this); } // recalculate ’replica’
7 };
8 advice construction(protectedClasses()) || call(protectedClasses()) : after() {
9 tjp->target()->update(); } // generic advice

10 advice call(protectedClasses()) : before() {
11 tjp->target()->check(); } };

Figure 2: An implementation of the generic object-protection mechanism written in AspectC++.

IV. DESIGN CHALLENGES AND DECISIONS

This section discusses the challenges that we encountered
during design and implementation of the generic object-
protection algorithm. These challenges relate to particular
details of the algorithm that have not been addressed in the
previous section.

A. Selection of Data Members to Protect

The fundamental idea of our approach is to exploit that
data members are only accessed within member functions
of the same class. However, this is not the case for public
data members, which are readable and writable by arbitrary
program statements. Anyway, public data members are rarely
used in object-oriented software3, and we are convinced that it
is feasible to exclude such members from the generic object
protection. Therefore, we need information about the protection
level (either public, protected or private) of each data mem-
ber to determine whether it is supposed to be covered by the
object protection. This information is provided by AspectC++’s
compile-time introspection feature for structural extensions:
JoinPoint::MEMBERS reflects the number of data members of
the target class, and JoinPoint::Member<I>::prot encodes the
protection level of the I th member. In a similar way, its Type
as well as a pointer to the member can be obtained. Given
this introspection information, it is feasible to write a single
generative C++ template metaprogram that iterates over all data
members of any class instance. Then, arbitrary computations
– for example, checksum calculations – can be generated,
additionally filtering out public data members. Thus, the error
detection (EDM) and error-recovery mechanisms (ERM) used
throughout this paper are formulated as generative template
metaprograms that rest upon AspectC++’s introspection feature.

B. Allocation of Redundancy

The amount of redundancy needed for a particular data
structure depends on the deployed EDM/ERM. To guarantee
a certain error detection and correction probability, the total
amount of redundancy has to grow with the protected data’s
size (in terms of bits). Therefore, the structural extension (see
Section III-B) of a target class C by a data member that holds
the redundancy R implies that the redundant-data-member’s
size depends on the size of the target class:

3The object-oriented paradigm encourages developers to declare important
data as protected or private to restrict access and prevent unwanted
modifications by other software components.

C = {data members, R}

sizeof (R) = r · sizeof (C)

The factor r is specified by the particular EDM/ERM, for
example, r is 2 for TMR. Such an equation is obviously a
paradox, as a growth of C leads to a growth of R and the
other way around. A solution for this problem is to define the
size of R to depend only on the size of the data members
of C without R. Unfortunately, there is no generic way to
express this solution in plain C/C++, but the compile-time
introspection feature of the AspectC++ compiler allows to
implement a template metaprogram that iterates over all data
members prior to the introduction of redundancy. By this
means, the built-in sizeof operator can be applied to every
data member independently and the results are added up by
the metaprogram. This sum is a compile-time constant and, for
instance, can be used to introduce an array of redundant bytes.
The main benefit of this solution is that unwanted data members
can be excluded from the size calculation, for example public
data members as well as compiler-generated alignment padding
inside a data structure.

C. Object Composition

The next challenge that we encountered is the composition
of objects. Let the class C contain a class-type member Csub
plus redundancy: C = {Csub, . . . ,R}. Given this definition, the
subobject – an instance of Csub – would be protected twice,
both by R and its own redundancy Rsub. Thus, we decided
to exclude subobjects from the generic object protection, so
that subobjects are only protected once. We implemented the
exclusion of subobjects by C++ type traits [24], which is a
template-based technique that allows to make decisions based
on types, for instance by testing whether a data member is
of class type (subobject), a pointer, an integer, and so on.
Additionally, this technique offers a way to tailor the generic
object protection to cover only particular data members, for
instance just pointers. We have not further investigated this
opportunity yet.

D. Static Call-site Analysis

The fundamental idea of generic object protection is to
associate error-correction-and-detection with member functions
of data structures. Before a member function is called, checks
are performed, and after return from that function, the re-
dundancy information is recalculated. These actions can take

place either at the caller or the callee. The former approach
results in O(#call sites) complexity, whereas the latter leads
to O(#member functions). In general, when the number of
call sites and member functions are unknown, both solutions are
feasible. However, the call-site approach offers the advantage
of providing knowledge about the caller. Consider two member-
functions f1 and f2 of the same data structure, and f1 calls
f2 at some point in the dynamic control flow, for example:
main() → obj.f1() → obj.f2(). Then, concerning the call
from f1 to f2, any checks and redundancy recalculations should
be omitted, because the check would immediately be succeeded
by the recalculation. The decision to omit checks/recalculations
on such call sites can be taken at compile time by a static
analysis of the call relationships. Basically, the caller and the
callee must be compared, and only if both refer to same data
structure, the protection mechanism can be skipped.

The JoinPoint API of AspectC++ (see Section III-B)
provides the necessary information to implement such a static
call-site analysis. In the body of call-advice code, the class type
of the caller (JoinPoint::That) as well as the class type of the
callee (JoinPoint::Target) are exposed by the JoinPoint API.
These class types can be tested on equality by C++ type traits.
Moreover, pointers to the caller/callee objects can be obtained
by tjp->that() and tjp->target() respectively, which can
be compared directly. The comparison of types is necessarily a
compile-time decision. Comparing object-pointers boils down to
testing C++’s built-in this pointers, which can be optimized out
when the result is known at compile time. Therefore, we decided
to exploit this static information to minimize the runtime checks
by choosing the call-site approach paired with static analyses.

This design decision further enables the minimization of the
time window between checks and redundancy recalculations,
because outgoing function calls that leave a protected data-
structure can be handled as well. As an example, consider a
member function f that calls the C-library function printf().
Then, inside f , the call to printf() can be enclosed by inverted
EDM/ERM-actions: frecalculate() → printf() → fcheck().
Thus, during the execution of printf(), the data structure
of f is safe. These additional checks/recalculations clearly
increase the overhead of our approach (mostly code size), but
greatly improve error detection and correction capabilities. This
is especially true for calls that block the running process.

E. Inheritance

Special attention has to be paid to the object-oriented
principle of inheritance. In C++, a base class can be extended
by a derived class, and the derived class inherits all members
from the base class. Members of the base class are directly
accessible in the derived class (except for members that are
declared private). When a function of a derived class is called,
the data members of all its base classes have to be verified.
This is the case for the aforementioned classes Cyg_Scheduler
and Cyg_Thread of eCos, which inherit from four base classes
each.

The information about base classes of an arbitrary class
cannot be retrieved in plain C++, and again, requires compile-
time introspection for being implemented. The AspectC++
compiler provides a template-based list of all base classes
(JoinPoint::BaseClass<I>) in a similar way as the infor-
mation about data members is provided. By this means, a

generative C++ template metaprogram can iterate over all base
classes and invoke check/recalculate actions on each of them.
Additionally, such an iteration has to be performed recursively,
that is, to iterate over the bases of the bases, and so on.

The second challenge with respect to inheritance is the
dynamic dispatch of virtual functions. A virtual function,
implemented in a base class, can be overridden by several
derived classes. When such a function is called, the actual
function’s implementation is not chosen before runtime. Hence,
it is impossible to determine the callee object type of a virtual-
function call at compile time. This uncertainty conflicts with
our static call-site analysis approach. Therefore, we decided
to complement the static analysis by a dynamic dispatch
of check/recalculate actions. For classes with inheritance,
the functions that check/recalculate the redundancy become
virtual functions, so that their invocation is dispatched to the
most derived class belonging to a particular object. After the
dynamic dispatch to the most derived class happened, the
base classes are processed as described above. In summary,
data structures that are built from several base classes are
treated holistically by the base-class iteration plus dynamic
dispatch. However, the decision whether a class is covered by
the generic object protection can be taken independently of
its inheritance relations. Furthermore, any function calls inside
such an inheritance hierarchy can be detected by the static
call-site analysis, and the object-protection mechanism can be
optimized out for such cases.

F. Multi-threading

An important requirement to the generic object protection
is the support for multi-threading, as needed when applied to
the eCos operating system. By support for multi-threading we
mean that our approach works correctly for data structures that
are used concurrently by multiple threads – and not that our
implementation itself spawns several threads to perform its
duty in parallel.

Our first observation is that every EDM/ERM operation
(check/recalculate) on shared data-structures must be atomic,
considering a thread that is preempted while verifying a
checksum. In the meanwhile, other threads could alter the
particular data structure and its checksum, so that, when the
suspended thread is resumed, it finds an inconsistent state.
Thus, concurrent EDM/ERM operations must be serialized
by synchronization primitives, such as a semaphore/mutex,
a kernel lock, or by suppressing interrupts. The choice of
locking mechanism depends on the actual data structure, e.g.,
data structures used during interrupts require to suppress
them while performing EDM/ERM actions. User-level-only
data structures, on the other hand, can be synchronized by
a mutex, and obviously, non-shared data structures need no
synchronization at all. We implemented this differentiation
by configurable synchronized() pointcuts4. Such a pointcut
is a textual list, provided by the user, of all classes that are
covered by a particular synchronization mechanism – in our
case Cyg_Scheduler, Cyg_Thread and their base classes.

Our second observation is that, as soon as a data structure
is being modified, its checksum is no longer valid, so that

4The definition of synchronized() pointcuts is carried out in the same way
as the protectedClasses() pointcut in Section III-B.

all concurrent checks must be skipped until the checksum
is valid again. Therefore, we introduced a per-object counter
into each shared class instance. This counter is incremented
before a thread enters a potentially modifying, that is non-
const, member function. The counter is decremented after the
thread leaves the non-const member function. In fact, such a
per-object counter reflects the number of concurrent threads that
may modify an object. All EDM/ERM operations are skipped
unless this counter is 1, which means, until there is only a
single thread accessing the object. In summary, each function
call to a shared object is synchronized by 9 steps:

1) acquire lock
2) increment per-object counter
3) check() the checksum if counter == 1
4) release lock
5) enter the function ... until it returns
6) acquire lock
7) recalculate() the checksum if counter == 1
8) decrement per-object counter
9) release lock

This sequence guarantees atomicity due to the locking and
furthermore elides unnecessary EDM/ERM operations. Another
important property is that this sequence cannot cause deadlocks,
since the second Coffman condition (hold and “wait for”
resources) [25] is not satisfied. After acquiring the lock, the
EDM/ERM operation runs to completion, and the lock is
released straightaway without waiting for additional resources.

Finally, the per-object counters have to be resilient against
memory errors on their own respect. We implemented these
counters by tripling their state plus majority voting. This
solution is feasible, since a counter’s state is only an integer
variable, so that tripling is inexpensive.

V. IMPLEMENTATION AND EVALUATION

In the following, we describe the implementation of five
concrete error-detection and error-recovery algorithms based
on the generic object-protection mechanism. Subsequently, we
quantitatively evaluate their effectiveness in a set of benchmarks
with fault-injection (FI) experiments, and measure the induced
static and dynamic overhead. This allows us to predict the
suitability of specific EDM/ERM variants for yet unknown
scenarios, and to draw conclusions on the overall methodology.

A. EDM/ERM Variants

To exemplarily evaluate the generic object-protection mech-
anism described in Sections III and IV, we implemented
five generic EDM/ERM aspects. In Table II we introduce
acronyms for each variant for reference in the rest of this section
(“Baseline” is the unmodified version without protection), and
present canonicalized5 lines-of-code per module to convey an
estimate of the complexity.

Each variant is implemented as a generic module and can
be configured to protect any subset of the existing C++ classes
of the target system.

5Effective lines of code (excluding empty lines and comments), obtained
with cloc: http://cloc.sourceforge.net/

B. Evaluation Setup & Fault Model

We evaluated each protection variant on eCos 3.0 with a set
of 21 benchmark and test programs that is bundled with eCos
itself, and which constitutes a subset of all eCos benchmarks
that is implemented in C++ and utilizes threads. Table III
briefly describes each benchmark and records its number of
dynamic function calls to the protected scheduler and thread
classes. Including the baseline variant, this set totals at 126
variant/benchmark combinations. All binaries were compiled
for i386 with the GNU C++ compiler (GCC, eCosCentric GNU
tools 4.3.2-sw, optimization level -O2); eCos was set up with
its default configuration, grub startup and the bitmap scheduler
variant. Additionally, we disabled both serial and VGA output,
as the benchmarks report on success or failure before finishing,
and such time-consuming output would completely mask out
any EDM/ERM runtime overhead.

We chose two different fault models to emphasize the
flexibility in our solution space. First, we used the common
uniformly-distributed transient single-bit flip fault model in
data memory, i.e., we consider program runs in which a single
bit in the data/BSS segments flips at some point in time. This
model seems reasonable for low-cost embedded systems where
read-only data and code (text) is stored in far less susceptible
(EEP)ROM or Flash, and global objects and the program stack
is kept in non-ECC RAM. Second, we used a burst bit-flip
model, which flips all eight bits at a memory address at once.
This models, e.g., multi-bit impacts of high energy events.

Bochs, the IA-32 (x86) emulator back end that the FAIL*
experimentation framework [17] currently provides, was con-
figured to simulate a modern 2.666 GHz x86 CPU. It simulates
the CPU on a behavior level with a simplistic timing model
of one instruction per cycle (with the exception of the HLT
instruction, which spans multiple cycles until the next interrupt),
and does not provide any insights on caching and pipelining
effects. Therefore the results obtained from injecting memory
errors in this simulator are very pessimistic: We expect that a
contemporary cache hierarchy would mask many main-memory
bit flips (especially for longer-running benchmarks).

C. Effectiveness: Error Detection & Correction

To keep the FI experimentation efforts within reasonable
limits, we skipped the three longest-running benchmarks (KILL,
MUTEX3 and CLOCKTRUTH – the latter running for almost 2.7
billion instructions) and the Hamming protection variant with its
extremely high runtime overhead (cf. Section V-D). Furthermore
we modified the BIN_SEM2 and SYNC2 benchmarks to run for
100 instead of 1,000 main loop iterations, and extrapolated the
results for the original version by multiplying the failure counts
by 10; this simplification is valid due to the highly repetitive
nature of these benchmarks. Additionally we constrained the
fault space to the scheduler and thread data structures within
the kernel: This naturally biases the FI results towards a better
coverage, but as we do not expect any resiliency-wise different
behavior from all other memory areas, we would not gain
additional insights from injecting faults there. Therefore, the
following results are only valid for the protected data structures,
while the non-critical rest of the memory space (cf. Section II)
remains as susceptible as before.

Aspect/Module Description LOC

CRC A CRC32 implementation leveraging Intel’s SSE4.2 instructions (EDM). 134

TMR Triple-modular redundancy, using two copies of each data member and majority voting (EDM/ERM). 86

CRC+DMR CRC (EDM, see above), plus one copy of each data member for additional error correction (ERM). 171

SUM+DMR A 32-bit two’s complement addition checksum (EDM), plus one copy of each data member (ERM). 157

Hamming Software-implemented Hamming code (240 data bits, 8 parity bits; single-bit EDM/ERM). 166

Framework Generic object-protection infrastructure, the basis for all concrete EDM/ERM implementations. 1,581

Table II: EDM/ERM variants.

Benchmark Description / Testing domain Syscalls Benchmark Description / Testing domain Syscalls
BIN_SEM1 Binary semaphore functionality (2 threads) 323 MUTEX1 Basic mutex functionality (3 threads) 743

BIN_SEM2 Dining philosophers (15 threads) 92,711 MUTEX2 Mutex release functionality (4 threads) 743

BIN_SEM3 Binary semaphore timeout (2 threads) 602 MUTEX3 Mutex priority inheritance (7 threads) 19,812

CLOCK1 Kernel Real Time Clock (RTC) (1 thread) 2,851 RELEASE Thread release() (2 threads) 641

CLOCKCNV Kernel RTC converter subsystem (1 thread) 379 SCHED1 Basic scheduler functions (2 threads) 94

CLOCKTRUTH Kernel RTC accuracy (1 thread) 39,839 SYNC2 Different locking mechanisms (4 threads) 437,314

CNT_SEM1 Counting semaphore functionality (2 threads) 370 SYNC3 Priorities and priority inheritance (3 threads) 385

EXCEPT1 Exception functionality (1 thread) 171 THREAD0 Thread constructors/destructors (1 thread) 72

FLAG1 Flag functionality (3 threads) 1,356 THREAD1 Basic thread functions (2 threads) 266

KILL Thread kill() and reinitalize() (3 threads) 874 THREAD2 Scheduler and thread priorities (3 threads) 685

MQUEUE1 Message queues (2 threads) 922

Table III: eCos kernel test benchmarks. The number of dynamic system calls (Syscalls) to the protected scheduler and thread
classes is shown in the last column.

bin_sem1 bin_sem2 bin_sem3 clock1 clockcnv cnt_sem1 except1 flag1 mqueue1

mutex1 mutex2 release sched1 sync2 sync3 thread0 thread1 thread2

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

B
a
s
e
lin

e

C
R

C

T
M

R

C
R

C
+

D
M

R

S
U

M
+

D
M

R

B
a
s
e
lin

e

C
R

C

T
M

R

C
R

C
+

D
M

R

S
U

M
+

D
M

R

B
a
s
e
lin

e

C
R

C

T
M

R

C
R

C
+

D
M

R

S
U

M
+

D
M

R

B
a
s
e
lin

e

C
R

C

T
M

R

C
R

C
+

D
M

R

S
U

M
+

D
M

R

B
a
s
e
lin

e

C
R

C

T
M

R

C
R

C
+

D
M

R

S
U

M
+

D
M

R

B
a
s
e
lin

e

C
R

C

T
M

R

C
R

C
+

D
M

R

S
U

M
+

D
M

R

B
a
s
e
lin

e

C
R

C

T
M

R

C
R

C
+

D
M

R

S
U

M
+

D
M

R

B
a
s
e
lin

e

C
R

C

T
M

R

C
R

C
+

D
M

R

S
U

M
+

D
M

R

B
a
s
e
lin

e

C
R

C

T
M

R

C
R

C
+

D
M

R

S
U

M
+

D
M

R

F
I
e
x
p
e
ri

m
e

n
t
re

s
u
lt
 d

is
tr

ib
u
ti
o
n

Experiment result

Timeout

Bad mem access

JMP outside code

CPU Exception

Wrong output

Detected, restart

Det. & corrected

No effect

Figure 3: Single-bit flip FI campaign results (KILL, MUTEX3 and CLOCKTRUTH benchmarks omitted due to their extremely long
runtime) in percentages of their respective fault-space size (benchmark runtime × critical-data memory size).

Baseline CRC TMR CRC+DMR SUM+DMR Baseline CRC TMR CRC+DMR SUM+DMR
BIN_SEM1 2.395×106 5.416×106 8.546×106 6.446×106 6.355×106 MUTEX1 4.516×106 9.472×106 1.491×107 1.132×107 1.108×107

BIN_SEM2 5.075×1012 2.637×109 3.880×109 3.178×109 3.150×109 MUTEX2 1.262×107 1.690×107 2.661×107 2.039×107 2.001×107

BIN_SEM3 6.575×1010 1.042×107 1.583×107 1.243×107 1.232×107 RELEASE 2.535×106 5.324×106 8.376×106 6.309×106 6.236×106

CLOCK1 1.288×1012 1.112×107 1.577×107 1.267×107 1.278×107 SCHED1 1.580×106 1.724×106 2.850×106 2.045×106 1.993×106

CLOCKCNV 6.594×105 8.997×105 1.461×106 1.066×106 1.037×106 SYNC2 8.551×108 4.287×109 6.645×109 5.127×109 5.024×109

CNT_SEM1 2.130×106 4.526×106 7.168×106 5.345×106 5.252×106 SYNC3 5.289×106 9.654×106 1.532×107 1.157×107 1.135×107

EXCEPT1 8.498×105 1.060×106 1.665×106 1.240×106 1.206×106 THREAD0 9.211×105 7.232×105 1.139×106 8.048×105 7.805×105

FLAG1 2.066×1011 1.911×107 2.899×107 2.274×107 2.243×107 THREAD1 5.894×109 7.134×106 1.089×107 8.479×106 8.363×106

MQUEUE1 5.957×106 8.509×106 1.338×107 1.012×107 9.967×106 THREAD2 6.499×106 1.839×107 2.957×107 2.223×107 2.176×107

Table IV: Absolute failure counts for FI campaign (KILL, MUTEX3 and CLOCKTRUTH benchmarks omitted due to their extremely
long runtime).

For both fault models and the remaining 90 variant/bench-
mark combinations (including the baseline), and after applying
FAIL*’s conservative fault-space pruning techniques to effi-
ciently cover the complete fault space, we conducted a total
of about 274 million FI experiments. Figure 3 shows the FI
result distribution for the single-bit flip fault model, divided
into positive (no effect, error detected and corrected, and error
detected) and various negative outcomes: The CRC variant
successfully detects (the only protection variant that only detects
but not corrects) scheduler and thread data-structure errors in
almost all cases – over all benchmarks, an average of 15.3 %
faults have no effect, 84.7 % are detected, and only 0.01 % (from
a previous average of 12.8 % in the baseline) still fail. The other
evaluated variants (TMR, CRC+DMR, SUM+DMR) turn out
equally good (±0.1 %), with the difference that 84.7 % are
detected and corrected. With the burst fault model, the numbers
only vary insignificantly (plot not shown): The baseline fails in
marginally more cases (13.6 %), but the evaluated EDM/ERM
schemes detect/correct the same percentage of errors.

The experiment outcome numbers relative to the fault-
space size from the previous paragraph are contrasted by the
absolute numbers in Table IV. As software-implemented error
protection introduces additional runtime overhead, protected
variants naturally run longer, increasing the chance of being
hit by memory bit-flips (which we assume to be uniformly
distributed). Consequently, there exists a break-even point
between, metaphorically, quickly crossing the battlefield, and
running slower but with heavy armor. Table IV suggests that for
13 of the benchmarks, this break-even point is approximately
met (the error counts with and without protection are within
the same order of magnitude), but we do not readily gain
a real advantage from running slowly. For the remaining 5
– note these are among the longest-running among the 18
analyzed! – the break-even was clearly outpaced and the
absolute failure numbers are reduced by several orders of
magnitude. We conclude that our protection mechanisms can
be applied to almost any long-running embedded application
with a significant net resiliency improvement.

D. Efficiency: Static and Runtime Overhead

Although the previous subsection illustrated that our protec-
tion mechanisms increase the system resiliency in many cases,
they come at different static and dynamic cost. In the following
we present code size and runtime measurements to put this
cost in relation with the benefits gained.

Figure 4 shows the static binary sizes of (due to space
constraints) a selection of variants. The DATA sections of all
binaries are negligibly tiny (around 500 bytes) and stay constant
in size; BSS also remains mostly constant with different
protection variants (max. increase compared to the baseline
is 3.6 %). The code size (TEXT) increases vary extremely
between the different variants: While CRC increases the code
by an average of 58 % (SUM+DMR: 74 %, CRC+DMR: 79 %,
TMR: 105 %), the Hamming variant costs a whopping average
of 146 %.

Depending on the benchmark, the protected code sections
are executed more or less often, resulting in highly varying
runtime overhead. We deployed all variant/benchmark combina-
tions on a contemporary Intel Core i7-M620 notebook running

at 2.66 GHz and measured their real-world timing behavior
(with the RDTSCP CPU instruction). The total real-world
runtime corresponds accurately (99.8 %) to the simplistic timing
model of our simulation, aside from the EXCEPT1 benchmark,
which triggers machine-dependent CPU exceptions that execute
hundredfold slower on real hardware. Figure 5 shows that
the results can be classified into two categories: While some
benchmarks continuously invoke the scheduler/thread objects
and therefore lead to heavy impact on the runtime overhead,
others access the scheduler infrequently and execute in almost
the same runtime. The former category of benchmarks, in
particular SYNC2, constitutes the pathologic use case for our
protection scheme: It continuously bombards the scheduler
with accesses and spends almost no time in the benchmark
application itself. SYNC2 stands out extremely, running around
18 times longer for the CRC and SUM+DMR protection
variants, 57 times for TMR and even 468 times for the dreaded
Hamming code. Because the Hamming protection scheme
consistently causes an order of magnitude higher overhead, we
omitted to plot this variant. The second category of benchmarks
– running for 107 clock cycles or longer in Figure 5 – shows way
more encouraging results. These benchmarks contain a realistic
application profile, that is, a mix of computation, idle phases
and scheduler invocations. For these long-running benchmarks,
the runtime costs stay well below 1 % in most cases and can
be considered negligible. In conformity with Amdahl’s law, the
runtime overhead for the whole benchmark and test suite totals
at only 0.09 % for the SUM+DMR, CRC and CRC+DMR
protection variants, followed by TMR and Hamming with
0.23 % and 1.75 % respectively.

E. Discussion

The evaluation shows that, for our set of benchmarks, the
EDM/ERMs come at different levels of overhead. Most protec-
tion mechanisms have little total runtime overhead. Overall, the
SUM+DMR variant seems to offer the best cost/benefit ratio in
most cases, and shows a negligible slowdown on real hardware;
if a detection-only mechanism suffices for the use case, the
CRC protection may be a reasonable choice. Both mechanisms
work fast and efficiently at machine-word granularity (in our
case 32 bit). The only EDM/ERM that operates at bit level is
the Hamming protection, which turns out to be by far the most
inefficient choice. TMR has no real benefit – at least when
single-bit and 8-bit-burst faults are considered – and should
not be used in favor of SUM+DMR and CRC+DMR.

VI. RELATED WORK

Protecting computer systems’ memories against errors is a
concern remaining from the mainframe era. The persistence
of this problem indicates that there might be no “one size fits
all” solution. Hence, there is a large body of work attacking
this problem. We classify related work into three categories:
susceptibility analyses of operating systems to memory errors,
hardware-supported memory protection, and software-based
memory protection.

A. Susceptibility Analyses of Operating Systems to Memory
Errors

Several studies have addressed the assessment of operating
systems in the presence of hardware faults. Already in the

bin_sem1 bin_sem2 bin_sem3 clock1 clockcnv clocktruth cnt_sem1 except1 flag1 kill mqueue1

mutex1 mutex2 mutex3 release sched1 sync2 sync3 thread0 thread1 thread2

0

50

100

0

50

100

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
a
s
e
lin

e

C
R

C

S
U

M
+

D
M

R

T
M

R

H
a
m

m
in

g

B
in

a
ry

 s
iz

e
 [
k
iB

]

Binary
section

DATA

TEXT

BSS

Figure 4: Code size of selected protection variants: The TEXT segment grows due to additional CPU instructions for each
EDM/ERM, with Hamming being the most inefficient variant.

bin_sem1 bin_sem2 bin_sem3 clock1 clockcnv clocktruth cnt_sem1

except1 flag1 kill mqueue1 mutex1 mutex2 mutex3

release sched1 sync2 sync3 thread0 thread1 thread2

0e+00

1e+05

2e+05

0e+00

2e+09

4e+09

0e+00

1e+08

2e+08

0e+00

2e+09

4e+09

6e+09

8e+09

0e+00

2e+06

5e+06

8e+06

1e+07

0e+00

3e+10

6e+10

9e+10

0e+00

1e+05

2e+05

0e+00

1e+06

2e+06

3e+06

4e+06

0e+00

2e+08

4e+08

0e+00

2e+08

4e+08

0e+00

2e+05

4e+05

6e+05

0e+00

2e+05

4e+05

0e+00

2e+05

4e+05

6e+05

0e+00

2e+09

5e+09

8e+09

0e+00

1e+05

2e+05

3e+05

0e+00

2e+04

4e+04

6e+04

8e+04

0e+00

1e+08

2e+08

0e+00

2e+05

5e+05

8e+05

1e+06

0e+00

2e+04

4e+04

6e+04

0e+00

1e+07

2e+07

0e+00

2e+05

4e+05

6e+05

B
a
s
e
lin

e

C
R

C

C
R

C
+

D
M

R

S
U

M
+

D
M

R

T
M

R

B
a
s
e
lin

e

C
R

C

C
R

C
+

D
M

R

S
U

M
+

D
M

R

T
M

R

B
a
s
e
lin

e

C
R

C

C
R

C
+

D
M

R

S
U

M
+

D
M

R

T
M

R

B
a
s
e
lin

e

C
R

C

C
R

C
+

D
M

R

S
U

M
+

D
M

R

T
M

R

B
a
s
e
lin

e

C
R

C

C
R

C
+

D
M

R

S
U

M
+

D
M

R

T
M

R

B
a
s
e
lin

e

C
R

C

C
R

C
+

D
M

R

S
U

M
+

D
M

R

T
M

R

B
a
s
e
lin

e

C
R

C

C
R

C
+

D
M

R

S
U

M
+

D
M

R

T
M

R

R
u

n
ti
m

e
 [
C

lo
c
k
 C

y
c
le

s
]

Figure 5: Real-world runtime, measured on an Intel Core i7-M620 notebook: Eleven out of 21 benchmarks run very short (in the
order of 104 to 106 clock cycles) and continuously invoke the operating system’s scheduler, resulting in high overhead for each
EDM/ERM. These benchmarks are actually the pathologic use case for our protection scheme. The remaining ten benchmarks
exhibit a more realistic application profile. The scheduler data structures are accessed infrequently in the benchmarks’ control
flows, so that the runtime costs stay well below 1 % in most cases and can be considered negligible.

nineties, Kao et al. [26] injected memory faults into the
kernel address space of a UNIX operating system. Fabre et
al. [27] performed similar fault-injection experiments with a
microkernel operating system, and so did Madeira et al. [28]
with a UNIX-like real-time operating system. More recently,
the Linux kernel has been analyzed [29], [30].

These studies ground on a few thousand faults being ran-
domly injected, compared to millions of instructions executed
by the operating systems. We doubt their general applicability,
as it is unclear – to the best of our knowledge – to which extent
statistically significant conclusions are drawn from sampled
fault-injection experiments. Our work differs in that we cover
the whole fault space and do not rely on random sampling.
Moreover, we provide insight into particular operating-system

data structures, such as Scheduler and Thread objects.

B. Hardware-supported Memory Protection

Commodity ECC DIMMs store 8 bits of redundancy for
64 bits of data, yielding in single-bit-error correction and
double-bit-error detection (SEC-DED) with uniform storage
overhead of 12.5 %. Commercial Chipkill [8] improves this
rather weak error-correction scheme in tolerating word-wise
multi-bit errors (typically 4 adjacent bits) by interleaving a word
to independent DRAM chips, at the cost of up to 30 % higher
energy consumption due to forced narrow-I/O configuration [9].
Therefore, several hardware modifications to memory controller
and memory management units (MMU) have been proposed [9],
[31], increasing storage overhead up to 18.75 % and 26.5 %.

The MMU has also been used to manage page-level EDMs
[32]. Pages are checksummed and read/write permissions are
withdrawn after a timeout, so that the next access on such a
page results in a trap, which is used to verify the checksum
and restore page permissions. This approach suffers from high
runtime-overhead (25 % to 53 %), and, although the authors
did not evaluate error-detection capabilities, we are convinced
that due to the coarse page-granularity (4 KiB) and the timeout
mechanism, many errors are not detected.

Another technique is to retire pages that have seen errors
[4], [33]. We regard this approach as complementary, because
it is only useful against permanent errors and does not prevent
transients.

C. Software-based Memory Protection

Researchers investigated the dynamic heap for allocating
reliable memory at runtime. Samurai [15] is a C/C++ dynamic
memory allocator that uses replication of memory chunks.
Applications have to be manually modified to use the Samurai
API for access to reliable heap memory, which involves
checking and updating of the replicas. This approach exposes
the heap allocator as single point of failure, which cannot
be recovered when hit internally by a memory error. Finally,
there is no support for multi-threading, which renders Samurai
a poor match for protecting an operating system. Chen et
al. [14] describe a heap memory allocator for a Java virtual
machine that adds checksums to each allocated object. These
checksums are verified and generated on execution of particular
byte-code instructions (for example getfield/putfield). Their
evaluation shows less than 40 % error detection at 32–57 %
runtime overhead due to many unnecessary checks. Our static
call-site analysis (see Section IV-D) avoids such unnecessary
checks. Additionally, by its very nature, any reliable heap
allocator does not protect data stored in data/BSS segments
and on the stack, which is common for operating systems.

Compilers are also an appealing target for transforming
non-fault-tolerant software into fault-tolerant implementations.
Fetzer et al. [16] use arithmetic AN-encoding of memory
(among other methods) to detect errors by essentially doubling
the storage space for encoded values. Even at this high level of
redundancy, recovery is unaddressed. Chang et al. [34] apply
triple-redundant execution plus AN-encoding to protect the
register file. Their compiler-implemented approach pointed out
similar windows of vulnerability compared to our work, that
is, “between validation and use” [34] of replicas and “before
a value is copied” [34]. Code-transformation rules for source-
to-source compilers have been proposed in [35], [13], [36].
These approaches are based on duplicating or even triplicating
important variables of single-threaded user-level programs. The
studies somehow “reinvent the wheel” by implementing a proof-
of-concept source-to-source compiler (if ever) – a tedious task
for C/C++, being far from complete [35], [13]. Our work
differs in that we use the mature general-purpose AspectC++
compiler that allows us to focus on the implementation of
software-based EDM/ERMs in the OS/application layer, instead
of implementing special-purpose compilers.

Fault tolerance in the OS/application layer bears the
invaluable advantage of tailored application-specific measures.
However, we are convinced that the fault-tolerance concerns

should be separated from the “business logic” of the application
to reduce complexity. Several researchers attacked this modu-
larity problem by exercising aspect-oriented programming, in
particular AspectC++ [37], [38]. For example, Alexandersson
et al. [38] implemented triple-time-redundant execution and
control-flow checking as a proof of concept, which led to 300 %
runtime overhead. However, none of these approaches addresses
memory errors.

Finally, robust data structures can deal with memory errors.
Taylor et al. [18] proposed linear lists and binary trees that use
redundant pointers but leave the payload unprotected. Aumann
et al. [39] formalized a similar approach and extended it to
fault-tolerant stack data structures. A formal methodology for
the specification of invariants (constraints that are satisfied by
correct data structures) is presented in [40]. Automatic detection
and repair of errors by validating user-defined invariants at
runtime has been studied in [41]. Thus, the design of robust data
structures requires an excellent understanding of the software.
Moreover, it is essential that appropriate invariants exist, which
are often difficult – or even impossible – to specify. Our generic
object protection, however, is very easy to apply to existing
software, because we do not require comprehensive knowledge
of the system nor do we need to modify it.

VII. CONCLUSIONS

In this paper we have presented an aspect-oriented approach
to software-based fault-tolerance, which can be tailored based
on application knowledge and, thus, overhead-wise clearly
outperforms related works from other authors. We regard the
total performance overhead of 0.09–1.7 % as negligible. At the
same time, the number of system failures (both crashes and
silent data corruptions) caused by errors in eCos’ scheduler
and thread data structures could be reduced significantly from
12.8 % to below 0.01 %. Moreover, our approach is completely
generic and can be applied to any other object-oriented C++
program as well.

An interesting side effect is that in contrast to hardware
ECC solutions, software bugs are also detected. For example, if
a parallel thread or an interrupt handler erroneously overwrites
the content of an object, the proposed mechanism will detect
the problem. Considering the ongoing trend towards multi- and
many-core CPUs and multi-threaded code, this property might
become a huge benefit.

The main disadvantage of the approach is the significant
code bloat, caused by the vast number of instantiations of
generic code. This is certainly a problem in some embedded us-
age scenarios. Code size reduction will therefore be our primary
goal for future work. We expect that a better interprocedural
analysis inside the AspectC++ compiler would help to further
reduce the number of checks, but its implementation is subject
to future work.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their very
helpful and encouraging comments. This work was partly
supported by the German Research Foundation (DFG) priority
program SPP 1500 under grant no. SP 968/5-2, and the SFB 876
project A4.

REFERENCES

[1] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
A large-scale field study,” in Proceedings of the eleventh international
joint conference on Measurement and modeling of computer systems, ser.
SIGMETRICS ’09. New York, NY, USA: ACM, 2009, pp. 193–204.

[2] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells and
platters: an empirical analysisof hardware failures on a million consumer
PCs,” in ACM SIGOPS/EuroSys Int. Conf. on Computer Systems 2011
(EuroSys ’11). New York, NY, USA: ACM, Apr. 2011, pp. 343–356.

[3] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays
don’t strike twice: understanding the nature of DRAM errors and the
implications for system design,” in 17th Int. Conf. on Arch. Support for
Programming Languages and Operating Systems (ASPLOS ’12). New
York, NY, USA: ACM, 2012, pp. 111–122.

[4] D. Tang, P. Carruthers, Z. Totari, and M. W. Shapiro, “Assessment of the
effect of memory page retirement on system RAS against hardware faults,”
in International Conference on Dependable Systems and Networks, 2006.
DSN 2006, Jun. 2006, pp. 365–370.

[5] C. Constantinescu, “Impact of deep submicron technology on depend-
ability of VLSI circuits,” in International Conference on Dependable
Systems and Networks, 2002. DSN 2002, 2002, pp. 205–209.

[6] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol. 22, no. 3, pp. 258–266, May 2005.

[7] R. W. Hamming, “Error detecting and error correcting codes,” Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[8] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for
PC server main memory,” IBM Whitepaper, 1997.

[9] D. H. Yoon and M. Erez, “Virtualized and flexible ECC for main memory,”
in 15th Int. Conf. on Arch. Support for Programming Languages and
Operating Systems (ASPLOS ’10). New York, NY, USA: ACM, 2010,
pp. 397–408.

[10] A. D. Fogle, D. Darling, R. C. B. II, and E. Daszko, “Flash memory
under cosmic and alpha irradiation,” IEEE Transactions on Device and
Materials Reliability, vol. 4, no. 3, pp. 371–376, Sep. 2004.

[11] A. Massa, Embedded Software Development with eCos. Prentice Hall
Professional Technical Reference, 2002.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in 11th Eur.
Conf. on OOP (ECOOP ’97), ser. LNCS, M. Aksit and S. Matsuoka,
Eds., vol. 1241. Springer, Jun. 1997, pp. 220–242.

[13] M. Rebaudengo, M. S. Reorda, M. Violante, and M. Torchiano, “A
source-to-source compiler for generating dependable software,” in 1st
IEEE Int. W’shop on Source Code Analysis and Manipulation, 2001.

[14] D. Chen, A. Messer, P. Bernadat, G. Fu, Z. Dimitrijevic, D. J. F. Lie,
D. Mannaru, A. Riska, and D. Milojicic, “JVM susceptibility to memory
errors,” in Proc. of the 2001 Symposium on JavaTM Virtual Machine
Research and Technology Symposium - Volume 1 (JVM’01). Berkeley,
CA, USA: USENIX Association, 2001.

[15] K. Pattabiraman, V. Grover, and B. G. Zorn, “Samurai: protecting
critical data in unsafe languages,” in Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008, ser.
Eurosys ’08. New York, NY, USA: ACM, 2008, pp. 219–232.

[16] C. Fetzer, U. Schiffel, and M. Süßkraut, “An-encoding compiler: Building
safety-critical systems with commodity hardware,” in Proc. of the 28th
Int. Conf. on Computer Safety, Reliability, and Security, ser. SAFECOMP
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 283–296.

[17] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O. Spinczyk,
“FAIL*: Towards a versatile fault-injection experiment framework,”
in 25th Int. Conf. on Arch. of Comp. Sys. (ARCS ’12), Workshop
Proceedings, ser. Lecture Notes in Informatics, vol. 200. German
Society of Informatics, Mar. 2012, pp. 201–210.

[18] D. J. Taylor, D. E. Morgan, and J. P. Black, “Redundancy in data
structures: Improving software fault tolerance,” IEEE Transactions on
Software Engineering, vol. SE-6, no. 6, pp. 585–594, Nov. 1980.

[19] R. E. Filman and D. P. Friedman, “Aspect-oriented programming is
quantification and obliviousness,” in W’shop on Advanced SoC (OOPSLA

’00), Oct. 2000.
[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.

Griswold, “An overview of AspectJ,” in 15th Eur. Conf. on OOP (ECOOP
’01), ser. LNCS, vol. 2072. Springer, Jun. 2001, pp. 327–353.

[21] O. Spinczyk and D. Lohmann, “The design and implementation of

AspectC++,” Knowledge-Based Systems, Special Issue on Techniques to
Produce Intelligent Secure Software, vol. 20, no. 7, pp. 636–651, 2007.

[22] D. Lohmann, G. Blaschke, and O. Spinczyk, “Generic advice: On the
combination of AOP with generative programming in AspectC++,” in
3rd Int. Conf. on Generative Programming and Component Engineering
(GPCE ’04), ser. LNCS, G. Karsai and E. Visser, Eds., vol. 3286.
Springer, Oct. 2004, pp. 55–74.

[23] K. Czarnecki and U. W. Eisenecker, Generative Programming. Methods,
Tools and Applications. AW, May 2000.

[24] A. Alexander, C++ Design: Generic Programming and Design Patterns
Applied, ser. C++ In-Depth. Adison-Wesley, 2001.

[25] E. G. Coffman, M. J. Elphick, and A. Shoshani, “System deadlocks,”
ACM Comput. Surv., vol. 3, no. 2, pp. 67–78, Jun. 1971.

[26] W. Kao, R. K. Iyer, and D. Tang, “FINE: a fault injection and monitoring
environment for tracing the UNIX system behavior under faults,” IEEE
Transactions on Software Engineering, vol. 19, no. 11, pp. 1105–1118,
Nov. 1993.

[27] J.-C. Fabre, F. Salles, M. Rodriguez-Moreno, and J. Arlat, “Assessment of
COTS microkernels by fault injection,” in Proceedings of the conference
on Dependable Computing for Critical Applications, ser. DCCA ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 25–.

[28] H. Madeira, R. R. Some, F. Moreira, D. Costa, and D. A. Rennels,
“Experimental evaluation of a COTS system for space application,” in
Proc. of the 2002 Int. Conf. on Dependable Systems and Networks (DSN
’02). Washington, DC, USA: IEEE Computer Society, 2002.

[29] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. Lie, D. D.
Mannaru, A. Riska, and D. Milojicic, “Susceptibility of commodity
systems and software to memory soft errors,” IEEE Trans. Comput.,
vol. 53, no. 12, pp. 1557–1568, Dec. 2004.

[30] X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evaluation
of memory hardware errors and software system susceptibility,” in
Proceedings of the 2010 USENIX annual technical conference, ser.
USENIX ATC’10. Berkeley, CA, USA: USENIX Association, 2010.

[31] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and N. P.
Jouppi, “LOT-ECC: Localized and tiered reliability mechanisms for
commodity memory systems,” in 39th Annual International Symposium
on Computer Architecture (ISCA), 2012, Jun. 2012, pp. 285–296.

[32] D. Dopson, “SoftECC: a system for software memory integrity checking,”
Master’s thesis, Massachusetts Institute of Technology, Sep. 2005.

[33] H. Schirmeier, J. Neuhalfen, I. Korb, O. Spinczyk, and M. Engel,
“RAMpage: Graceful degradation management for memory errors in
commodity linux servers,” in 17th IEEE Pacific Rim Int’l Symp. on Dep.
Comp. (PRDC ’11). Pasadena, CA, USA: IEEE, Dec. 2011, pp. 89–98.

[34] J. Chang, G. A. Reis, and D. I. August, “Automatic instruction-level
software-only recovery,” in Dependable Systems and Networks, 2006.
DSN 2006. International Conference on, Jun. 2006, pp. 83–92.

[35] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A C/C++
source-to-source compiler for dependable applications,” in Int. Conf. on
Dependable Systems and Networks (DSN), 2000, pp. 71–78.

[36] M. Leeke and A. Jhumka, “An automated wrapper-based approach to the
design of dependable software,” in The Fourth International Conference
on Dependability (DEPEND). IARIA, 2011.

[37] F. Afonso, C. Silva, S. Montenegro, and A. Tavares, “Applying aspects
to a real-time embedded operating system,” in Proceedings of the
6th workshop on Aspects, components, and patterns for infrastructure
software, ser. ACP4IS ’07. New York, NY, USA: ACM, 2007.

[38] R. Alexandersson and J. Karlsson, “Fault injection-based assessment
of aspect-oriented implementation of fault tolerance,” in International
Conference on Dependable Systems Networks (DSN 2011), Jun. 2011,
pp. 303–314.

[39] Y. Aumann and M. A. Bender, “Fault tolerant data structures,” in
Proceedings of the 37th Annual Symposium on Foundations of Computer
Science, ser. FOCS ’96. Washington, DC, USA: IEEE Computer
Society, 1996, pp. 580–589.

[40] K. Kant and A. Ravichandran, “Synthesizing robust data structures—an
introduction,” IEEE Trans. on Computers, vol. 39, no. 2, pp. 161–173,
Feb. 1990.

[41] B. Demsky and M. Rinard, “Automatic detection and repair of errors in
data structures,” in Proc. of the 18th annual ACM SIGPLAN Conf. on
Object-oriented programing, systems, languages, and applications, ser.
OOPSLA ’03. New York, NY, USA: ACM, 2003, pp. 78–95.

