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Abstract—Since the first identification of physical causes for
soft errors in memory circuits, fault injection (FI) has grown into
a standard methodology to assess the fault resilience of computer
systems. A variety of FI techniques trying to mimic these physical
causes has been developed to measure and compare program
susceptibility to soft errors.

In this paper, we analyze the process of evaluating programs,
which are hardened by software-based hardware fault-tolerance
mechanisms, under a uniformly distributed soft-error model. We
identify three pitfalls in FI result interpretation widespread in the
literature, even published in renowned conference proceedings.
Using a simple machine model and transient single-bit faults
in memory, we find counterexamples that reveal the unfitness
of common practices in the field, and substantiate our findings
with real-world examples. In particular, we demonstrate that the
fault coverage metric must be abolished for comparing programs.
Instead, we propose to use extrapolated absolute failure counts
as a valid comparison metric.

I. INTRODUCTION

Since the identification of physical causes for transient
hardware errors (soft errors) in the 1970s [1], [2], computer
systems have been hardened on different hardware and software
levels to reduce the probability of system failures [3]. This paper
focuses on software-implemented hardware fault-tolerance for
soft-error mitigation, such as [4], [5], [6], [7], [8].

Software-based hardware fault-tolerance mechanisms need
to be tested, measured and compared in order to assess their
effectiveness in the particular use case. In the simplest case,
an unmodified baseline version of a benchmark program (with
some pre-defined input) is supposed to compete with a hardened
version of the same program, and the latter is expected to exhibit
increased fault resilience.

However, soft errors per bit are very rare in reality [9], [10],
[11], and consequently hardened systems cannot simply be
deployed in their target environment under normal conditions
to observe their fault handling capabilities: Even if soft errors
occur, this approach does not yield statistically authoritative
evidence that proves a fault-susceptibility reduction of the
hardened program.

For at least two decades, the common solution to this
problem in the field has been fault injection (FI) [12], [13], [14],
[15], [16]. FI is used to mimic the effects of the original causes
for soft errors to a certain degree, but with extremely increased
occurrence probability to trigger the fault-tolerance mechanisms
often enough for sufficient evidence of their effectiveness. Note
that, besides for effectiveness measurements, FI is also used
for other purposes that are beyond the scope of this paper,

such as the injection of software bugs, or functional testing of
fault-tolerance measures.

Due to closeness to the root causes of soft errors in reality,
early hardware-based FI solutions were based on experiments
with radiation sources [17]. Although triggering realistic fault
scenarios, the main disadvantage of this approach is that
FI experiments have a very low controllability (where and
when to inject a fault). As a consequence, they are not
deterministically repeatable (the ability to inject a specific
fault, and to obtain the same experiment result) [16]. These
properties are important for reproducing bugs in the fault-
tolerance implementation. Moreover, they are required for
systematic so-called “pruning” techniques to reduce the amount
of experiments to conduct. Additionally, experiments with
radiation sources are extremely expensive (both money and
time-wise), and handling of radioactive material is delicate. Pin-
level FI, and experiments under the influence of electromagnetic
interference, share these disadvantages to a certain degree [18].

A. Benchmark Comparison with Hardware-based FI
Besides the costs and the implementation intricacies, the

procedure of comparing a baseline and a hardened version of
a benchmark with hardware-based FI is quite straightforward.
After exposing the system-under-test to the influence of a
radiation source, e.g., a Californium-252 isotope [18], the
baseline version is executed on the target system N consecutive
times (with proper system resets in between). In each run,
the system’s output is observed, e.g., by recording the data
printed on a serial interface. Each time it behaves differently
from a previously defined correct behavior, the failure count
F is incremented. With a sufficiently large N , the failure
probability for a benchmark run under increased radiation
conditions can be approximated by using the relative frequency
of observed failures, P (Failure)baseline ≈ Fbaseline/Nbaseline.
(Arlat et al. [12] define a reliability metric R = 1−P (Failure),
but this distinction has no practical relevance for this paper).

The same failure probability approximation is calculated
for the hardened version, yielding P (Failure)hardened. For
normal radiation conditions, both failure probabilities are
over-approximated, because the fault rate has been massively
increased by the radiation source. Compared to systems running
under normal conditions, this over-approximation constitutes a
linear and constant factor, which cancels out when calculating
the comparison ratio r,

r =
P (Failure)hardened
P (Failure)baseline

.

The hardened version improves over the baseline iff r < 1.



B. Software-implemented Fault Injection

Due to the disadvantages of hardware-based FI, a widely
adopted alternative is software-implemented FI. Here, transient
hardware faults are emulated by corrupting the state of a
simulated machine [19], [20], or by injecting faults into
development hardware via a debugger interface [21]. Thereby,
faults can be injected only into parts of the machine that are
visible to the FI implementation, such as memory and CPU
registers.

In this paper, we dissect current practices in interpreting
software-implemented FI results for transient memory errors
from the literature. We identify three common pitfalls that
can skew or even completely invalidate the analysis, and lead
to wrong conclusions when comparing the effectiveness of
software-based hardware fault-tolerance solutions applied to
benchmark programs. We support each pitfall with a concrete
example, and propose an alternative metric that can be used
for benchmark comparison.

In particular, the main contributions of this paper are:

• We dissect current practices in software-implemented
FI with regard to transient memory errors, including
FI experiment-reduction techniques (Section III). Our
findings – quantitatively substantiated by a real-world
data set – are that special care has to be taken to avoid
distorted results by such techniques.

• We show that the widely used fault coverage metric is
unsound for comparing different programs (Section IV).
Specifically, this metric is defective for the evaluation
of software-based hardware fault-tolerance mechanisms
applied to a benchmark program.

• As a remedy, we construct an objective comparison
metric based on extrapolated absolute failure counts,
and introduce the mathematical foundation supporting
this proposition (Section V).

The following section describes the fault and machine model
used throughout this paper. Section VI discusses possible
generalizations and implications of our findings, and, after
reviewing related work (Section VII), the paper concludes in
Section VIII.

II. SETTING THE STAGE: DEFINITIONS, AND MACHINE,
FAULT AND FAILURE MODEL

In this section, we first define the semantics of fundamental
terms used throughout this paper. We then establish the fault
and machine model, and describe the assumed repeatable, de-
terministic FI experiment execution. Subsequently, we describe
the benchmark data we used, and describe the possible failure
modes these programs can exhibit.

A. Terms and Definitions

In this paper, we use the terms fault, error and failure
in their classical meaning [22] from a software-level fault-
tolerance perspective. A failure is specified by a deviation
of the software system’s behavior, primarily its output, from
its correct behavior. The failure mode differentiates between
different forms of failure. An error, a deviation of the system’s
internal state from the norm, may lead to a failure. The root

cause of an error is a fault that turns into an error if it is
activated. Otherwise, the fault stays dormant. [22]

The term “soft error” – a transient corruption of machine
state, such as bits in main memory – was originally devised from
a hardware perspective. From our software-level perspective,
a “soft error” is actually a fault, and forms the root cause
for errors and failures. Nevertheless, we will use “soft error”
throughout this paper, and actually mean transient faults.

B. Fault Injection (FI)

Fault injection [12], [13], [14], [15], [16] started out
many years ago as a testing technique for dependability
validation. A common use case involves uncovering design
and implementation weaknesses, for example, by providing
faults in the program input. Here, the representativeness of the
injected faults is irrelevant for the goal of revealing program
bugs.

Since then, software-implemented FI has also been applied
to benchmark programs for quantitative evaluation of software-
based hardware fault-tolerance mechanisms, as in [4], [5], [6],
[7], [8]. This use case is completely different from testing.
For the assessment of fault-tolerance effectiveness, the injected
faults have to closely represent real hardware faults: A realistic
spatial and temporal distribution of the injected faults is crucial.

This paper only concerns software-implemented FI for
quantitative evaluation. In the following, we refer to FI as
software-implemented technique to obtain statistics for the
comparison of program susceptibility to soft errors. Other goals
of FI, such as testing or the injection of program bugs, are
beyond the scope of this study.

C. Fault and Machine Model

To focus on the core findings in this paper, we use a
simplistic machine model. Abstracting from CPU specifics,
we assume a simple RISC CPU with classic in-order execution,
without any cache levels on the way to a wait-free main memory,
and with a timing of one cycle per CPU instruction. The
CPU executes programs from read-only memory. Section VI-B
discusses possible generalizations from this simple model.

On this machine, benchmark runs can be carried out
deterministically, i.e., the same program with an identical start
configuration (program input and machine state) is exposed
to a pre-defined sequence of external events (timer interrupts
or other input at runtime), and leads to an exactly identical
program run.1 Additionally, the machine can be paused at an
arbitrary cycle during the run (e.g., to inject a fault by changing
the machine state) and resumed afterwards. In practice, this
can be achieved by, e.g., using a hardware simulator.

As the basic fault model throughout this paper, we use a
classic soft-error model widely used in the literature: uniformly
distributed, independent and transient single-bit flips in main
memory, modeled as originating from direct influences of
ionizing radiation. We pick this fault model primarily due
to its simplicity, easing the illustration of the issues presented,
but a large-scale study from the year 2013 [11] confirms that

1Note that deterministic does not mean that system reactions on external
events, such as asynchronous device interrupts, cannot be analyzed. In
deterministic benchmark runs, such events are replayed at the exact same
point in time during each run.



the model is still valid for contemporary memory technology.
As memory cells dominate the chip area of modern CPUs [23],
our findings may possibly also apply to SRAM-based on-
chip caches; Section VI-B discusses this, and other possible
implications. We quantize the time with a granule of CPU
cycles, restricting faults to be only injected between the
execution of one instruction and the next. Additionally, we
assume the ROM, holding the program instructions, to be
immune to faults.

We are aware that in practice, other parts of the machine
are also susceptible, and that errors may also propagate from
the CPU logic. Some of our findings may apply for other fault
models, too, but this is beyond the scope of this paper, and
material for future work.

D. Failure Model and Benchmark Setup

As already mentioned in the introduction, the effectiveness
of a software-based hardware fault-tolerance mechanism can be
assessed by applying it to a set of benchmarks, and comparing
the failure probability of these hardened benchmark variants
to their baseline counterparts. Thus, the primary ingredients
for this undertaking are benchmark programs, a fault-tolerance
mechanism, and a definition of failure that fits the benchmarks’
original purpose. Additionally, the benchmark inputs must be
chosen based on a fair sample of the “operational profile”, i.e.,
they must be representative of what to expect in real operation.

As a real-world example, we use benchmarks, fault-
tolerance mechanisms and result data from an earlier publication
[8] throughout this paper. In this publication, we developed
a library of software-based fault-tolerance mechanisms, and
aimed at protecting “critical” data with long lifetimes. These
mechanisms were applied to a set of run-to-completion test
programs with known output, belonging to the eCos operating
system [24]. From the raw data, we pick the results for the
BIN_SEM2 and SYNC2 benchmarks in both their baseline vari-
ant, and a variant hardened by checksums and data duplication
(termed “SUM+DMR”). Figure 2g shows the runtime (in CPU
cycles) and the memory usage of these benchmark variants.

In the previous publication [8], we ran extensive FI cam-
paigns with our FAIL* tool [25] and observed the benchmarks’
behavior after the injection. We examined the benchmark
output on the serial interface for silent data corruption, and
monitored the system for CPU exceptions and timeouts. Overall,
we differentiated between eight experiment-outcome types, of
which two – “No Effect” and “[Error] Detected & Corrected”
– can be interpreted as a benign behavior that has no visible
effect from the outside. We coalesce these two result types
into “No Effect”, and the remaining six failure modes into a
subsuming “Failure” type, as the detailed differentiation is of
no relevance for this paper.

III. FAULT-SPACE SCANNING AND PRUNING

In this section, we discuss the statistics behind improbable
independent faults, and thereby motivate that injecting a single
fault per experiment suffices. We show that even with this
simplification the number of necessary FI experiments to cover
the whole fault space is practically infeasible. Consequently,
we describe two widely used experiment-reduction techniques,
namely sampling and def/use pruning. By examining common

practices in applying these techniques, we identify our first
pitfall, and present a means to avoid it.

A. Improbable Independent Faults

With a fault model of uniformly distributed, independent
and transient single-bit flips in main memory (cf. Section II-C),
a single run of a simple run-to-completion benchmark can
theoretically be hit by any number of independent faults.
Multiple faults can occur at arbitrary points in time, and affect
different bits in memory.

In Figure 1a, each black dot denotes a possible time2 (CPU
cycle) and space (memory bit) coordinate where a fault can hit
the benchmark run and flip a bit in memory, affecting the stored
value throughout the subsequent cycles until it gets eventually
overwritten. Without considering the problem in more depth,
trying to run one FI experiment each for every subset of these
hit coordinates is infeasible, as the cardinality of the power set
grows exponentially.

In reality, though, the probability for a single-bit flip
occurring at one bit in main memory within the time span of one
CPU cycle – e.g., the probability for flipping bit #3 exactly in
the time frame between cycle 4 and 5 in Figure 1a – is extremely
low. Recent large-scale studies on DRAM (DDR-2 and DDR-3)
memory technology report soft-error rates of 0.061FIT 3 per
Mbit [9], 0.066FIT/Mbit [10] and 0.044FIT/Mbit [11].
Even though different DRAM vendors were tested, the resulting
soft-error rates are quite similar. Using the mean of these three
error rates, for a single bit, the soft-error rate per nanosecond
(assuming a clock rate of 1 GHz, or one cycle per ns, for our
simplistic CPU from Section II-C) is:

g = 0.057
FIT

Mbit
=

0.057

109h · 106bit

=
0.057

109 · 3600 · 109ns · 106bit
≈ 1.6 · 10−29

1

ns · bit

The probability of one benchmark run being hit by k = 0,
1, 2, or more independent faults can be calculated using the
binomial distribution. Nevertheless, for such an extremely low
fault probability, it can be well approximated using the Poisson
distribution (assuming the occurrence of faults is a Poisson
process) [26]:

Pλ(k) =
λk

k!
e−λ (1)

The Poisson parameter λ = gw is calculated using the
aforementioned soft-error rate g, and the fault-space size w =
∆t ·∆m characterizing the benchmark by its runtime in CPU
cycles ∆t, and the amount of main memory in bits ∆m it
uses. Using concrete values for the benchmark runtime and
memory usage, e.g., ∆t = 1s (corresponding to 109 cycles in
our simplistic CPU model) and ∆m = 1MiB = 223bit , yields
the probabilities for k faults hitting one benchmark run listed
in Table I.

Unsurprisingly, for the magnitude of the parameter values,
the probability that a benchmark run is not hit at all is extremely
high. This zero-fault case naturally does not require any FI

2Note that time is quantized in granules of CPU cycles (cf. Section II-C).
3The FIT (Failures In Time) rate measures the number of failures to be

expected per 109 hours of operation.
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(a) Single-bit flip fault space for a run-to-completion benchmark. Each
dot represents a possible FI space/time coordinate. The benchmark
proceeds until and stops at a specific point in time, the corresponding
memory bit is flipped, and the benchmarks resumes.
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(b) Single-bit flip fault space and def/use equivalence classes extracted
from a program trace, reducing the FI experiments (dots) that need to
be conducted. Fault injections at white coordinates (non-filled circles)
can be omitted, as a fault there is overwritten or never read (dormant
faults). A black dot represents a class of equivalent faults (light-gray
coordinates) between the write and subsequent read instruction.

Fig. 1. The fault space spanned by CPU Cycles × Memory Bits. Every discrete (cycle, bit) coordinate denotes an event where a memory bit can flip during the
depicted twelve CPU cycles.

TABLE I. POISSON PROBABILITIES FOR k = 0, 1, 2, OR MORE
INDEPENDENT FAULTS HITTING ONE BENCHMARK RUN.

k Pλ(kFaults) k Pλ(kFaults)

0 0.999999999999867 3 3.905 · 10−40

1 1.328 · 10−13 4 1.297 · 10−53

2 8.821 · 10−27 . . . . . .

experiments. But, even more noteworthy, the probability for
two or more hits is so much lower than for one fault hitting
the benchmark’s used memory ∆m that these cases can be
considered negligible.4 Hence, at current (and tomorrow’s) fault
rates, and for short benchmark runtimes, it suffices to inject
one fault per benchmark run.

Nevertheless, applying the numbers from our hypothetical
benchmark example to the fault-space diagram in Figure 1a
(the CPU cycles axis now spans from 0 to ∆t = 109 cycles,
the memory bits axis from bit #0 to #223) clarifies that, for a
full fault-space scan, even with only one fault per run w =
∆t·∆m ≈ 8.4·1015 FI experiments would have to be conducted.
Even assuming we can simulate our simple CPU in real-time,
this procedure would take about 266 million CPU years.

B. Reducing Experiment Efforts: Fault Sampling

One widespread solution to this fault-space explosion
problem is fault sampling [12], [27], [28]. Since the distribution
of faults in the fault space is assumed uniform (Section II-C), FI
experiments are picked uniformly from this space (Figure 1a).
Consequently, the results can be used to estimate the fault
coverage factor (or short, fault coverage) [29], “defined as the
probability of system recovery given that a fault exists” [27].

4Even at a hypothetical fault rate of g = 10−20, nine orders of
magnitude higher than in the example, the distance between Pλ(1 Fault)
and Pλ(2 Faults) is still more than 104.

The fault coverage c, or – formalizing the citation from
[27] – P (No Effect|1 Fault) or 1-P (Failure|1 Fault), can be
calculated after randomly picking N (time, space) coordinates
from the fault space, and running an FI experiment for each
of them. In each experiment, the benchmark program is run
from the beginning until the CPU cycle for the FI (the time
component of the randomly picked coordinate from Figure 1a)
has been reached. The machine is then paused, the fault gets
injected by flipping the bit in memory corresponding to the
space component of the coordinate, and the machine is resumed.
As described in Section II-D, then the experiment outcome is
observed, turning out either as “No Effect”, or as “Failure”.
In the latter case, the failure counter F is incremented. (“No
Effect” results are implicitly counted as N − F ).

The fault coverage c can subsequently be calculated as

c = 1− P (Failure|1 Fault) = 1− F

N
. (2)

We will see in Section IV and V that the fault coverage metric,
originally only devised for the assessment of hardware systems
[29], is flawed for comparing software programs. The sampling
process itself is unproblematic, as long as a sufficiently large
number of samples is taken for statistically authoritative results.
This topic is outside the scope of this paper, and we, thus, refer
to the literature covering this matter [12], [27], [28].

C. Reducing Experiment Efforts: Def/use Pruning

Recent FI techniques proceed with more sophistication than
randomly sampling locations in the fault space, and are based
on instruction and memory-access traces. These traces are
created during a so-called “golden run”, which exercises the
target software without injecting faults (and, thus, serves as a
reference for the expected program behavior).

Figure 1b exemplarily shows the memory-access informa-
tion recorded during the golden run. The dynamic instruction



starting in CPU cycle 4, a store, writes (“W”) eight bits to
main memory, and the data is read (“R”) back into the CPU
in cycle 11, executing a load instruction.

Based on this kind of memory-access trace information,
Smith et al. [30] and Güthoff and Sieh [31] are among the
first concisely describing the classical def/use analysis for
experiment reduction (termed “operational-profile-based fault
injection” in the latter paper). It is so fundamental that it
was subsequently reinvented several times, e.g., by Benso et
al. [32], [15], Berrojo et al. [33] (“Workload Dependent Fault
Collapsing”), Barbosa et al. [34] (“inject-on-read”), and recently
by Grinschgl et al. [35] and Hari et al. [19].

The basic insight is that all fault locations between a def
(a write or store, “W” in Figure 1b) or use (a read or load, “R”
in the figure) of data in memory, and a subsequent use, are
equivalent: regardless of when exactly in this time frame a fault
is injected there, the earliest point where it will be activated
is when the corrupted data is read. Instead of conducting one
experiment for every point within this time frame, it suffices to
conduct a single experiment (for example at the latest possible
time directly before the load, black dot in Figure 1b), and
assume the same outcome for all remaining coordinates within
that def/use equivalence class (light-gray frames in Figure 1b).

Similarly, all points in time between a load or store and
a subsequent store without a load in between (light-gray dots
in the remaining fault-space coordinates left, right and above
the marked equivalence classes in Figure 1b) are known to
result in “No Effect” without having to run experiments at all:
injected faults will be overwritten by the next store in all cases.

The result of the def/use pruning process is a partitioning of
the fault space into equivalence classes, some of which a single
experiment needs to be conducted for (those ending with a
load, “R”), and some with a priori known experiment outcome.
From the 12 · 9 = 108 experiments in the illustrative example
of Figure 1a, only 8 remain after def/use pruning in Figure 1b.

In real-world examples, def/use pruning (especially when
applied to faults in memory) is extremely effective. For example,
the baseline variant of the SYNC2 benchmark (cf. Section II-D)
is reduced from a raw fault-space size of w ≈ 1.5 · 108 to
merely 19,553 experiments. Thus, a full fault-space scan is
feasible even on a single machine within a reasonable time
frame, and without any loss of precision regarding the result
information on any point in the fault space.

D. Def/use Pruning and the Weighting Pitfall

Since its inception, def/use pruning was meant as an effort-
reducing, conservative optimization for the theoretical full
fault-space scanning model [34]. If, assuming the experiment
numbers from Figure 1b, four of the eight (black-dotted)
actually conducted experiments turned out as “Failure” (and,
inversely, the remaining four as “No Effect”), this number must
not be used in Equation 2 for fault-coverage calculation without
any post-processing, yielding a wrongly calculated coverage of
c = 1− 4

8 = 50%. Instead, the previously collapsed equivalence
classes must be expanded to their original size again, weighting
each FI-obtained result with the corresponding equivalence-
class size. Güthoff et al. also state this explicitly: “Each result
obtained by [. . . ] fault injection experiments must be weighted
with the corresponding relative data life-cycle length.” [31]
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(b) Coverage, with result weighting

Fault
Coverage

BIN_SEM2 SYNC2
w/o Weighted w/o Weighted

Baseline 59.09 % 87.97 % 53.83 % 87.07 %
Hardened 79.64 % 99.99 % 89.64 % 98.76 %

(c) Fault coverage, raw data. The percentages without (w/o) weighting are
off by 9–33 percent points compared to the weighted coverages.
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(d) Absolute failure result counts, without
result weighting
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(e) Absolute failure result counts,
with result weighting (log. scale)

Failure
Count

BIN_SEM2 SYNC2
w/o Weighted w/o Weighted

Baseline 85,636 5.08×1011 435,371 8.55×107

Hardened 2,110,356 3.15×108 4,459,345 5.02×108

(f) Absolute failure counts, raw data. Without (w/o) weighting, the failure
counts are underestimated by several orders of magnitude.

Characteristics BIN_SEM2 SYNC2
Cycles Mem. Cycles Mem.

Baseline 559,868,647 942 313,132 264
Hardened 559,905,321 1,134 10,170,140 496

(g) Benchmark characteristics: Runtime in CPU cycles, and memory usage
(data addresses read or written during the run) in bytes.

Fig. 2. FI result interpretation with and without avoidance of Pitfalls 1 and 3.



Going beyond their statement, the literature presents no
plausible argument why fault-space coordinates we do not
conduct any experiment for (the white dots in Figure 1b, known
a priori to yield “No Effect”) should be omitted in the result
calculation. Section IV and V will shed more light on this
debate; for now, we assume that all coordinates – the example
fault-space size N is 12 · 9 = 108 – should be included in
the fault coverage calculation, which now correctly (with a
weight of 7, the size of each light-gray equivalence class in
Figure 1b, for each of the four “Failure” results) calculates as
c = 1− F

N = 1− 4·7
108 ≈ 74.1%.

Another explanation why this weighting is necessary can be
derived from intuition: the longer data lives in a memory cell,
the more probable a soft error will affect it. If no weighting
is applied, the same fault coverage is calculated regardless of
seven (Figure 1b) or seven million cycles between the store and
the subsequent load of the data. Then, the pruning technique is
not only a methodology to reduce FI experiment efforts, but has
a severe impact on the result: The fault model unintentionally
has degenerated from “uniform transient single-bit flips in main
memory” to “uniform transient single-bit flips in main memory
while a memory read operation is in progress” (modeling
something similar to single-bit flips on the memory bus). Hence,
the results are extremely skewed depending on the amount of
memory accesses the benchmark executes, and the variance in
memory-data lifetimes.

Now that we know def/use equivalence classes should be
weighted in theory, does this have an impact on real-world
examples? Figure 2a and 2b show fault coverages for the
baseline and hardened variants of the BIN_SEM2 and SYNC2
benchmarks (cf. Section II-D), calculated without and with
weighting. The difference is directly visible: in the unweighted
case, the fault coverages of all benchmark variants are severely
underestimated compared to the weighted case. The coverage
values are off by 9.1 (SYNC2 hardened) up to 33.2 percent
points (SYNC2 baseline).

The reason for the bias in the two example benchmarks
is a correlation between def/use equivalence class size and
experiment outcome. For the four benchmark variants we use,
the only positive aspect is that the trend from the baseline
to the hardened variants is the same in all cases, so that no
dangerously wrong design decisions would have been made
using the unweighted coverage results.

Pitfall 1: Unweighted Result Accounting
Summarizing this section, our first pitfall is the unweighted
result accounting when using def/use pruning. Fault-space
pruning is an optimization, and, thus, must not have any
influence on the resulting numbers. When a technique such
as the common def/use pruning changes the fault model’s
uniform distribution into a distribution that is strongly biased
by the program execution, each result must be weighted
with the corresponding data lifetime to compensate.

In the literature, a lack of result weighting is in most
cases hidden behind fault-coverage factor percentages that
do not reveal whether weights were applied. One example
where the additionally provided data indicates that no weights
were used is from Hoffmann et al. [36], who compare the
fault susceptibility of two embedded operating systems using

unweighted experiment numbers. Barbosa et al. [34] recognize
that weighting is needed to compensate for the effects of
pruning, but conclude that the difference is small for the
benchmarks they used. In contrast, our benchmark examples
in Figure 2 serve as a warning that this is not always the
case. Alexandersson and Karlsson [37] realize that def/use
pruning affects the comparability of their results to those of
other studies. Other def/use pruning descriptions simply omit
the relevant detail whether weighting is used, e.g., Berrojo et
al. [33]. Additionally, tools clearly designed for the purpose
of testing (where weighting is not necessary), such as Relyzer
from Hari et al. [19], may be misused for comparison purposes.
Correct metrics should be integrated.

E. Combining Def/use Pruning and Sampling

The conclusions from the previous section are based on
def/use pruning of a full fault-space scan. However, often a
prohibitive number of FI experiments still remain after def/use
pruning. Pruning and sampling can be combined to further
reduce the experiment count. Clearly, the combination of both
techniques must yield the same results as pure sampling, but
with reduced effort.

Therefore, samples (fault-space coordinates) have to be
drawn uniformly from the raw, unpruned fault space to get
a representative sample of the entire fault-space population.
The def/use pruning is then carefully applied in a second step:
We only need to conduct a single FI experiment for fault-
space coordinates in the sample that belong to the same def/use
equivalence class. Nevertheless, we still need to count the results
of all sampled fault-space coordinates to properly calculate
the estimate for the entire fault-space population. Thereby,
even coordinates known to result in “No Effect” (because their
def/use equivalence class ends with a store, cf. Section III-C)
must be included, although we will lift that requirement in
Section V-C.

The other way around, applying def/use pruning first and
then drawing samples uniformly from the already-pruned fault
space, i.e., picking def/use equivalence classes with the same
probability, leads to a biased estimate. A fault-space coordinate
that belongs to a small def/use equivalence class would be
included in the sample with a higher probability than for
uniform sampling of the raw fault space. The reason is that the
weight of each equivalence class biases the selection probability
of its fault-space coordinates.

Pitfall 2: Biased Sampling
Hence, our second pitfall is biased sampling. If def/use
pruning and sampling are combined, the sampling process
must pick samples from the raw, unpruned fault space.
If several samples belong to the same def/use equivalence
class, only a single FI experiment needs to be conducted
for them, but all samples count in the estimate.

IV. FOOLING FAULT COVERAGE:
A GEDANKENEXPERIMENT

In this section, we will conduct a Gedankenexperiment
with an apparently ineffective software-based hardware fault-
tolerance mechanism protecting a simple benchmark program,
and miraculously improving its fault coverage. Subsequently,



we will revisit the fault-coverage numbers for our BIN_SEM2
and SYNC2 benchmarks, and wonder how effective the used
SUM+DMR hardening mechanism really is.

A. Hi, A Simple Benchmark

Figure 3 shows the C-like source code for a tiny benchmark
program that initializes a local character array, and subsequently
communicates both character values to the outside world via
the serial interface. The corresponding machine code consists
of eight machine instructions consisting of four load and four
store instructions. Figure 3a shows these loads and stores (“R”
respectively “W”), similarly as in Figure 1b, in the complete
fault space of this benchmark, spanning 16 bits on the memory
axis, and eight cycles on the time axis.

If we run a full fault-space scan, i.e., run one independent
FI experiment for every discrete coordinate in the fault space,
and observe whether the benchmark’s output is identical to
the golden run (it is supposed to say “Hi”), the black-dotted
experiments in Figure 3a will turn out as a “Failure”, and the
other ones as “No Effect”. In the “Failure” cases, the fault hits
msg[0] at address 0x1 while the letter ’H’ is stored there
but not yet read back (this happens in CPU instruction #5),
or analogously msg[1] at address 0x2 while the datum ’i’
lives there. The “No Effect” cases are FI experiments where
the fault is subsequently overwritten (before the store cycle
#1 respectively #3), or it is not activated anymore because the
program terminates (after the load cycle #4 respectively #6).

The fault coverage cbaseline can easily be calculated (cf.
Section III-B and III-D) by counting the number of experiments
Nbaseline = 8 ·16 = 128 and the number of “Failure” outcomes
Fbaseline = 3 · 8 · 2 = 48, and inserting them into Equation 2:

cbaseline = 1− Fbaseline

Nbaseline
= 62.5%

B. The Fault-Space Dilution Delusion

Now, we apply a hypothetical software-based fault-tolerance
method – we call it “Dilution Fault Tolerance”, or short DFT
– on the baseline’s machine code by conducting a program
transformation. It works by prepending four NOP instructions
(no operation, performing no real work for one cycle each) to
the machine code, increasing the benchmark’s runtime from
eight to twelve CPU cycles. Figure 3b shows the modified
fault-space diagram for the DFT-hardened benchmark: The
loads and stores have shifted four cycles to the right, and the
newly added experiment dots are all “No Effect”, as no live
data is stored in memory before the original beginning of the
benchmark.

Again calculating the fault coverage chardened with
Nhardened = 12 · 16 = 192 and the number of “Failure”
outcomes Fhardened = 3 · 8 · 2 = 48 yields:

chardened = 1− Fhardened

Nhardened
= 75.0%

Interestingly, by applying a seemingly ineffective “fault
tolerance” program transformation, we increased the fault
coverage by 12.5 percent points. In fact, we could arbitrarily
increase the coverage to any chardened < 100% by inserting
more NOPs!

Now, the attentive reader may point to the literature, and
cite, e.g., Barbosa et al. [34], who argue (in the context of their
def/use fault-space pruning technique) that never activated faults
– a priori known “No Effect” results – should not be included in
the coverage calculation. The newly added experiment dots in
Figure 3b, that contributed to Nhardened in the above calculation
would disappear again (though for no authoritative reason), and
yield chardened = cbaseline.

As a reaction to such disgraceful attempts to make our DFT
mechanism look bad, we would devise DFT’, which replaces the
NOPs by memory reads. For instance, alternatingly executing
ld r1 ← 0x1 and ld r1 ← 0x2 instructions to read
those two memory locations. Now, all newly added experiment
dots would represent faults that actually are “activated” – by
being loaded into a CPU register (and subsequently discarded).
DFT’ would be back at chardened = 75.0%, this time with the
restriction from Barbosa et al. [34].

The central problem with this restriction is, that in a black-
box technique such as FI the “activation” of a fault, turning
it into an error, is an extremely vague business in itself. It
strongly depends on the sophistication of the used fault-space
pruning technique, e.g., not injecting into unused memory, not
injecting into state that is known to be overwritten afterwards,
not injecting into state that is known to be masked by subsequent
arithmetic operations [19], . . . – this list could be continued
for a while. In our opinion, this vague distinction between
“activation” and “no activation” should therefore have no place
in the context of an objective fault-tolerance benchmarking
metric. Though, we will see in Section V that benchmark
comparison can take place without having to decide this
question at all.

To summarize, a seemingly unsuspicious – but entirely
artificial – program transformation can severely skew the fault-
coverage metric.

C. Analyzing the Root Cause

The remaining question is: Why is the fault-coverage metric
unfit to discover the obvious ineffectiveness of the Dilution
Fault-Tolerance mechanism – and does this metric skewing
not only happen in an artificial example, but also occur in
real-world examples?

The fact that we used a (hypothetical) full fault-space scan in
the example, and not sampling, as most works in the community,
is not the culprit. A sufficient number of samples taken from
both fault spaces in Figure 3 would yield estimates close to
the exact numbers for cbaseline and chardened from the previous
section.

A closer look at the definition of fault coverage (Equation 2)
suggests that the metric itself is unfit for benchmark comparison:
The calculated percentages are not relative to the same base
– a common N for both benchmarks – as the divisor directly
depends on the benchmark’s runtime, and also its memory
usage. (The DFT could also simply have used more memory
for no particular purpose instead of prolonging the benchmark’s
runtime). Due to the usual overhead in space and time for
most software-based fault-tolerance mechanisms, a different
fault-space size for baseline and hardened variants must be
considered the norm rather than the exception.
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(a) Fault-space diagram for the baseline version,
finishing after eight CPU cycles.
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(b) Fault-space diagram after applying the Dilution Fault Tolerance (DFT)
mechanism. Four no-operation instructions (nop) are prepended to the baseline
version, resulting in an offset of four CPU cycles.

volatile char msg[2];
msg[0] = ’H’;
msg[1] = ’i’;
serial_put_char(msg[0]);
serial_put_char(msg[1]);

/* C program */

0 ld r1 <- ’H’
1 st 0x1 <- r1
2 ld r1 <- ’i’
3 st 0x2 <- r1
4 ld r1 <- 0x1
5 st $SERIAL <- r1
6 ld r1 <- 0x2
7 st $SERIAL <- r1

Fig. 3. Gedankenexperiment with C-like source code for the baseline version to the left, and corresponding machine instructions (and CPU cycle numbers) to
the right.

If a simple benchmarking cheat – the DFT is, of course,
nothing more – can improve the fault coverage from 62.5 %
to 75 %, how about the real fault-tolerance mechanism used
on the BIN_SEM2 and SYNC2 benchmarks in Figure 2b? Does
the SUM+DMR mechanism really improve the hardware fault-
tolerance of these programs, or is this also a (dilution) delusion?

The next section will try and construct an objective metric
that can be used for benchmark comparison, and then revisit
these benchmarks again.

V. CONSTRUCTING AN OBJECTIVE COMPARISON METRIC

Arrived at the suspicion from the previous section that
the fault-coverage factor may be unfit for the comparison of
software-based fault-tolerance mechanisms, we construct an
objective comparison metric in this section. Subsequently, we
answer the question whether the SUM+DMR mechanism really
improves both the BIN_SEM2 and SYNC2 benchmarks.

A. Back to the Roots: Failure Probability
In Section I, we stated that the absolute probability for the

benchmark’s failure P (Failure) represents the ground truth

for comparing different variants of a benchmark. It can be
calculated by decomposing it using the law of total probability:

P (Failure)

= P (Failure|0 Faults ∨ 1 Fault ∨ 2 F. ∨ 3 F. ∨ . . .)
= P (Failure|0 Faults) · P (0 Faults) +

P (Failure|1 Fault) · P (1 Fault) +

P (Failure|2 Faults) · P (2 Faults) +

P (Failure|3 Faults) · P (3 Faults) + . . .

P (Failure|0 Faults) is known to be zero, and from Sec-
tion III-A we know P (k Faults) is negligibly small for k ≥ 2
for real-world soft-error rates and sufficiently short benchmark
runs. Hence:

P (Failure) ≈ P (Failure|1 Fault) · P (1 Fault) (3)

In Equation 3, P (Failure|1 Fault) can be directly calculated
from the FI results collected by a complete fault-space scan
(cf. Section III-A), using the number of failed experiments F ,



and the fault-space size w (cf. Section III-A):

P (Failure|1 Fault) =
F

w
(4)

In Equation 3, P (1 Fault) can be calculated using the
Poisson probability Pλ(k = 1) from Equation 1 in Section I.
Inserting Eqn. 1 and 4 in Equation 3 yields:

P (Failure) ≈ F

w
· λ

1

1!
e−λ =

F

w
· g · w · e−gw

= F · g · e−gw (5)

g is constant for different benchmark runs, and may not
even be exactly known (but is expected to be very small).
−gw is negative and depends on the fault-space size, but with
the order of magnitude of the parameter values also so small
(taking the example numbers from Section III-A gives −gw ≈
1.3 · 10−13) that assuming e−gw ≈ 1 yields an error of 1 −
e−gw < 10−12. Hence, the failure probability – the metric
identified in Section I as the ground truth – can be approximated
to be directly proportional to the absolute number of failed
experiments F :

P (Failure) ∝ F (6)

Using this proportionality, we also can calculate the com-
parison ratio r, knowing that r < 1 denotes an improvement
of the hardened variant over the baseline:

r =
P (Failure)hardened
P (Failure)baseline

=
Fhardened

Fbaseline

To conclude, the number of “Failed” FI experiments from
a complete fault-space scan is a valid metric for comparing
benchmarks.

B. Fault Coverage and Failure Probability in the Real World
Figure 2e on page 5 shows the application of this finding

to the BIN_SEM2 and SYNC2 benchmarks by plotting their
weighted, raw failure counts. Comparing the new results to
the weighted coverage from Figure 2b exhibits that BIN_SEM2
indeed turns out to be protected effectively by the SUM+DMR
protection scheme, the same trend predicted by the misguiding
fault-coverage plot in Figure 2b. More surprisingly, though,
SYNC2 seems to worsen by more than a factor of five compared
to its baseline – a fact that was completely hidden by the fault-
coverage factor, resulting in a wrong design decision. The fact
that the hardened variant of SYNC2 has an extremely increased
runtime over the baseline, as indicated in Figure 2g, points at
the reason: In this case, a massively increased “No Effect” rate
(just as in our artificial “Hi” example in Section IV) completely
hid the increase in absolute “Failure” results.

Pitfall 3: Fault-Coverage Percentages for Benchmark Com-
parison
Subsequently, our third and most important pitfall is the
usage of fault-coverage percentages for benchmark com-
parison. Unless the fault space dimensions of two program
variants are identical – which is practically never the case
when effective software-based fault-tolerance mechanisms
are in place –, their fault coverages are measured in percent
relative to different fault-space areas, and are by definition
not comparable. Instead, absolute failure counts from a
full fault-space scan must be used for comparison.

Unfortunately, there exists an endless amount of studies
that use fault coverage as a comparison metric for program
susceptibility to soft errors in memory. Examples are Fuchs’s
analysis of the MARS operating system [4], Rebaudengo et al.
[5] with a source-to-source compiler for dependable software,
Nicolescu et al. [6] analyzing a hardened space communications
application, Chen et al. [7] measuring the effectiveness of object
duplication in a Java runtime environment, or our own work
[38] analyzing a protection scheme for virtual-function pointers
in C++. Depending on the overhead (affecting the fault-space
size in time or memory dimensions) the analyzed protection
mechanisms introduce, the conclusions in these studies may be
wrong to the point that the mechanisms actually worsen the
system’s fault resilience.

C. No Effect Results, and Sampling

For our metric, only “Failure” results are relevant for
comparison. As we demonstrated and discussed in Section IV,
“No Effect” results can be arbitrarily skewed (either voluntarily,
or by chance) by artificially modifying the benchmark’s runtime
or memory usage.

Pitfall 3 (Corollary 1): “No Effect” Result Counts
Thus, Corollary 1 of Pitfall 3 is that “No Effect” ex-
periment outcomes are irrelevant for the comparison of
program susceptibility to soft errors in memory, and should
be excluded from the data. Their occurrence is arbitrarily
influenced by the activation and subsequent masking of
faults, and ultimately by the sophistication of fault-space
pruning mechanisms (cf. Section IV-B).

This also means that when combining def/use pruning with
sampling (Section III-E), it is not necessary to sample from
equivalence classes that are known to result in “No Effect”.
This reduces the population size from w to w′ ≤ w.

When sampling is used (cf. Section III-B and III-E), the
number of samples Nsampled, and indirectly also the measured
“Failure” count Fsampled, is arbitrarily chosen by the developer
(but potentially also influenced by the envisaged confidence
level). Hence, the raw Fsampled cannot be used directly for
comparison. To get sampling results into a form usable for
our metric, the raw sample counts must be extrapolated to the
fault-space size to estimate the number of “Failure” results
from a full fault-space scan.

Pitfall 3 (Corollary 2): Raw Sample Counts
Thus, Corollary 2 of Pitfall 3 is not to use raw sample counts.
If sampling is used, the raw result counts are insufficient
for benchmark comparison. The result counts must be
extrapolated to the population size w (or w′, see above)
to be usable for this purpose.

Fextrapolated = w · Fsampled

Nsampled

One example from the literature that provides raw result
numbers, but omits the extrapolation step from sampling to the
full fault space, is from Nicolescu et al. [6].



Summary: Avoiding Pitfalls 1–3
To summarize, the comparison ratio r to objectively
compare hardware-fault tolerant software systems must
be calculated as follows:

r =
P (Failure)hardened
P (Failure)baseline

=
whardened · Fhardened,sampled

Nhardened,sampled

wbaseline · Fbaseline,sampled

Nbaseline,sampled

In the case of a complete fault-space scan, w and N are
equal, and the given formula reduces to r = Fhardened

Fbaseline
.

VI. DISCUSSION AND GENERALIZATION

In the following, we briefly revisit Pitfall 1 to get an intuition
how weighting affects the absolute “Failure” counts from
Pitfall 3. Subsequently, we describe possible generalizations
of our findings to other fault models. Finally, we discuss a
specific case of cross-layer fault-coverage comparison, and its
implications for the validity of high-level FI.

A. Revisiting Pitfall 1: The Effect of Weighting on Raw Numbers

In Section III-D, we discussed the necessity to weight
def/use equivalence classes by their corresponding data lifetimes
(Pitfall 1), and demonstrated the impact of this decision on
the fault coverages of the BIN_SEM2 and SYNC2 benchmarks.
After being convinced that fault coverage is an inadequate
metric for comparison, how much influence does weighting
have on the absolute “Failure” counts advocated in Section V-B
(Pitfall 3)?

Figure 2d on page 5 presents the absolute failure counts
without weighting. In this case, both benchmarks seem to be
less resilient to soft errors in their hardened variant when
compared to the baseline. In contrast, the weighted results in
Figure 2e reveal that BIN_SEM2 in fact improves dramatically
– again (cf. Section V-B), a wrong design decision would have
been made.

This example underlines that all pitfalls mentioned in this
paper must be paid attention to, as each of them independently
can significantly falsify the results, and lead to incorrect design
decisions.

B. Possible Generalizations

In Section II-D, we simplified the failure modes to only
“Failure” and “No Effect” types. Our findings can easily be
generalized to more different experiment outcomes, for example,
Pitfall 3 (Corollary 1) still holds: only “No Effect” results
(denoting no visible effect for the observer) should be excluded,
while the remaining effective result-type counts (e.g., “Silent
Data Corruption”, “Timeout”, . . . ) should be included in the
analysis and separately extrapolated to the fault-space size
(Pitfall 3, Corollary 2).

In Section II-C, we strongly restricted the machine and
fault model to simplify the explanations throughout this paper.
Nevertheless, some of our findings may be generalizable to
both complex machines and a broader hardware fault model.

A modern superscalar out-of-order CPU with several cache
levels would primarily change the timing of memory-access
events. The def/use equivalence-class sizes would be derived
from more detailed timing information, and therefore would

gain a more accurate weight (Section III-D). However, the order
of instruction execution is irrelevant for the FI methodologies
and the pitfalls we identified.

When a much more detailed simulator, e.g., on the flip-flop
level, is available, our findings may be extensible to other
parts of the memory hierarchy. Every bit in the caches, the
CPU registers, or the microarchitectural state of the CPU,
could be part of the fault space – requiring to also record
read and write accesses to these bits for def/use pruning. Then,
faults propagating from the CPU logic should also be taken
into account for weighting. Even without weighting, especially
Pitfall 3 may still be applicable. We will look into these issues
in future work.

C. Cross-Layer Comparisons, and the Invalidity of High-Level
Fault Injection

Recently, two studies analyzed the general validity of high-
level FI, e.g., injection into main memory and CPU registers,
in Cho et al. [39]. Likewise, Wei et al. [40] use the state of
an artificial virtual-machine model for high-level FI validation.
Both studies compare the results from FI experiments running
the same benchmarks on fault-injected low-level simulators
(e.g., simulating at the flip-flop level [39], or the ISA level
[40]), providing a ground truth to match against. Similarly to
our findings in Section IV, the authors use the fault-coverage
metric with different fault-space sizes. In this case, the different
fault-space sizes are not caused by varying benchmark runtimes
or memory usages, but by the vastly different simulator models
affecting both the state-space size and timing granularity.

From their analysis, Cho et al. [39] conclude that high-level
FI “can result in high degrees of inaccuracies by more than
an order of magnitude”, quoting an error of up to factor 45.
Without challenging the possibility that high-level FI may
indeed be inaccurate, the used fault-coverage metric (with
differing fault-space size quotients) may contribute significantly
to this error, and suggest reevaluating the obtained result data
using our comparison metric.

VII. RELATED WORK

Over time, several metrics for the assessment of fault-
tolerance mechanisms have been devised. The classic fault-
coverage factor metric from Bouricius et al. [29] defines a
mathematical model that is used and instantiated by many
subsequent approaches, and is described more in detail in
Section III-B. In Arlat et al. [12], fault injection was initially
defined to be a practical measurement method for fault coverage.
Consequently, most FI tools provide a way to map their results
to this metric [13], [14], [15].

Reis et al. [41] recognize the need for a metric that
adequately captures the tradeoff between performance and
reliability of software-based fault tolerance techniques, and
devise the Mean Work To Failure (MWTF) metric based
on an application-specific definition of “work units” and FI
measurements. Unlike our metric, MWTF is based on measuring
the Architectural Vulnerability Factor (AVF [42], see below)
implying a constant ∆m. Furthermore, the authors do not derive
the connection between MWTF and P (Failure), or the relation
to common practices in the field. More recently, Santini et al.
[43] introduced a similar Mean Workload Between Failures



(MWBF) metric parametrized with results from radiation
measurements.

Several other metrics do not explicitly take the aforemen-
tioned performance/reliability tradeoff into account. Many are
also based on dynamic analysis techniques, such as FI, but
abstract from the low-level details to provide more information
to guide software development. Hiller et al. [44] analyze the
propagation of errors in modular software with their EPIC
framework, and detect the most exposed modules and signals
in the system using the permeability and exposure metrics.
Johansson and Suri [45] extend this approach to the analysis
of the dynamic behavior of an operating system. Similarly,
Gawkowski and Sosnowski [46] also use FI to trace fault
propagation over several levels, from logic up to the application
level.

With the Architectural Vulnerability Factor (AVF), Mukher-
jee et al. [42] devised a classic static fault-tolerance assess-
ment metric. Using low-level simulations, they measured the
reliability of microarchitectural structures. On the software
level, Sridharan et al. [47] developed the Program Vulnerability
Factor that is independent of expert knowledge on the mi-
croarchitecture. Both AVF and PVF weight their results by the
observed data lifetimes, and, thus, avoid Pitfall 1 (Section III-D).
Similarly, Benso et al. [48] created a high-level data criticality
metric determining the probability for each variable that it
propagates an error to the program’s output. More recently,
Rehman et al. [49] proposed the Application Vulnerability Index
(AVI), composed of values from their Function Vulnerability
Index (FVI), and recursively their Instruction Vulnerability
Index (IVI), the latter being derived in a comparable way as
Mukherjee’s AVF [42]. Based on their metrics, they control
reliability optimization passes in a compiler. On an even more
abstract level, Oz et al. [50] analyze multithreaded applications
with the Thread Vulnerability Factor (TVF).

VIII. CONCLUSIONS

After a step-by-step analysis of current practices in software-
implemented FI, we identified three common pitfalls in interpret-
ing FI result data for the comparison of program susceptibility
to soft errors in memory. Showing the effects on a real-world
data set, we demonstrated that each pitfall independently can
skew or even completely invalidate the analysis, and lead to
wrong conclusions regarding the effectiveness of software-based
fault-tolerance.

Concretely, we pointed out 1) that special care has to be
taken when processing the FI results after def/use fault-space
pruning has been applied, 2) that sampling combined with def/
use pruning must account for different equivalence-class sizes,
and, most importantly, 3) that the widely used fault coverage
metric is inadequate for the comparison of different benchmark
variants. As a remedy, we derived an objective comparison
metric that can be calculated both with full fault-space scans
and from sampling results: Absolute failure counts, extrapolated
to the fault-space size in the case of sampling.

For each pitfall we identified, we found FI studies that
are most probably affected. Especially the usage of the fault-
coverage metric for benchmark comparison is widespread – the
few examples cited in Section V-B by no means particularly
stand out. Although we believe that many of the described
software-based hardware fault-tolerance mechanisms would

prevail, we suggest to reevaluate them with our comparison
metric to sort out mechanisms that in fact decrease fault
tolerance of programs they are deployed in. With a similar
motivation, a recent study by Shrivastava et al. [51] using the
AVF metric [42] surprisingly showed that five control-flow
checking schemes – claimed effective by their original authors
– actually increase the system vulnerability.

In future work, we intend to look into different fault models,
to compare simulation-obtained results of our metric to radiation
measurements, and to evaluate and improve existing software-
based hardware fault-tolerance mechanisms.
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