
FAIL*: An Open and Versatile
Fault-Injection Framework for the Assessment of
Software-Implemented Hardware Fault Tolerance

Horst Schirmeier†, Martin Hoffmann‡, Christian Dietrich‡, Michael Lenz†, Daniel Lohmann‡, and Olaf Spinczyk†
†Department of Computer Science 12

Technische Universität Dortmund, Germany
{horst.schirmeier,michael.lenz,olaf.spinczyk}@tu-dortmund.de

‡Chair of Distributed Systems and Operating Systems
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

{hoffmann,dietrich,lohmann}@cs.fau.de

Abstract—Due to voltage and structure shrinking, the influence
of radiation on a circuit’s operation increases, resulting in
future hardware designs exhibiting much higher rates of soft
errors. Software developers have to cope with these effects to
ensure functional safety. However, software-based hardware fault
tolerance is a holistic property that is tricky to achieve in practice,
potentially impaired by every single design decision.

We present FAIL*, an open and versatile architecture-level
fault-injection (FI) framework for the continuous assessment and
quantification of fault tolerance in an iterative software develop-
ment process. FAIL* supplies the developer with reusable and
composable FI campaigns, advanced pre- and post-processing
analyses to easily identify sensitive spots in the software, well-
abstracted back-end implementations for several hardware and
simulator platforms, and scalability of FI campaigns by providing
massive parallelization. We describe FAIL*, its application to the
development process of safety-critical software, and the lessons
learned from a real-world example.

I. INTRODUCTION

Chip technology is continuously moving towards higher
densities and lower operating voltages [1] at the price of dramat-
ically increasing sensitivity to electromagnetic radiation [2], [3],
[4], [5]. Consequently, future hardware designs for embedded
systems will exhibit an increasing rate of soft errors even on sea
level. This trend creates new challenges for the development
of reliable embedded systems, such as automotive control
units. Certification authorities demand explicit measures to
cope with transient faults in their functional safety standards
(e.g., ISO 26262 [6]). However, for cost-sensitive mass products
– such as cars – manufacturers cannot simply employ multiple
redundant hardware components, as common in avionic systems.
Instead, the problem has to be dealt with (at least partly) in the
software: To not diminish all gains from these new hardware
designs, embedded software developers have to selectively
place application-specific error detection [7] and recovery
mechanisms [8], [9] (EDM/ERMs) in their mixed-criticality
systems. Critical tasks and sensitive spots in the software stack
must be hardened against hardware faults, while the remaining
less critical components economize resource consumption by
occasionally tolerating incorrect results.

However, experience shows that this is difficult to achieve
in practice: Against intuition, software-based EDM/ERMs
often cause more harm than good [10], as their overhead
in time and space also increases the “attack surface” of the
system. Furthermore, even small changes to the functional
part of the software, such as refactoring an array-based
algorithm into one that uses pointer-based linked lists, can
have a dramatic impact on the robustness. Hence, analogous
to common practices in iterative software development, the
soft-error analysis and hardening process must be iterated and
supported by a continuous fault-tolerance assessment process.
This process keeps developers informed about the robustness
of their software, and repeatedly quantifies the effectiveness
and efficiency of their hardening measures.

A. About this Paper

We present FAIL*1, a flexible and versatile architecture-level
fault injection (FI) tool and framework for developers designing
and deploying hardware fault-tolerance measures. FAIL* is a
result of several years worth of experience in FI, continuous
fault-tolerance assessment, and quantitative comparison of
programs’ susceptibility to hardware faults. It has so far been
used in at least 18 peer-reviewed publications conducted by
more than 20 researchers from four different research groups,
who have employed FAIL* to analyze the impact of robustness
measures in a broad range of system software, including:

• General-purpose operating systems, such as Linux [11]
and L4/Fiasco [12].

• Embedded real-time operating systems, including eCos
[9], [13], [14], [15], CiAO [13], dOSEK [16], and ERIKA
[16].

• The KESO JVM for embedded systems [17].
• The error-resilient CoRed voter [18], [19].
• Various benchmarks, such as the MiBench suite [14] or

the nanojpeg decoder [20].

1The acronym FAIL* stands for FAult Injection Leveraged, with the asterisk
highlighting its variability regarding target back ends.

Hence, we now consider it as ready to release2 it under an
open-source license to a wider audience.

Architecture-level FI has been the standard analysis tech-
nique in the software-based hardware fault-tolerance commu-
nity for at least two decades [21], [22], [23], [24], [25]. It can be
used for the localization of sensitive spots [9], delivering input
for fault removal [26], and the quantitative evaluation of the
effectiveness of fault-tolerance measures deployed in a specific
system, also known as fault forecasting [26]. Note that FI is
also used for the injection of software faults (i.e., programming
errors); FAIL* may also be usable for this purpose, but the
tooling has been focused on the injection of hardware faults.

Current FI tools are basically “expert tools”. They are
typically employed for very specific experiments, but hardly
support a continuous and iterative process of measuring and
improving software robustness from the very beginning. Many
are exclusively intended for testing fault-tolerance measures
but not for quantitatively measuring the whole system’s
resilience. Additionally they particularly lack (1) detailed post-
injection analysis steps that guide the developer to converge
towards optimally protected software; (2) support for many
different target architectures and back ends, including the easy
combination of test-port and simulation-based FI; (3) flexibility
with respect to reusing and tailoring of FI campaigns; (4) the
capability to easily scale FI coverage, the ratio of the total
fault-space size and actually injected faults, with the available
computing time and power.

B. Our Contributions

With FAIL*, we provide a unifying solution to these
requirements under one roof. From the beginning [27], the
tool was intended not only for testing, but also for measuring
the resiliency of software systems to hardware faults. Based
on state-of-the-art static analysis capabilities (involving the
LLVM compiler infrastructure [28]), FAIL* comes with (1) a
set of helper utilities automating post-injection analysis steps
(including novel visualization capabilities), tuned for the vast
amount of data to be expected from large-scale FI campaigns.
Inspired by GOOFI’s [29] flexible architecture, FAIL* offers
(2) an abstraction layer for different simulator and hardware
back ends. This abstraction layer is substantiated by (3) an
experiment API with well-chosen primitives that allow reusing
FI campaigns across back ends, complemented by experiment
modules simplifying common tasks (such as tracing and output
recording). With several different pre-injection (or pruning)
techniques and parallelization capabilities, FAIL* allows to
(4) scale the FI coverage tailored to the analysis needs and
available computing power.

In combination with a full-system simulator (such as
Bochs [30] or Gem5 [31]) or embedded development hardware
(such as the PandaBoard ES [32]) this allows to measure
and compare the error resiliency of complete software stacks,
enabling, for example, research on dependable operating
systems. Besides its utility for analyzing software systems,

2FAIL* releases can be downloaded from: https://github.com/danceos/fail

FAIL* constitutes a meta experimentation laboratory for FI
techniques that can be used both in teaching and at the research
frontier.

To summarize, the contributions of this article are:
• The description of a flexible and open FI tool for both

testing and quantitatively measuring software-based fault-
tolerance mechanisms deployed in software systems,

• with an architecture that allows switching target back ends
with little effort, supported by an API abstracting away
target back-end details and thereby fostering experiment
code reuse (Section III),

• and advanced pre- and post-injection analysis techniques
leveraging large-scale FI campaigns, helping at drawing
conclusions from the results, and supporting a contin-
uous fault-tolerance assessment process, including an
experience report describing FAIL*’s usage during the
development of a dependable real-time operating system
(Section IV).

Section II reviews the state of the art in FI techniques and
tools, Section V discusses some of FAIL*’s characteristics, and
Section VI concludes the paper.

II. FAULT-INJECTION TECHNIQUES AND TOOLS

Since the identification of primary and secondary physical
causes for soft errors in the 1970s [33], [34], several techniques
for the artificial injection of hardware faults have been
devised [21], [35], [36], [37], [24], [25]. Each technique tries
to imitate the effects of naturally occurring causes (e.g., alpha
or neutron radiation, power supply disturbances, or crosstalk)
to a certain degree, while dramatically increasing the fault
probability to a level usable for testing circuits and software.
(Note that this paper does not address software faults, i.e.,
programming errors caused by humans).

Fault-injection techniques are characterized in their degree
of repeatability (ability to inject a specific fault and obtain
the same result), controllability (when and where to inject a
fault), intrusiveness (impact on the target system), experiment
result observability (ability to observe/measure the effects of
an injection), and fault location reachability (how much of the
CPU and periphery state is accessible for FI) [38].

A. Hardware-Implemented Fault Injection

Early on, hardware-implemented FI techniques were used,
trying to closely imitate the natural sources of hardware faults.
Gunneflo, Karlsson et al. [39], [40] expose CPUs and memory
banks to heavy-ion radiation. Karlsson et al. [41], Miremadi
and Torin [42], and Tummeltshammer and Steininger [43] use
power-supply disturbances to provoke faults. Used as fault-
injection techniques, heavy-ion radiation and power-supply
disturbances have a low repeatability and controllability, a
limited observability of the fault effects, and a high cost
(particularly for radiation exposure) for the experiment setups
in common [24], [25].

RIFLE [44] and MESSALINE [21] are examples of FI tools
that inject faults through probes attached to the connector
pins of CPU chips. Other tools, such as GOOFI-2 [38],

https://github.com/danceos/fail

Xception [45], and Fidalgo et al. [46], use test access ports
(in these examples, Nexus [47] or JTAG [48]) to inject faults
into the target system. Pin-level FI and especially FI via test
access ports exhibit a better repeatability and controllability
than their aforementioned hardware-implemented counterparts,
but at the cost of injection speeds limited by the test access
port, and limited reachability of injectable state.

All hardware-implemented FI techniques require specialized
hardware setups, and only FI via test access ports can be
achieved with COTS hardware while retaining the repeatability
and controllability necessary for detailed post-injection analysis.

B. Software-Implemented Fault Injection

Much more cost-effective alternatives are several variants
of software-implemented FI (SWIFI). In pre-runtime SWIFI,
the target-system’s software or data is injected with faults
before it is run, as, for example, used by GOOFI [29] and
Fuchs [49]. The primary drawbacks are the possibility of a
“probe effect” [24] (high intrusiveness), limited reachability
of injectable state, and a longer round-trip when the injection
location is changed. The more widely used runtime SWIFI adds
software to the target system that is triggered, for example,
by exceptions or debugging features in CPUs, and injects
faults into the running system. Examples are FIAT [50],
FERRARI [51], Xception [45], and GOOFI-2 [38]. Eliminating
the injection round-trip of pre-runtime SWIFI, the probe effect
and limited reachability remains with runtime SWIFI.

C. Simulation-Based Fault Injection

Simulation-based FI [22], [25] injects faults into simulated
hardware. Examples for tools that inject faults in low-level
hardware models are VERIFY [52] and MAFALDA [53].
Relyzer [23] injects into a commercial functional full-system
simulator on ISA level, and uses an additional microarchi-
tectural and memory timing simulator in a short time frame
around the injection. F-SEFI [54] and Qinject [55] inject faults
into QEMU [56], a purely behavior-level machine simulator.
The main drawback of simulation-based approaches is the
reduced speed – especially low-level simulators tend to be
many orders of magnitude slower than the real hardware.
Nevertheless, simulation-based FI avoids the intrusiveness
of SWIFI, offers high controllability and repeatability, and
extends the reachability and observability to the detail level
the simulator provides. Other advantages are capabilities like
checkpointing, that open up optimization potential impossible
to achieve with other FI approaches (e.g., using checkpoints
to speed up experiments [57]), and the possibility to run FI
experiments on any available hardware (e.g., on a computing
cluster). The latter is especially advantageous in early product
stages when no prototype hardware is available yet.

D. FAIL*: Fault-Injection Techniques and Unique Features

One of FAIL*’s driving design decisions was to allow devel-
opers to profit from its continuous fault-tolerance assessment
capabilities (Section IV) without having to decide for a specific
FI technique (and live with its advantages and disadvantages).

Therefore, FAIL* currently supports three of the FI techniques
mentioned in the previous sections that provide the level of
repeatability and controllability necessary for detailed post-
injection analysis: simulation-based FI – with currently three
different simulator target back ends (Bochs [30], Gem5 [31],
and QEMU [56], and a Synopsys CoMET back end currently
under development) and two target architectures (x86-32 and
ARM) – and a hybrid technique between test-port–based FI
(injecting into JTAG-controlled ARM Cortex-A9 development
boards, such as the PandaBoard [32]) and SWIFI (enhancing the
observability by additional components on the target system).

Integrating these techniques in one tool allows the developer
to switch back and forth from simulators to hardware during
the development of a growing software system, and even to a
different target architecture if the requirements change. Besides
GOOFI/GOOFI-2 [29], [38], we know no FI tool with FAIL*’s
back end flexibility while maintaining a uniform interface
towards the experiment description.

Almost all FI tools only sample small parts of the fault space
to achieve an estimate of the target’s overall fault resiliency.
Only recent works, such as Relyzer [23], or SmartInjector [58]
can cover the whole (ISA-level) fault space of the target
application by employing heuristic pruning methods, but lack
post-injection analyses to fully profit from the obtained results.
FAIL* as well has the capability to cover the whole fault space,
but also offers detailed post-injection analyses down to the level
of single variables, CPU instructions, or high-level program
code lines (Section IV-D). FAIL* achieves this by advanced
fault-space pruning techniques (Section IV-B), and massive
parallelization (Section IV-C), allowing to unleash the power
of computing clusters. Additionally, most FI tools in existence
are specifically tailored for testing, but not for quantitatively
comparing the hardware fault tolerance of specific applications
protected by hardening techniques, which FAIL* explicitly
supports [59].

In contrast to many FI tools that were never released to the
public, such as GOOFI [29], or are only available commercially,
such as Xception [45], FAIL* can be used for simulation-based
FI out of the box3 using open-source software only. Test-
port–based FI requires only small investments in an ARM
development board and a JTAG debugger.

III. FAIL* ARCHITECTURE

At the topmost level, FAIL* is organized in a client/server
architecture (Figure 1). In order to facilitate parallelization of
FI experiments, the Campaign Controller hands out previously
defined job parameters from a central database to FAIL*
instances (e.g., running in a computing cluster). Conversely,
experiment results are collected and stored in the database
for subsequent analyses. This parallel execution requires
that the experiment and its executive FAIL* instance behave
deterministic regardless of the computing node it is hosted on.

A FAIL* instance is, in principle, a tapped existing simulator
or debugger: FAIL* extends the back-end code with callback

3We provide a ready-to-run Docker-based demo campaign.

hooks at various crucial code locations. This allows to intercept
and control the back-end execution and gain access to the
(simulated) system state.

FAIL*’s key component, the Execution-Environment Ab-
straction (EEA), provides a common interface for the different
target back ends. Its C++ API offers access to both target
back-end meta-information and the current state, and allows
registering Listeners for several types of events. The FAIL*
API currently provides abstractions for:

• Meta-information on the target back end: Number of
CPUs, number of registers, platform-independent naming
of special registers (program counter, stack pointer), bit
widths and byte order, memory size.

• Fine and coarse-grained state access: Read/write access
to CPU registers and memory, injection of external
interrupts, access to the back end’s time; save/restore
of the back-end state, and reboot.

• Listeners registerable for events in the back end: Reach-
ing specific program instructions (similar to a breakpoint),
access to specific memory addresses, CPU exceptions,
external interrupts, serial I/O, passing of specific amounts
of back-end time.

Each target back end may additionally introduce interfaces
to target-specific state, such as a means to manipulate a
network device. Naturally, experiments using such an interface
cease being portable to a different target, unless an adequate
abstraction is added to the generic API.

The actual (user-defined) experiment controls the attached
back end through the EEA. The next section will provide more
details on experiment definition, and fault models that can be
implemented thereby.

Execution Environment Abstraction

Bochs

Hook Aspects

RAM IRQCPU . . .

FAIL* Instance

Tracing Plugin

Experiment
Set State/Inject Get State/Results

Register Listeners Trigger Listeners

RAM NICCPU . . .

Campaign Controller

Campaign

Database
Distribute Parameter Set Receive Results

OpenOCD

Hooks

Gem5

Hooks
User-defined Code
FAIL* Code
Existing Simulator/Debugger

Fig. 1. FAIL* architecture overview: The Campaign Controller distributes
parameter sets from a user-defined Campaign throughout the FAIL* instances.
Each FI experiment consumes a parameter set, and controls its target back end
through the Execution-Environment Abstraction (EEA) layer. Actual target back
ends (simulators, or real prototype hardware) can be exchanged by providing
an interfacing module to this abstraction.

Step B: Pre-injection Analysis Step C: Fault Injection

Step D: Post-injection Analysis

Step A: Initial Experiment Definition

Database

Golden
Run

shl %0x10,%ecx
or %eax,%ecx
mov %ecx,0x20e0 .a

sm

Pruning FI Jobs

Campaign
Server

shl %0x10,%ecx
or %eax,%ecx
mov %ecx,0x20e0

Map failure to code

t

R
A

M

Neuralgic
spot

analysis

CSV export

Fig. 2. The fault-tolerance assessment cycle: After an initial experiment
definition step, the developer enters one or multiple iterations of the fault-
tolerance assessment cycle, improving the system’s fault resilience in each
iteration (Steps A to D correspond to Sections IV-A to IV-D).

IV. THE FAULT-TOLERANCE ASSESSMENT CYCLE

In this section, we explain the steps involved in the fault-
tolerance assessment cycle (Figure 2) that allows the developer
to converge to an optimally protected software stack, and how
FAIL* assists each of these steps. The steps are supported by
and applied to a running example, the fault-tolerance assessment
of dOSEK, an embedded real-time operating system [16] with
fault tolerance as a first-class design goal.

A central goal of dOSEK is to provide functional safety
even in the presence of transient hardware faults. Thus, the
operating system not only has to execute the application tasks in
accordance with the specified real-time behavior, but also has to
detect any transient fault during the execution of the kernel. To
cover both aspects, dOSEK’s automated build process invokes
fine-grained unit tests to uncover software faults in specific
components of the OS (e.g., scheduler, dispatcher, interrupt
handling) in combination with FI experiments continuously
evaluating the robustness of the system against hardware faults
with FAIL*.

The goal of continuous FI is to uncover critical spots of the
system, and to evaluate the effectiveness of additionally applied
fault-tolerance measures in an iterative process. The robustness
evolution, as shown in Figure 3, can be logged in the version
control system, which allows to evaluate the effectiveness of
different measures – or adverse effects of implementation flaws.

FAIL* supports the developer in all steps required for
extensive FI campaigns aiding fault removal or fault forecasting.
The following Sections IV-A through IV-D describe experiment
definition, pre-injection analysis, the FI campaign, and the
post-injection analysis, which also correspond to steps A–D
in Figure 2. In Section IV-E, we give some details on FAIL*’s
implementation, and platform requirements.

A. Experiment Definition

In the initial experiment definition step (Figure 2, step A),
the developer defines an experiment procedure to be fed
with experiment parameters by the Campaign Controller

(cf. Figure 1), and to be run in every single FI experiment.
Essentially, the developer thereby decides which parameters
are fixed during the FI campaign, and which are variable –
or, in other words, chooses the fault model and spans the
experiment-parameter space. Later, step C – the FI campaign –
will walk this parameter space and conduct actual experiments.

Defining the experiment procedure can be accomplished by
picking generic code templates that, for example, flip a single
bit in the register file at a specified point in time, and observe
a standard set of output behaviors of the target software. In this
case, the parameter space is spanned by the time (measured
in CPU cycles from the program start) and location (register
name and bit number) for the fault injection. The corresponding
experiment procedure essentially implements one injection run
taking a coordinate from this parameter space as its input.

For a more complex fault model or special requirements
on target behavior observation, the developer can extend a
generic experiment and fill in the required, special behavior, or
even write a complete experiment description from scratch. For
example, the developer could easily implement an experiment
in which integer division operations in the ALU yield faulty
results, or every read access to odd memory addresses reads
from the wrong memory cell – FAIL*’s C++ API enables a
wide variety of use cases.

This degree of freedom allows the developer to experiment
with different fault models if necessary, for example, single-
or multi-bit, transient, intermittent, or permanent faults (the
latter by re-writing a faulty value every time it changes), at
different places in the memory hierarchy, or when specific
types of instructions are executed. Table I lists examples for
fault models that have already been implemented using FAIL*,
the necessary preparation steps before running the campaign
(cf. Sections IV-B and IV-C), and the EEA layer primitives
(see also Section III) used in the experiment implementation.

In the normal case, when no particularly fancy fault models
are needed, one of the previously mentioned generic code
templates can be used instead. Optionally, the experiment can
enable plugins (which are implemented using the same API as
the experiments) that encapsulate often needed functionality,
such as recording a memory-access trace.

Application to dOSEK: During dOSEK’s development,
single-bit flips in memory, general purpose registers, as well as
the instruction pointer and flags register were selected as the
fault model. The actual FI experiment is based on a standard
FAIL* experiment: Fault parameters are retrieved from the
Campaign Controller and injected accordingly. Additionally,
the experiment was extended to evaluate specific operating-
system functionality.

Listing 1 shows a simplified excerpt from the dOSEK
injection experiment. To check the correct system behavior,
the tasks of the system under test write a magic value to a
global memory address (g_trace_var, line 2). In doing so,
the FAIL* experiment code can record the task activation order
and time by continuously observing the according memory
location with the help of FAIL*’s Checkpoint plugin (line 17) –
a ready-to-use plugin that traces the written value together with

the current simulation time. Using the ELFReader helper class,
the memory address of the global object is derived directly
from the image file under test and used to install an appropriate
MemoryWriteListener within the Checkpoint object.

For the actual injection of the bit flip, the system is executed
to the FI time as defined in the experiment parameter set
(lines 23, 27). Using the MemoryManager, FAIL* reads,
manipulates, and updates the fault location (line 30).

Using the ElfReader, the instruction addresses of different
experiment end points can be determined and used to set up
appropriate listeners. Such end points are trap and breakpoint
listeners. A dedicated shutdown function labels the intended end
of a test run (line 41). When reaching this shutdown function,
the traced task activation is evaluated (line 49); any deviation
from the expected sequence (traced during the golden run)
denotes the run as silent data corruption (SDC). The experiment
further adds a TimeoutListener to cancel an irresponsive run
after a certain amount of time. Finally, the experiment sends
the outcome back to the Campaign Controller (lines 50, 52,
55, and 57), which logs all results in a database.

B. Pre-Injection Analysis

After the one-time preparation of a single FI experiment,
the first step that gets re-visited in each iteration of the
fault-tolerance assessment cycle is the pre-injection analysis
(Figure 2, step B).

The main prerequisite for this analysis is a compiled binary
image of the target-system software (usually an ELF image or
bootable disk image) the chosen execution back end is able to
run.4 This image is then executed by a FAIL* instance with
the previously defined experiment in “preparation mode”: In
this so-called golden run, no faults are injected. Instead, the
normal behavior of the system (especially what the developer
defined as its output channels, e.g., the serial interface) and the
benchmark’s run time is recorded. Additionally, an instruction
and memory-access trace is saved for an important pre-injection
step: static analysis and fault-space pruning.

Based on the recorded trace, FAIL* massively reduces the
number of necessary FI experiments using a classic fault-
space pruning method known as operational profile-based
pruning [61] or def /use pruning [23]. This pruning method
makes use of the fact that for any fault injected prior to a an
instruction writing to the fault location, the fault gets masked.
A fault injected prior to an instruction reading the fault location
has the same effect regardless of its exact position in time
before this instruction. Thus, write-read equivalence classes can
be formed for each fault location, and used for FI. This pruning
technique (implemented in the import-trace program) reduces
the number of experiments needed to achieve 100 percent
coverage of all possible fault-space coordinates (time-location
pairs) while maintaining precision in identifying critical spots
in the software.

4Usually, multiple different benchmarks combined with different software-
based fault-tolerance configurations are assessed at once. For the sake of
simplicity, we will continue to describe the process for a single image.

TABLE I
FAULT MODEL EXAMPLES IMPLEMENTED USING FAIL*, NECESSARY CAMPAIGN PREPARATION STEPS, AND EEA LAYER PRIMITIVES USED IN THE

RESPECTIVE EXPERIMENT IMPLEMENTATION.

Fault Model Preparation Experiment Implementation Publications
Transient single-bit flips in data
memory, uniform Golden-run memory-access trace

analysis (using tracing plugin and
import-trace tool)

Fault trigger: N CPU cycles passed;
Fault injection: Memory or CPU
abstraction in EEA layer

e.g., [9], [13], [15], [16],
[59], [60]

Transient single-bit flips in data
memory, on access (“inject-on-read”) [59]

Transient multi-bit flips in data
memory, uniform e.g., [9], [14]

Transient single-bit flips in instruction
op-codes

Golden-run instruction trace analysis
(tracing plugin & import-trace tool) [18], [19]

Transient single-bit flips in register file,
uniform Golden-run instruction trace analysis &

disassembly (tracing plugin &
import-trace tool)

[16], [60]

Transient single-bit flips in register file,
on access (“inject-on-read”) [18], [19]
Transient multi-bit flips in register file,
on access (“inject-on-read”)

Permanent single-bit flips in memory —

Fault trigger: Memory write at faulty
location; Fault injection: Memory
abstraction in EEA layer (re-write
faulty bit)

[11]

Depending on the fault model, an analysis of the static
instructions executed during the golden run may be required as
an additional input for the pruning technique. For larger bench-
marks, an alternative heuristical pruning method (described in
detail in [14]) can be used to reduce the experiment efforts
even further. Alternatively, if detailed result analysis is not
needed, classical fault-space sampling can be used.

Summing up, the pre-injection analysis distills the minimal
necessary injections that still cover the predefined fault space,
and yields a list of FI job parameters. The information recorded
during the golden run additionally serves as a reference for
what is deemed to be the correct program output and behavior.

Application to dOSEK: With the help of FAIL*’s def/
use pruning techniques on memory and register accesses, the
number of experiments needed to cover the complete ISA-level
single-bit flip fault space for four different dOSEK variants was
reduced from 4.8×1011 to about 32 million. With sampling, it
can be reduced to tens of thousands, at the cost of removing
the possibility for detailed analyses.

For the sake of reproducibility and to ease the post-injection
analysis, the assembler code of the dOSEK system under test
was added to the database together with a commit ID pointing
to the according version of the software sources.

C. Fault-Injection Campaign

In the fully automated FI campaign (Figure 2, step C),
the Campaign Controller distributes job parameters from the
database to FAIL* client instances running on the same machine,
or on potentially hundreds of computing cluster nodes. The
results are collected in a database table automatically tailored
specifically for the running campaign, which may, for example,
need additional columns for recording the fault-detection
latency or other experiment-specific values. For the subsequent
post-injection analysis step, the Campaign Controller ensures
that each result can be traced back to the exact state bit that

was modified in the FI, and the point in time (down to the
dynamically executed CPU instruction) the injection took place.

Application to dOSEK: FAIL*’s parallelization capabilities
allowed to keep the campaign duration and thus the entire
development cycle to a bearable level. With 100 FAIL* clients
running (each occupying one host-CPU core), this campaign
took about 36 hours to complete. With our computing cluster
(≈3,000 CPUs), this runtime could be further reduced to under
two hours, as single experiments can be conducted completely
independent of each other.

D. Post-Injection Analysis

After collecting all FI results, FAIL*’s post-injection analysis
features help the developer by quantifying the software fault-
tolerance effectiveness (fault forecasting), or by aiding the
process of system hardening (fault removal) and the placement
of error detection (or recovery) measures (Figure 2, step D).

For quantifying the effectiveness of fault-tolerance measures,
a reduced-effort sampling of the fault space (cf. Section IV-B)
suffices, but naturally increases in preciseness with larger
samples. A set of analysis scripts aggregate the FI results,
if necessary extrapolate from the sample to the population size,
and generate CSV tables that can be, for example, processed in
GNU R to generate bar plots, as shown in Figure 3. Depending
on the desired fault model, results can be pre-filtered (e.g., to
include only results related to specific parts of the system-under-
test) or weighted with the lifetimes of the values modified by
the injection [61].

If the developer needs data for hardening the software system,
such as for placing error-detection (or recovery) mechanisms
on specific data structures, or on the output of critical program
modules, a more fine-grained FI result analysis is necessary. The
fault-space plot in Figure 4 shows a two-dimensional projection
of the raw result data this information can be derived from:
The X axis represents the time, discretized in CPU cycles

1 // Get trace symbol
2 ElfSymbol &s_trace = elf.get("g_trace_var");
3

4 while(campaign.hasJobs()) {
5 // Retrieve experiment parameter
6 dOSEKExperimentParam param =
campaign.getParam();

7

8 // Check if injection would hit trace array
9 if (s_trace.addr == param.injection_addr) {

10 m_log << "skip trace variable" << endl;
11 campaign.sendReply("No Injection");
12 continue; // with next parameter set
13 }
14

15 // Enable Checkpoint Plugin
16 // Compares results with previous Golden Run
17 Checkpoint cpt(s_trace, "golden_run.trace")
18 simulator.addPlugin(cpt);
19

20 // Prepare Breakpoint Listener
21 BPListener l_inject(ANY_ADDR);
22 l_inject.setCounter(param.step_count);
23 simulator.addListener(l_inject);
24

25 // Proceed to injection
26 // (after param.step_count instructions)
27 simulator.resume();
28

29 // inject transient single-bit fault
30 MemoryManager& m=simulator.getMemoryManager();
31 char value = m.getByte(param.injection_addr);
32 injectedval = value ^ (1 << param.bit_to_flip);
33 m.setByte(param.injection_addr, injectedval);
34

35 // Prepare result listeners
36 ElfSymbol &s_sd = elf.get("shutdown");
37 BPListener l_shutdown(s_sd);
38 TrapListener l_trap();
39 TimeoutListener l_timeout(10000); // 10 ms
40

41 simulator.add(l_shutdown);
42 simulator.add(l_trap);
43 simulator.add(l_timeout);
44 // Continue simulator
45 BaseListener *l = simulator.resume();
46

47 // Examine outcome
48 if (l == &l_shutdown) {
49 if(cpt.valid()) {
50 campaign.sendReply("OK");
51 } else {
52 campaign.sendReply("SDC");
53 }
54 } else if (l == &l_trap) {
55 campaign.sendReply("Trap");
56 } else if (l == &l_timeout) {
57 campaign.sendReply("Timeout");
58 }
59 } // end of while

Listing 1. Simplified dOSEK FAIL* experiment: The code excerpt shows the FI
part (using the FAIL* API via the global simulator object), parametrized
by the injection address and the bit to flip. Among other details, this information
was communicated to the experiment by the Campaign Controller.

mem

regs

ip

0e+00

1e+09

2e+09

3e+09

0

30000

60000

90000

120000

0

5000

10000

15000

20000

25000

b
3
8
3
0
3
9

6
a
1
1
8
6
8

4
a
9
1
a
f6

d
a
9
2
6
7

f

8
5
4
3
b
c
3

6
5
b
c
2
3
4

3
2
d
8
0
c
1

9
9
6
fd

4
0

a
d
1
a
1
4
6

9
5
3
c
8
fa

e
8
2
d
c
7
2

8
5

6
6
d
6
0

7
d
f3

6
3
b

b
8

8
a
3
9
8

2
2
9
6
c
b
8

5
e

e
6
a
0
3

c
9
1
7
1
5
3

dOSEK git revision

#
S

D
C

s

Fig. 3. Excerpt of the robustness development history of dOSEK . The
influence on the robustness of each software change can be easily reproduced
and analyzed.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (Cycles) 1e7

0

10

20

30

40

50

D
a
ta

 M
e
m

o
ry

 (
R

A
M

)

+2.1504e6

#1

#2

#3

#4

#5

m
o
st

 a
ff

e
ct

e
d
 s

y
m

b
o
ls

Fig. 4. Excerpt from a dOSEK fault-space plot, including references to the
most SDC-sensitive symbols (Table IIa) at their corresponding start address,
shown on the right margin. (Plot coloring: red: SDC, blue: Timeout, white:
No effect).

since benchmark start; the Y axis denotes the state a fault was
injected in, in this case the addresses of bytes in main memory
(annotated with references to specific global data structures
from Table IIa at their corresponding start address, shown on
the right-hand side). The coloring of each coordinate (time-
location pair) signifies the outcome of a single FI experiment in
which the fault was injected at the specified point in time and
address: White means the fault had no effect, while non-white
colors denote different types of failure (blue: Timeout, red:
Silent Data Corruption). This data can be collected by running
FI experiments for every coordinate in this fault space, and
applying a fault-space pruning technique (cf. Section IV-B) to
reduce the number of experiments to a feasible amount. Note
that the diagram does not plot the detection latency, that is,
the time between the injection of a fault and its detection by
software or the experiment.

Based on this raw data, FAIL* is capable of running a
variety of analyses. One example is the “top N most critical
data structures” list: By aggregating failure counts over time,
and over data structures on the “state” axis, the latter can
be ordered by their importance for the program’s successful
termination. The most susceptible data structures are a logical
target for hardening measures, such as the protection with
checksums. Similarly, failures can also be aggregated over the
state axis, and over the dynamic execution of functions or
modules in the program (Table IIb), yielding possible targets
for function hardening, for example, with N-modular redundant
execution.

Beyond these aggregation techniques, FAIL* is capable to
map failures to static CPU instructions in the program, and from
there to high-level language code using DWARF debugging
information [62]. A browser-based visualization tool named
VisualFAIL* helps the developer to pinpoint propagation leaks
in the error detection code and eliminate remaining points of
failure. Another recent, still experimental FAIL* feature based
on debugging information, is the assignment of failures to
short-lived data structures on the stack.

Application to dOSEK: While Figure 3 shows the failure
count totals for several versions of dOSEK’s evolution (which
could also be achieved with low-effort sampling techniques
on a single machine), FI results for the complete fault space
were distilled for much more detailed analyses. Using the
aforementioned post-processing steps, the final results of each
of dOSEK’s FI campaigns were arranged in an automated
fashion to present the most vulnerable spots of the system in
terms of injection time and location. Table II shows a “Top-5”
analysis of a benchmark run of an unhardened dOSEK system
in terms of SDC-sensitive memory locations. The fault-space
plot, as shown in Figure 4, helped to match the silent data
corruptions to specific points in time. After identifying the
most vulnerable locations, VisualFAIL* (Figure 5) supported
the developers to immediately inspect the critical spots on
source code level and elaborate on the further hardening of
the system.

Fig. 5. Post-injection analysis: VisualFAIL* highlights source-code lines
(interspersed with associated assembler instructions) activating faults that lead
to SDCs.

E. Implementation and Platform Requirements

FAIL* is implemented in about 34,000 lines of C++ code,
accompanied by a set of bash, Perl and Python scripts,
and is shipped with the slightly modified source code of
the currently supported execution back ends (Bochs [30],
gem5 [31], QEMU [56], OpenOCD [63]). In order to ease
the transition to newer simulator versions, and to properly
separate the concerns simulation and fault injection, we use
Aspect-Oriented Programming (in our case AspectC++ [64], an
AOP extension to C++) to “hook” FAIL* into Bochs. All pre-
and post-injection analysis steps involving static analysis steps
rely on LLVM [28], and the data management is delegated to
MySQL (or, preferredly, MariaDB). Most data visualization
and plotting is handled by GNU R and Python’s matplotlib.

FAIL* currently only runs on Linux (x86-32 and amd64 are
known to work), although porting to other POSIX-compliant
platforms should be possible with relatively low effort.

V. DISCUSSION

Revisiting the characteristics of fault-injection techniques
[38], FAIL* can be classified as follows.

Repeatability: The simulation-based back ends of FAIL*
ensure a deterministic execution behavior and therefore reliably
reproducible experiments. All input sets and their according
results, as well as the system-under-test image itself, are
organized in a database, thus each specific experiment can
be reconsidered and repeated easily. If FAIL* is integrated in
an automated build process, even the entire robustness evolution
can be revisited – revision by revision. The same repeatability
can be achieved even for test-port–based FAIL* back ends, if

TABLE II
POST-INJECTION ANALYSIS OF A BENCHMARK RUN OF AN UNHARDENED dOSEK VARIANT. FAIL*’S AUTOMATED POST-PROCESSING OF RESULTS ALLOWS

THE DEVELOPER TO IMMEDIATELY IDENTIFY THE MOST VULNERABLE SPOTS OF THE SYSTEM.

Symbol Address Size SDC (%)

1 os::scheduler::scheduler_ 0x20d02c 13 888,954,297 (62.9 %)
2 os::OS_FCctrl_alarm 0x20d014 12 223,003,587 (15.8 %)
3 os::OS_SG_alarm 0x20d008 12 196,283,827 (13.9 %)
4 os::OS_CCtrlWDAlarm_alarm 0x20d020 12 83,387,077 (5.9 %)
5 _sdata_os 0x20d000 8 13,059,577 (0.9 %)

(a) Top five SDC-sensitive symbols (or, contiguous memory areas).

Source File SDC count (%)

dosek.cc 1,100,408,145 (78.3 %)
os/alarm.h 291,248,981 (20.7 %)
os/counter.h 13,053,352 (0.9 %)
arch/i386/syscall.cc 39,447 (< 0.1 %)
arch/i386/dispatch.cc 25,738 (< 0.1 %)

(b) Source-code files where the faults for most SDCs get
activated.

any external inputs, mainly periodic or sporadic interrupts, are
under the control of the experiment.

Intrusiveness: Simulation-based FI solutions do not affect
the original source code of the system-under-test. Therefore,
the only possible “probe effect” can origin from an influence
on the real-time behavior of the system. Using FAIL* with a
simulation-based back end avoids this problem, as the entire
system, including any peripherals, are under control, and can
be suspended at any point in time. The intrusiveness of the
hybrid test-port/SWIFI back end can be minimized but not
completely avoided, for example if the JTAG interface ensures
that the the CPU and timer subsystems are fully stopped while
handling an FI event. Nevertheless, peripherals that are not
under the control of the debugging system may still lead to
undesirable interference.

Reachability: Here, FAIL* is clearly depending on the
verboseness of the controlled back-end system. Regarding the
simulator-based back ends, FAIL* observes and provides the
entire system state – as far as actually simulated – through the
Execution-Environment Abstraction (EEA). Test-port–based
back ends, on the other hand, are restricted by the capabilities
of the debugging hardware attached to the prototyping board.

Controllability: FAIL*’s memory and register managers
provide full control over the state of the system-under-test
via the EEA. FAIL* also provides means to save the entire
system state, for example right before the first injection time
during a golden run. During the FI campaign, each experiment
can then bypass lengthy bootup/startup times by just restoring
the system state and proceeding to the injection time. Further,
arbitrary external interrupts, as well as a full system reboot
can be triggered from the running experiment.

Observability: This aspect is closely connected with the
reachability and controllability of the FI back end. FAIL*’s
listener concept allows to observe and react on various kinds of
events during an experiment run. While the test-port–based back
ends are generally restricted to events that can be mapped to
watch- or breakpoints and exception handlers in the additional
SWIFI components, a simulation-based back end provides
more elaborate listener activations. Here, the simulation-based
variants allow for an unbounded number of listeners, while a
hardware back end is often restricted, for example by a limited
number of hardware breakpoints.

Besides the aforementioned functional aspects, an important

design goal of FAIL* is to provide developers a convenient
way to assess the fault tolerance of their systems. FAIL*
already provides different ready-to-use experiments that can be
easily extended to specific needs using the target-independent
EEA. FAIL*’s client/server architecture facilitates massive
parallelization of FI experiments, which allows full fault-space
coverage even for more complex campaigns. Finally, using
VisualFAIL* the developer can immediately inspect the FI
results down to assembler-level instructions and high-level
source code, and work out specific fault-tolerance measures.

VI. SUMMARY

Fault injection is a key element in the development process
of safety-critical systems. FAIL* aims to provide a flexible
tool set for even large-scale fault-injection campaigns with
a target-independent execution-environment abstraction. High
scalability in combination with different fault-space pruning
techniques allow to scale the available computing time and
power, up to full fault-space coverage. Supported by detailed
post-injection analyses that immediately point out critical spots
and assist in fault-removal design strategies, FAIL* encourages
continuous fault-tolerance assessment, as we demonstrated on
the dOSEK development example.

Apart from its practical purpose as a fault-injection tool set
for both teaching and research, FAIL* can equally be seen as
a foundation for further research and development on fault-
injection and fault-space pruning concepts itself. During the
last few years, FAIL* emerged to a versatile tool set that was
already involved in at least 18 publications by 20 researchers
from four different research groups. We now release FAIL*
to a wider audience under an open-source license, and look
forward to a community-driven evolution of FAIL* – and its
application in further projects.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their comments.
We also thank all additional contributors to FAIL*, especially
Adrian Böckenkamp, Christoph Borchert, Björn Döbel, Tobias
Friemel, Richard Hellwig, Florian Lukas, and Lars Rademacher.
Kudos also go to Björn Bönninghoff for suggestions improving
the readability of this paper.

This work was partly supported by the German Research
Foundation (DFG) priority program SPP 1500 under grants no.
SP 968/5-3 and LO 1719/1-3.

REFERENCES

[1] International Roadmap Committee, “International technology roadmap
for semiconductors, 2013 edn. (executive summary),” Semiconductor
Industry Association, 2013.

[2] S. Y. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[3] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol. 22, no. 3, pp. 258–266, May 2005.

[4] V. Narayanan and Y. Xie, “Reliability concerns in embedded system
designs,” IEEE Computer, vol. 39, no. 1, pp. 118–120, 2006.

[5] M. Duranton, S. Yehia, B. de Sutter, K. de Bosschere, A. Cohen,
B. Falsafi, G. Gaydadjiev, M. Katevenis, J. Maebe, H. Munk, N. Navarro,
A. Ramirez, O. Temam, and M. Valero, “The HiPEAC vision,” Network
of Excellence on High Performance and Embedded Architecture and
Compilation, Tech. Rep., 2010.

[6] ISO, ISO 26262-6:2011: Road vehicles – Functional safety – Part
6: Product development at the software level. Geneva, Switzerland:
International Organization for Standardization, 2011.

[7] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level
detectors for reducing silent data corruptions,” in Proceedings of the
42nd IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN ’12). IEEE Computer Society Press, Jun. 2012, pp.
1–12.

[8] K. Pattabiraman, V. Grover, and B. G. Zorn, “Samurai: Protecting critical
data in unsafe languages,” in Proceedings of the ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008 (EuroSys ’08). New
York, NY, USA: ACM Press, 2008, pp. 219–232.

[9] C. Borchert, H. Schirmeier, and O. Spinczyk, “Generative software-
based memory error detection and correction for operating system
data structures,” in Proceedings of the 43rd IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN ’13). IEEE
Computer Society Press, Jun. 2013.

[10] A. Martínez-Álvarez, S. A. Cuenca-Asensi, F. Restrepo-Calle, F. R. P.
Pinto, H. Guzmán-Miranda, and M. A. Aguirre, “Compiler-directed
soft error mitigation for embedded systems,” IEEE Transactions on
Dependable and Secure Computing, vol. 9, no. 2, pp. 159–172, Mar.
2012.

[11] H. Schirmeier, I. Korb, O. Spinczyk, and M. Engel, “Efficient online
memory error assessment and circumvention for Linux with RAMpage,”
International Journal of Critical Computer-Based Systems, vol. 4, no. 3,
pp. 227–247, 2013, special Issue on PRDC 2011 Dependable Architecture
and Analysis.

[12] B. Döbel, “Operating system support for redundant multithreading,”
Dissertation, TU Dresden, 2014.

[13] M. Hoffmann, C. Borchert, C. Dietrich, H. Schirmeier, R. Kapitza,
O. Spinczyk, and D. Lohmann, “Effectiveness of fault detection mecha-
nisms in static and dynamic operating system designs,” in Proceedings of
the 17th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC ’14). IEEE Computer Society Press,
Jun. 2014, pp. 230–237.

[14] H. Schirmeier, C. Borchert, and O. Spinczyk, “Rapid fault-space explo-
ration by evolutionary pruning,” in Proceedings of the 33rd International
Conference on Computer Safety, Reliability and Security (SAFECOMP
’14), ser. Lecture Notes in Computer Science. Springer-Verlag, Sep.
2014, pp. 17–32.

[15] C. Borchert, H. Schirmeier, and O. Spinczyk, “Generic soft-error detection
and correction for concurrent data structures,” IEEE Transactions on
Dependable and Secure Computing, vol. PP, no. 99, 2015, to appear.

[16] M. Hoffmann, F. Lukas, C. Dietrich, and D. Lohmann, “dOSEK: The
design and implementation of a dependability-oriented static embedded
kernel,” in Proceedings of the 21st IEEE Real-Time and Embedded
Technology and Applications (RTAS ’15). Los Alamitos, CA, USA:
IEEE Computer Society Press, Apr. 2015.

[17] I. Stilkerich, M. Strotz, C. Erhardt, M. Hoffmann, D. Lohmann,
F. Scheler, and W. Schröder-Preikschat, “A JVM for soft-error-prone
embedded systems,” in Proceedings of the 2013 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES ’13), Jun. 2013, pp. 21–32.

[18] M. Hoffmann, P. Ulbrich, C. Dietrich, H. Schirmeier, D. Lohmann,
and W. Schröder-Preikschat, “A practitioner’s guide to software-based
soft-error mitigation using AN-codes,” in Proceedings of the 15th IEEE
International Symposium on High Assurance Systems Engineering (HASE
’14). Miami, Florida, USA: IEEE Computer Society Press, Jan. 2014,
pp. 33–40.

[19] ——, “Experiences with software-based soft-error mitigation using AN
codes,” Software Quality Journal, pp. 1–27, Nov. 2014.

[20] B. Döbel, H. Schirmeier, and M. Engel, “Investigating the limitations of
PVF for realistic program vulnerability assessment,” in Proceedings of
the 5rd HiPEAC Workshop on Design for Reliability (DFR ’13), Berlin,
Germany, Jan. 2013.

[21] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault injection for dependability validation:
A methodology and some applications,” IEEE Transactions on Software
Engineering, vol. 16, no. 2, pp. 166–182, Feb. 1990.

[22] A. Benso and P. E. Prinetto, Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation, ser. Frontiers in electronic
testing. Boston, Dordrecht, London: Kluwer Academic Publishers, 2003.

[23] S. K. Sastry Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting application-level fault equivalence to analyze application
resiliency to transient faults,” in Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’12). New York, NY, USA: ACM Press,
2012, pp. 123–134.

[24] H. Ziade, R. A. Ayoubi, and R. Velazco, “A survey on fault injection
techniques,” The International Arab Journal of Information Technology,
vol. 1, no. 2, pp. 171–186, 2004.

[25] M. Kooli and G. Di Natale, “A survey on simulation-based fault injection
tools for complex systems,” in Proceedings of the 9th International
Conference on Design & Technology of Integrated Systems in Nanoscale
Era (DTIS ’14). IEEE Computer Society Press, May 2014, pp. 1–6.

[26] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan.
2004.

[27] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O. Spinczyk,
“FAIL*: Towards a versatile fault-injection experiment framework,” in
25th International Conference on Architecture of Computing Systems
(ARCS ’12), Workshop Proceedings, ser. Lecture Notes in Informatics,
G. Mühl, J. Richling, and A. Herkersdorf, Eds., vol. 200. German
Society of Informatics, Mar. 2012, pp. 201–210.

[28] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04).
Los Alamitos, CA, USA: IEEE Computer Society Press, Mar. 2004.

[29] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “GOOFI: Generic
object-oriented fault injection tool,” in Proceedings of the 31st IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN

’01). Los Alamitos, CA, USA: IEEE Computer Society Press, Jun./Jul.
2001, pp. 83–88.

[30] K. P. Lawton, “Bochs: A portable PC emulator for Unix/X,” Linux
Journal, vol. 1996, no. 29es, p. 7, 1996.

[31] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 simulator,”
SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, Aug.
2011.

[32] “Pandaboard homepage,” http://pandaboard.org.
[33] D. Binder, E. Smith, and A. Holman, “Satellite anomalies from galactic

cosmic rays,” IEEE Transactions on Nuclear Science, vol. 22, no. 6, pp.
2675–2680, Dec. 1975.

[34] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in
dynamic memories,” IEEE Transactions on Electron Devices, vol. 26,
no. 1, pp. 2–9, Jan. 1979.

[35] J. A. Clark and D. K. Pradhan, “Fault injection: A method for validating
computer-system dependability,” IEEE Computer, vol. 28, no. 6, pp.
47–56, Jun. 1995.

[36] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” IEEE Computer, vol. 30, no. 4, pp. 75–82, Apr. 1997.

[37] J. V. Carreira, D. Costa, and J. G. Silva, “Fault injection spot-checks
computer system dependability,” IEEE Spectrum, vol. 36, no. 8, pp.
50–55, Aug. 1999.

http://pandaboard.org

[38] D. Skarin, R. Barbosa, and J. Karlsson, “GOOFI-2: A tool for experi-
mental dependability assessment,” in Proceedings of the 40th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN

’10). Los Alamitos, CA, USA: IEEE Computer Society Press, Jun./Jul.
2010, pp. 557–562.

[39] U. Gunneflo, J. Karlsson, and J. Torin, “Evaluation of error detection
schemes using fault injection by heavy-ion radiation,” in Proceedings of
the 19th Annual International Symposium on Fault-Tolerant Computing
(FTCS ’89). IEEE Computer Society Press, Jun. 1989, pp. 340–347.

[40] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo, “Using
heavy-ion radiation to validate fault-handling mechanisms,” IEEE Micro,
vol. 14, no. 1, pp. 8–23, Feb. 1994.

[41] J. Karlsson, U. Gunneflo, P. Lidén, and J. Torin, “Two fault injection
techniques for test of fault handling mechanisms,” in Proceedings of the
1991 International Test Conference (ITC ’91), Oct. 1991.

[42] G. Miremadi and J. Torin, “Evaluating processor-behavior and three error-
detection mechanisms using physical fault-injection,” IEEE Transactions
on Reliability, vol. 44, no. 3, pp. 441–454, Sep. 1995.

[43] P. Tummeltshammer and A. Steininger, “Power supply induced common
cause faults – experimental assessment of potential countermeasures,”
in Proceedings of the 39th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’09). IEEE Computer Society
Press, Jun./Jul. 2009, pp. 449–457.

[44] H. S. Madeira, M. Rela, F. Moreira, and J. G. Silva, “RIFLE: A general
purpose pin-level fault injector,” in Proceedings of the 1st European
Dependable Computing Conference (EDCC ’94), K. Echtle, D. Hammer,
and D. Powell, Eds. Springer-Verlag, 1994, pp. 197–216.

[45] J. Carreira, H. S. Madeira, and J. G. Silva, “Xception: A technique
for the experimental evaluation of dependability in modern computers,”
IEEE Transactions on Software Engineering, vol. 24, no. 2, pp. 125–136,
Feb. 1998.

[46] A. Fidalgo, M. Gericota, G. Alves, and J. Ferreira, “Using NEXUS
compliant debuggers for real time fault injection on microprocessors,” in
Proceedings of the 19th Annual Symposium on Integrated Circuits and
Systems Design. ACM Press, 2006, pp. 214–219.

[47] IEEE-ISTO, The Nexus 5001 Forum Standard for a Global Embedded
Processor Debug Interface. IEEE Computer Society Press, 1999.

[48] C. M. Maunder and R. E. Tulloss, The Test Access Port and Boundary-
Scan Architecture. IEEE Computer Society Press, 1990.

[49] E. Fuchs, “An evaluation of the error detection mechanisms in MARS
using software-implemented fault injection,” in Proceedings of the 2nd
European Dependable Computing Conference (EDCC ’96), A. Hlawiczka,
J. G. Silva, and L. Simoncini, Eds. Springer-Verlag, 1996, pp. 73–90.

[50] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, “Fault
injection experiments using FIAT,” IEEE Transactions on Computers,
vol. 39, no. 4, pp. 575–582, Apr. 1990.

[51] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “FERRARI:
A flexible software-based fault and error injection system,” IEEE
Transactions on Computers, vol. 44, pp. 248–260, 1995.

[52] V. Sieh, O. Tschäche, and F. Balbach, “VERIFY: Evaluation of reliability
using VHDL-models with embedded fault descriptions,” in Proceedings
of the 27th Annual International Symposium on Fault-Tolerant Computing
(FTCS ’97), Jun. 1997, pp. 32–36.

[53] J. Arlat, J.-C. Fabre, M. Rodríguez, and F. Salles, “Dependability of
COTS microkernel-based systems,” IEEE Transactions on Computers,
vol. 51, pp. 138–163, 2002.

[54] Q. Guan, N. Debardeleben, S. Blanchard, and S. Fu, “F-SEFI: A
fine-grained soft error fault injection tool for profiling application
vulnerability,” in Proceedings of the 28th IEEE Parallel and Distributed
Processing Symposium (PDPS ’14). IEEE Computer Society Press,
May 2014, pp. 1245–1254.

[55] F. M. David, E. Chan, J. Carlyle, and R. H. Campbell, “Qinject:
A virtual-machine based fault injection framework,” in Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’08), 2008,
(Poster Presentation).

[56] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Pro-
ceedings of the 2005 USENIX Annual Technical Conference, 2005, pp.
41–46.

[57] L. Berrojo, I. Gonzalez, F. Corno, M. Reorda, G. Squillero, L. Entrena,
and C. Lopez, “New techniques for speeding-up fault-injection cam-
paigns,” in Proceedings of the 2002 Conference on Design, Automation
& Test in Europe (DATE ’02). IEEE Computer Society Press, 2002,
pp. 847–852.

[58] J. Li and Q. Tan, “SmartInjector: Exploiting intelligent fault injection for
SDC rate analysis,” in Proceedings of the IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT 2013). IEEE Computer Society Press, Oct. 2013, pp. 236–242.

[59] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls in fault-
injection based comparison of program susceptibility to soft errors,”
in Proceedings of the 45th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’15). IEEE Computer Society
Press, Jun. 2015.

[60] C. Dietrich, M. Hoffmann, and D. Lohmann, “Cross-kernel control-flow-
graph analysis for event-driven real-time systems,” in Proceedings of
the 2015 ACM SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems (LCTES ’15). New York, NY, USA:
ACM Press, Jun. 2015.

[61] J. Güthoff and V. Sieh, “Combining software-implemented and simulation-
based fault injection into a single fault injection method,” in Proceedings
of the 25th Annual International Symposium on Fault-Tolerant Computing
(FTCS ’95). IEEE Computer Society Press, Jun. 1995, pp. 196–206.

[62] DWARF Debugging Information Format Version 4, DWARF Standards
Committee, Jun. 2010. [Online]. Available: http://www.dwarfstd.org/doc/
DWARF4.pdf

[63] D. Rath, “OpenOCD: Open on-chip debugging,” Diploma Thesis, FH
Augsburg, Jul. 2005.

[64] O. Spinczyk and D. Lohmann, “The design and implementation of
AspectC++,” Knowledge-Based Systems, Special Issue on Techniques to
Produce Intelligent Secure Software, vol. 20, no. 7, pp. 636–651, 2007.

http://www.dwarfstd.org/doc/DWARF4.pdf
http://www.dwarfstd.org/doc/DWARF4.pdf

	Introduction
	About this Paper
	Our Contributions

	Fault-Injection Techniques and Tools
	Hardware-Implemented Fault Injection
	Software-Implemented Fault Injection
	Simulation-Based Fault Injection
	Fail*: Fault-Injection Techniques and Unique Features

	Fail* Architecture
	The Fault-Tolerance Assessment Cycle
	Experiment Definition
	Pre-Injection Analysis
	Fault-Injection Campaign
	Post-Injection Analysis
	Implementation and Platform Requirements

	Discussion
	Summary
	References

