
DanceOS: Towards Dependability Aspects in
Configurable Embedded Operating Systems?

Horst Schirmeier1, Rüdiger Kapitza2, Daniel Lohmann2, and Olaf Spinczyk1

1 Technische Universität Dortmund, Germany
{horst.schirmeier,olaf.spinczyk}@tu-dortmund.de

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
{rrkapitz,lohmann}@cs.fau.de

Abstract. Future hardware designs for embedded systems are expected
to exhibit an increasing rate of intermittent errors in exchange for smaller
device sizes and lower energy consumption. This bears new challenges for
system software, especially the operating system (OS), which has to use
and provide software measures to compensate for unreliable hardware.
Designing, developing, and maintaining such software systems will become
increasingly arduous.
The DanceOS project aims at providing dependability by the fine-grained
and tailorable application of software-based fault-tolerance techniques.
The vision is to achieve this by separating the implementation of these
techniques from the functional parts of the software in a reusable way,
allowing for use-case specific static or even run-time application of fault-
tolerance measures to critical parts of the complete software stack.
This article outlines the main challenges we identify in our OS design
undertaking. Among other techniques, we propose aspect-oriented pro-
gramming and tool-based (semi-)automatic software analysis as means
for achieving these goals.

1 Introduction

Emerging from continuously shrinking structure sizes and a high potential for
energy saving, a current trend in hardware design for embedded systems is a
switch from deterministic to probabilistic hardware components [3,4,9]. Such
designs allow for example a multiplication unit to yield wrong results from time
to time while being supplied by an unusually low voltage [6]. Ideally, the system
software layers should be aware of possible intermittent (soft) errors (Single Event
Upset, SEU) and take countermeasures for the sake of their own stability and
correctness. The application developer should be enabled to specify dependability
requirements on the system’s interface level in a goal-oriented manner, driven by
the application’s fault-tolerance demands.

In this article we state our position in this problem domain and outline first
ideas and possible solutions we want to examine in the starting DanceOS3

? This work was partly supported by the German Research Council (DFG) focus
program SPP 1500 under grant no. KA 3171/2-1, LO 1719/1-1 and SP 968/5-1.

3 Dependability Aspects in Configurable Embedded Operating Systems

project. The remainder of this article discusses the three main claims we assert,
and describes our vision on how dependability measures should be applicable in
an application-specific, goal-oriented way.

2 Claims

2.1 Tailored Application of Dependability Measures

Dealing with transient hardware-induced faults by applying software measures,
such as replicated execution in space or time, comes at a cost. Applying measures
as a one-fits-all solution to the entire software stack (including the OS and appli-
cation level) wastes an embedded system’s scarce resources, limits adaptability to
changing environmental and system conditions, and, most importantly, decreases
performance. We claim that it is crucial to realize that dependability requirements
are highly application-specific and may even vary on a system service granularity
level: e.g., a specific application may need “five nines” for a file write system
call but be satisfied with a sleep call that is 20% off the mark. Nevertheless,
dependability measures may need to be applied on all software layers—but in a
coordinated manner, well-matched with each other.

These basic assumptions imply the need for a configuration mechanism which
is capable of fine-grained tailoring of dependability measures for a specific ap-
plication scenario (static configuration) or a changing environment (dynamic
adaptation). Such configuration mechanisms are already state-of-the-art for
functional properties of embedded operating systems, but need to be adapted
and extended for dependability concerns.

2.2 Analysis of Dependability Properties

Dependability measures can be applied at various locations in the software stack
from the application down to the OS and hardware layer. Depending on the
application’s requirements, a subset of these locations—the neuralgic, “weak”
spots of the hierarchy—must be chosen. This ensures that, for example, triple-
modular redundancy (TMR, [8]) is only applied in places promising the best
possible ratio between runtime cost of a measure and its effect on dependability.

As an example, consider a very simple layered system which consists of only
two software components A and B on the base layer, and one component C on the
upper layer . Induced by possible hardware faults the components have a reduced
reliability4 of RA = 0.95, RB = 0.8, and RC = 0.99. Component C uses input
from A and B to compute the final result. Without applying any dependability
measures the reliability of the whole system can be calculated as follows:5

4 Here reliability is understood as the probabability of computing a correct result.
Hardware-faults that crash the entire system cannot be handled by software measures
only.

5 We ignore that the calculation in C could theoretically yield a correct result even
though the input by A and B was wrong.

RABC = RA ·RB ·RC = 0.95 · 0.8 · 0.99 = 0.7524 (1)

If the user specified a reliability goal of 75% for the output of C, no action would
be required. However, if the goal was, for instance, 80%, a dependability measure
such as TMR had to be applied. TMR can improve the reliability of a module by
means of redundant execution and voting [8]:

Rtmr(M) = 3R2
M − 2R3

M (2)

For a system designer there is a straightforward solution: The software stack
is executed three times and a voter discards wrong results, i.e. TMR is applied on
the top level of the system. This is an effective strategy for dealing with transient
errors. It raises the resulting system reliability to a value above the requested
80% mark:

Rtmr(ABC) = 3R2
ABC − 2R3

ABC ≈ 0.8464 (3)

The obvious drawback is that the computation time increases by a factor of
three. Even if the time factor is hidden by offloading redundant execution onto a
different CPU core, the additional energy consumption and RAM usage cannot be
neglected in many scenarios. Alternatively, TMR could be applied to any subset
of {A,B,C}, or even multiple subsets. For instance, the overall system reliability
for TMR on component B (only) is RA tmr(B)C = RA · (3R2

B − 2R3
B) · RC =

0.95 · 0.896 · 0.99 ≈ 0.8426. This is almost as good as Rtmr(ABC) and better than
the 80% mark, too. At the same time this solution would be much more efficient,
because only component B has to be executed in a redundant manner. For the
other possible system configurations the results are worse: Rtmr(A)BC ≈ 0.7862
and RAB tmr(C) ≈ 0.7598.

The example shows that a dependability goal can be achieved in different ways.
A good solution can only be found by considering dependability and resource
consumption of each possible solution in a holistic manner. Furthermore, the
most cost efficient solution depends on the actual user-specified goal. For instance,
a requirement of 78% could also be fulfilled by tmr(A)BC. More variability
comes into play when other dependability measures with different characteristics
than TMR are taken into account, too. Furthermore, the dependability goals
for different parts of the system might vary. This complicates the process of
finding the best solution dramatically, because the parts might have overlapping
dependencies in the module structure.

In order to be able to take specific and problem-oriented action, a depend-
ability model for the system layers—foremost but not exclusively the hardware
and OS layers—is needed. Parnas’ “uses” hierarchy [10], which models a system
as a kind of dependency graph, is a promising foundation. For efficiency reasons
and to keep chances for human error low, tool support for static code analysis
should at least partially automate the model creation.

aspect TMR {
// v i r t u a l p o i n t c u t : ”where ” t h i s a s p e c t shou ld have e f f e c t
// d e f i n e d in a concre te s p e c i a l i z a t i o n o f the a s p e c t
pointcut virtual where () = 0 ;
// adv ice : ”what ” shou ld be done when the p o i n t c u t matches
// ”around ” adv ice r e p l a c e the o r i g i n a l f u n c t i o n c a l l
advice execution (where ()) : around () {

// adv ice body : TMR implementat ion
Result a = tjp−>proceed () ; // c a l l o r i g i n a l f u n c t i o n
Result b = tjp−>proceed () ;
i f (a == b) { return a ; }
return tjp−>proceed () ; // d e f a u l t to t h i r d t r y

} } ;

Fig. 1. An “aspect” that implements triple-modular redundancy in a highly generic way,
thus providing separation of concerns for an otherwise crosscutting problem.

2.3 Separation of Concerns

Once the system designer knows where to (application-specifically) apply what
software dependability measures, actual code implementing the measures must be
added to the software layers. Unfortunately, implementing an inherently crosscut-
ting concern such as dependability “in-line” by means of the C preprocessor leads
to classic modularization problems such as scattering (distribution of a concern
implementation across multiple implementation artifacts) and tangling (many
different concerns implemented in a single implementation module)—commonly
entitled the “#ifdef hell”. Especially in the case of configurable embedded sys-
tem software, tailored dependability measures would be a second configuration
dimension, leading to an explosion of the source code variant space.

Only strict separation of concerns can avoid a maintenance nightmare: The
dependability concern implementation therefore mandatorily has to be separated
from other, functional system concerns. We are convinced that aspect-oriented
programming (AOP) [5] is an appropriate means to satisfy this requirement:
Based on a description of the application’s dependability goals and the depend-
ability model, which was motivated in the previous section, we derive aspect code
defining where (“pointcut”) dependability measures (what: “advice”) should be
applied. A so-called “weaver” automatically takes care of intermixing the concern
implementations. To illustrate the expressiveness of aspect-oriented programming
languages, Fig. 1 shows a (slightly simplified) AspectC++ implementation of
TMR, modularized in a generic aspect, applicable to arbitrary functions. The
only restriction is that the return type must be copyable and comparable with
the “==” operator.

AOP techniques have already been successfully applied as a means to modular-
ize fault-tolerance mechanisms [1,2]. We intend to advance the field by integrating
advanced static-analysis methods into the weaver in order to be able to offer far
more powerful language constructs on the AOP-language level.

Fig. 2. Vision: OS and application components (OS, App) are accompanied by de-
pendability aspects (A), which are able to “weave” various dependability measures (D)
into arbitrary software components throughout the whole software stack.

3 Vision and Future Work

Our general idea is to achieve software-based dependability cost-efficiently (with
respect to other non-functional properties, such as performance, memory foot-
print, or energy consumption) by means of dedicated operating-system support
and tailoring. The system-structure diagram in Fig. 2 sketches the vision of the
DanceOS project: Subject of the tailoring are the OS in general and its depend-
ability aspects in particular, which—and this is the core concept—implement and
encapsulate well-known and novel software-dependability measures as reusable
modules that can take effect across the whole software stack (including the
application) by means of aspect orientation. Thereby, dependability measures can
be tailored and composed on the granularity of functions and expressions, driven
by the actual dependability requirements of the application and the reliability
properties of the underlying hardware instance.

We aim at verifying our claims and approaching the envisioned system software
architecture. We will extend our CiAO OS product line [7], which is implemented
in the AOP language AspectC++, in order to reflect the described architecture.
Open research questions include the design of an appropriate dependability
model, the required static analysis techniques, novel (fault-tolerance specific)
AOP language features and OS dependability measures. Another crucial issue is
to design a model and provide tool support for mapping goals to aspects that
affect the “neuralgic spots” in system and application code at minimal costs.

References

1. F. C. Afonso. Operating System Fault Tolerance Support for Real-Time Embedded
Applications. Dissertation, Universidade do Minho, Escola de Engenharia, Jan.
2009.

2. R. Alexandersson and P. Öhman. Implementing fault tolerance using aspect oriented
programming. In LADC ’07: Proceedings of the Third Latin-American Symposium
on Dependable Computing, volume 4746 of Lecture Notes in Computer Science,
pages 57–74. Springer-Verlag, 2007.

3. S. Y. Borkar. Designing reliable systems from unreliable components: the challenges
of transistor variability and degradation. IEEE Micro, 25(6):10–16, 2005.

4. M. Duranton, S. Yehia, B. de Sutter, K. de Bosschere, A. Cohen, B. Falsafi, G. Gay-
dadjiev, M. Katevenis, J. Maebe, H. Munk, N. Navarro, A. Ramirez, O. Temam,
and M. Valero. The HiPEAC vision. Technical report, Network of Excellence on
High Performance and Embedded Architecture and Compilation, 2010.

5. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP ’97), volume 1241 of Lecture Notes in Computer Science, pages 220–242.
Springer-Verlag, June 1997.

6. M. S. K. Lau, K.-V. Ling, and Y.-C. Chu. Energy-aware probabilistic multiplier:
design and analysis. In Proceedings of the 2009 International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems, pages 281–290.
ACM Press, 2009.

7. D. Lohmann, W. Hofer, W. Schröder-Preikschat, J. Streicher, and O. Spinczyk.
CiAO: An aspect-oriented operating-system family for resource-constrained embed-
ded systems. In Proceedings of the 2009 USENIX Annual Technical Conference,
pages 215–228, Berkeley, CA, USA, June 2009. USENIX Association.

8. R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve
computer reliability. IBM J. Res. Dev., 6:200–209, April 1962.

9. V. Narayanan and Y. Xie. Reliability concerns in embedded system designs. IEEE
Computer, 39(1):118–120, 2006.

10. D. L. Parnas. On the design and development of program families. IEEE Transac-
tions on Software Engineering, SE-2(1):1–9, Mar. 1976.

