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Abstract. From a software developer’s perspective, fault injection (FI)
is the most complete way of evaluating the sensitivity of a program
against hardware errors. Unfortunately, FI campaigns require a substan-
tial investment of both, time and computing resources, making their
application infeasible in many cases.
Program Vulnerability Factor (PVF) analysis has been proposed as an
alternative for estimating software vulnerability. In this paper we present
PVF/x86, a tool for computing the PVF for x86 programs. We validate
the use of PVF analysis by running PVF/x86 on an image decoder appli-
cation and compare the results to those obtained with a state-of-the-art
FI framework. We identify weak spots of PVF analysis and outline ideas
for addressing those points.

1 Introduction

As the likelihood of hardware errors increases with each technology generation,
the implementation of measures dealing with such errors in hardware and soft-
ware is gaining importance. While reliability has been a research topic for com-
puter architecture researchers for a long time [8], we believe that it is now also
becoming an important issue for software developers.

Developers today use a variety of metrics when it comes to evaluating their
code, including code complexity, execution time, and test coverage. Measuring
important metrics is an integral part of the development and quality assurance
cycle. Future software developers will also require metrics to evaluate the relia-
bility of their code with respect to different types of hardware errors.

Our goal is to provide developers with tools to perform reliability analysis.
Given a fault model, such tools should be able to answer a variety of questions,
such as:

1. Which parts of a program are most vulnerable to faults? Development time
is a scarce resource and therefore developers would like to focus their efforts
on those parts of a program that are most vulnerable.

2. Given two implementations A and B of a feature, which one is less vulnerable
to faults? Answering this question may aid design decisions. Furthermore, it
will allow constant quality monitoring by giving immediate feedback about
how the last patch modified the program’s vulnerability.



3. How do compiler optimizations impact vulnerability? Compilers may use a
reliability metric as an optimization criterion. Furthermore, we would like
this metric to be able to estimate how the application of software fault tol-
erance methods, such as replication [2] or encoded processing [10] influences
vulnerability.

A common practice today is to use fault-injection (FI) experiments to eval-
uate the vulnerability of software with respect to a given fault model. Unfortu-
nately, these campaigns consume a lot of time. Hari et al. describe search space
optimizations that reduce experimentation time so that their given set of appli-
cations “can be simulated in approximately 11 days on a cluster of 200 cores.” [4]
This is too long for a single software developer to estimate the effects his last
code change had on the reliability of an application.

We are not the first ones to observe the need for a fast approximation of
vulnerability. Mukherjee et al. introduced the Architectural Vulnerability Factor
(AVF) [8] for measuring the reliability of microarchitectural structures. Unfor-
tunately, AVF analysis requires a complex model of the underlying hardware,
making it hard to be applied by software developers who usually do not possess
the respective knowledge and tools. Sridharan et al. therefore introduced the
Program Vulnerability Factor (PVF) [13], a software-based metric that does not
require microarchitectural expert knowledge.

In this paper, we first describe a tool for computing the PVF for x86 ap-
plications (Section 2). We then use this tool in Section 3 to compute the PVF
for the nanojpeg image decoder and compare the computed PVF to the results
from a real FI campaign based on Fail* [11]. Our evaluation indicates that PVF
analysis may serve as a starting point to answer the developer questions listed
above. In Section 4 we then describe our ideas for addressing the few limitations
PVF analysis still has.

2 Tool Support for Vulnerability Analysis

We implemented PVF/x86, a tool to perform PVF analysis on x86 binary pro-
grams.3 The tool obtains an instruction trace for the binary in question and
then computes the PVF based on this trace. To assess the quality of our com-
puted PVF results, we used the Fail* fault injection framework to conduct a
real-world FI campaign for comparison.

2.1 Computing the PVF of x86 Binaries

PVF/x86 provides two ways for generating an instruction trace: based on dy-
namic analysis or using an instruction pointer trace obtained from an external
simulator. We perform dynamic analysis on Linux user-level applications using
Linux’ ptrace functionality. The easiest way to obtain a trace this way is to

3 All source code is available at https://github.com/TUD-OS/PVFAnalyzer.



single-step the application and record all instruction pointer values on the way.
However, this incurs a large execution overhead.

To reduce this overhead, we first perform a static analysis of the ELF binary
in question and obtain the program’s control flow graph (CFG). Based on the
CFG, PVF/x86 determines the dynamic jump instructions in the binary. There-
after, we run the application under ptrace control, but only instrument those
dynamic jumps.

Once an instruction trace has been obtained, PVF/x86 performs PVF anal-
ysis by iterating over this trace. Such analysis requires a specific fault model to
be imposed. In this paper we focus on analyzing bit flips in general-purpose reg-
isters of the CPU similar to Sridharan’s work [13]. Iterating over the instruction
trace, we generate a state sequence for each register. For each instruction, this
sequence maps the state of every register to one of the states shown in Table 1.

READ Instruction reads register

WRITE Instruction writes register

MODIFY Instruction reads&writes register

IMPORTANT Register is not touched, but contains data
important for program outcome

DONTCARE Register is overwritten later, hence the
current value does not influence program outcome

UNKNOWN Register is not used, therefore no
assertion can be made about its use

Table 1. Register access states for PVF analysis

State changes are detected by inspecting an instruction’s operands using the
udis86 disassembler4. The disassembled information is unfortunately insuffi-
cient, because the x86 architecture includes instructions that implicitly access
certain registers (e.g., call modifies the ESP register). Therefore, we added im-
plicit constraints about such instructions to PVF/x86’s parser component.

PVF/x86 finally computes a register’s PVF from its state sequence. All in-
stances where the register’s state is in {READ, WRITE, MODIFY, IMPORTANT} are
considered vulnerable. The register PVF for a given trace is then computed as
the ratio of vulnerable instructions compared to the trace’s instruction count.

2.2 FI Experiments with Fail*

The PVF metric (and our planned extensions) is intended to represent an ap-
proximation of a program’s real (microarchitecture-agnostic) fault vulnerability.
Therefore, the metric’s quality can obviously be measured by analyzing the dif-
ference to real FI experiment results. We used Fail* [11], a versatile FI and
experimentation framework, to inject faults into Bochs, a behavioral x86 sim-
ulator, and to observe the guest system’s behavior afterwards. Fail* provides
effective fault-space pruning techniques and can be configured to utilize large
amounts of computing resources, which made it feasible to exhaustively visit the
complete register-bit/instruction-offset space, allowing a one-to-one comparison
with the PVF results.
4 udis86 – disassembler library for x86 and x86-64. http://udis86.sourceforge.net/



3 Baseline evaluation: PVF vs. Fault-injection
experiments

In the following we evaluate Sridharan’s original PVF definition in the context
of a case study involving a JPEG image decoder. Despite its example character,
we believe the insights gained from a direct comparison between the PVF and
results from a large-scale FI campaign will help in constructing an even more
useful metric for application-specific program vulnerability.

3.1 Experiment setup

As a starting point for our comparative case study we chose nanojpeg5, a JPEG
decoder implemented in C – a typical code-base for a low-cost embedded system
such as, e.g., a digital photo frame. An interesting property of nanojpeg is that
any single FI run does not necessarily end with a binary black-or-white decision
(target “crashed”, vs. decoded JPEG is identical with the “golden run” output).
Depending on the fault model (single-bit flips in the CPU’s register file in our
case) and what the developer application-specifically decides to be a “good”
experiment outcome, a FI experiment may end up in any shade of gray: In the
case of a JPEG decoder, the actual shade can be determined by calculating, e.g.,
the peak signal-to-noise ratio (PSNR) between the decoder’s output and that
of a fault-free run. The PSNR is a logarithmic measure approximating human
perception of signal reconstruction quality, suitable for quantifying the image
quality of a JPEG decoder run.

To keep the number of necessary FI experiments within a feasible magnitude,
we selected a tiny (128×69 pixels, 2.58 kiB) JPEG input file6 for our experiment
runs. We compiled a bare-metal system image with gcc 4.4.5 (Debian 4.4.5-8)
with full optimizations (-O3) enabled. The fault-free (“golden”) run executes
3,729,437 instructions from entering its main function until the JPEG decoder
finishes.

After applying conservative fault-space pruning techniques, we ran a total
of about 170 million experiments with Fail* to cover all possible register/bit/
instruction-offset coordinates in our fault space, occupying our faculty’s comput-
ing cluster for several days. Recorded experiment result details were, among oth-
ers, successful program termination including the aforementioned PSNR metric,
and several failure modes, including “crashes” like CPU exceptions (e.g., division
by zero), accesses to memory regions outside the program’s RODATA, DATA
and BSS sections, or reaching a timeout after not triggering any of the other
conditions for a reasonably long simulation time.

As outlined in Section 2, we feed the instruction trace from the golden run
into our PVF/x86 tool. To stay in line with the results presented in [13], we
calculate the PVF for trace blocks of 10,000 instructions each. For the nanojpeg

trace, PVF/x86 ran less than 10 minutes on an off-the-shelf quad-core notebook.

5 Version 1.2, http://keyj.emphy.de/nanojpeg/
6 Felix Baumgartner, right before his jump from space in October 2012.



We also partition the FI results in chunks of 10,000 instructions, averaging the
number of “good” experiment outcomes to facilitate a direct comparison.

3.2 A direct comparison of PVF and Fault-injection results

As mentioned before, the definition of “good” may vary depending on the appli-
cation. In this subsection, any FI result diverging from the golden run output is
classified as “bad”, completely ignoring the PSNR quality metric or any other
shades of gray for now.

Figure 1 shows the calculated PVF values right next to the actual results
from the FI campaign, and accentuates the difference between both metrics in
the bottom panel for each CPU register (negative difference values plotted in
blue). At first glance it becomes clear that Sridharan’s PVF is a pretty good,
low-effort approximation for the time-consuming FI results we generated: The
predictions for EAX (ignoring the first 100 blocks), EBX, ECX (aside the tail
50 blocks) and EDX (disregarding the first 50 blocks, and focussing on the trend
instead of absolute values at around 250 blocks) are fairly accurate, making the
FI resource spendings already look extremely wasteful. The results for EBP and
the stack pointer, ESP, seem pretty off the mark instead, but we can offer an
explanation for most anomalies in the diagram:

– In the first 100 instruction blocks, the decoder zeroes large memory areas,
utilizing EAX for address calculations. In combination with a regularly ap-
plied bit masking operation, seemingly only half of the zero writes cause
an abnormal experiment termination; as most simulator memory is zero at
startup anyways, the lack of initialization does not disturb normal operations
in these cases. Our current PVF implementation works on register (not bit)
granularity, and ignores any data flow or bit-masking operations, explaining
the 50% discrepancy here.

– The rise in ECX PVF–FI difference in the last 50 blocks is due to similar
reasons: Again, a bit-masking operation comes into play, and additionally the
probability to affect the final output image seems to continually decrease.
The PVF, of course, ignores probabilities and is pessimistic in this case.

– The first 50 blocks in the EDX plot are simply explained by a deficiency
of our implementation: Currently we isolatedly calculate the PVF for each
block, ignoring all previous and following instructions. This issue blinds the
analysis tool from seeing the address value living in EDX for 52 blocks before
being used for actual memory accesses, being vulnerable to bit flips the whole
time. A closer look reveals that the very same problem strikes the EBP and
ESP PVFs, rising hopes that we can deal with this properly very soon.

4 Refining PVF Analysis

The initial results obtained in Section 3 indicate that the PVF is indeed an ap-
proximation for an application’s susceptibility to hardware errors. By splitting
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Fig. 1. Comparison of PVF and real program vulnerability for nanojpeg-O3. The first
row of each subgraph shows the computed PVF for a specific register. The second
row provides the results obtained using FI. The third row plots the absolute difference
between the two (lower is better, negative values shown in blue).



application traces into relevant blocks (e.g., fixed length or at function bound-
aries), PVF analysis allows a software developer to pinpoint the most vulnerable
parts of an application.

As already observed by Sridharan et al. [13], the PVF of two applications
cannot directly be compared, because the absolute number of errors seen depends
not only on the error probability (described by the PVF), but also on the runtime
of the program. Therefore, to address the issue of comparing different application
versions or algorithm implementations, the PVF needs to be combined with a
runtime metric, such as the instruction count or wall-clock time.

4.1 Dealing with Quality Deviation

In order to more precisely assess the gray scale effect described in Section 3,
information about the semantics of operations, i.e. application knowledge, is re-
quired. The usual approach to calculate the PVF assumes an error every time
the decoder generates a picture different from the original one. However, our
previous analyses of H.264 video decoding [5] show that for signal processing
applications, certain classes of errors can be tolerated since they lead to a re-
duction in output quality, however they do not influence the program’s control
flow.
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Fig. 2. Comparison of PVF and FI results when selecting a PSNR value of 20 as the
quality threshold to decide whether a program run is considered an error.

To illustrate this effect, Figure 2 shows a comparison of PVF and FI, when
classifying all images with a PSNR above 20 as correct outcomes. (A PSNR of
20 is considered a threshold for acceptable image quality.) Here, EAX shows
a significant diversion between blocks 150 and 250, while EDX shows a higher
absolute error than seen in Figure 1.

In order to identify such quality errors, we devised a classification [12] ex-
pressing the worst-case impact of an error on data objects with the help of newly
introduced reliable and unreliable type qualifiers. We believe that in future work
extending the compiler infrastructure to propagate this reliability information
to registers, thereby bridging the semantic gap [3] between the source code and
the machine code generated by the compiler, the results of PVF analyses will



give a more fine-grained assessment of error impacts. An analysis of the impact
of compilers on the AVF [6] has already shown significant variations depending
on the chosen level of optimization.

In addition, a compiler can also be used in order to improve the PVF of
a program. A first investigation of the influence of different compiler backend
optimizations on a program’s PVF can be found in [13]. Here, the authors extend
previous analyses by incorporating the tradeoff of a longer program runtime
caused by optimizations reducing the PVF.

The availability of a fast PVF estimation tool such as PVF/x86 now allows
to perform an online assessment of the PVF impact of different compiler opti-
mizations on a program’s PVF. By integrating a feedback loop, as previously
investigated for energy and WCET optimizations [7], the compiler can perform a
PVF-aware selection of applicable optimizations. First approaches in this direc-
tion were published by Rehman et al. [9]. However, their work concentrates on
an optimization of instruction scheduling instead of an overall evaluation of op-
timization effects. Here, we expect a more general approach to provide improved
results.

4.2 Incorporating Software Fault Tolerance Methods

One advantage of fault injection experiments over PVF analysis is that they eas-
ily allow evaluating the usefulness of fault tolerance methods, such as replication
or operand encoding, with respect to fault rates. As the PVF is much faster to
compute, our next question is: Can we incorporate software-implemented fault
tolerance (SWIFI) methods into PVF analysis so that the PVF also allows es-
timating these mechanisms’ effectiveness? The answer to this question depends
on the respective SWIFT method.

Replication runs multiple independent instances of an application and com-
pares the replicas’ states at certain synchronization points [2]. Between such
synchronization points, the replicas run identical code and are otherwise com-
pletely independent. N-way modular replication can tolerate n

2 − 1 independent
faults. Hence, an error will be masked unless there are n

2 or more errors within
a single replication interval. The probability (PVF) for such an event is the
product of the independent event probabilities (PVFs)7, therefore:

PVF replicated(reg) := PVF (reg)
n
2 (1)

The same formula also applies to mechanisms where the compiler replicates
data across multiple registers [10]: Such errors will be masked by the compiler-
generated code as long as the majority of values remains intact. For this specific
interval in time, the registers contain the same data and therefore have identical
PVFs. Hence, the probability of a failure is again the product of n

2 PVFs.

7 Note, that the actual failure probability is the soft-error probability p multiplied
with the PVF. We leave out p here, as it may be assumed to be constant for a given
hardware platform.



Another interesting SWIFT method is the introduction of consistency checks
either by the compiler or using (semi-)manual code modification [1]. The con-
sistency checks make sure that at certain points in time errors will either be
detected by the generated code or we can be sure that the registers contain
correct data.

To analyze these methods, the PVF analyzer needs to be aware of them.
The compiler may aid this analysis by providing information about the consis-
tency checks, for instance by exporting the special instruction sequences used
for checking. The PVF analyzer may then reset its analysis window whenever it
encounters such a sequence.

To demonstrate how consistency checks influence the PVF, we performed
another experiment based on nanojpeg. We assume that the compiler generates
consistency checks either at certain instructions (for instance before a ret from
a function) or periodically (e.g., every 100 instructions). We furthermore assume
that the compiler somehow exposes this information so the PVF analysis can
benefit from it.
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Fig. 3. PVF for different intervals of periodic register checking (100, 10, and 1 instruc-
tions respectively) compared to the originally computed PVF

Based on these assumptions we modified PVF/x86 to be aware of consistency
checks and adapted the propagation of IMPORTANT register states by stopping
this propagation at consistency checking boundaries. We show the PVF gains
that can be expected by applying periodic consistency checking in Figure 3
(limiting ourselves to registers EAX and EDX for brevity). Note, that especially
the graph for a checking interval of a single instruction is purely hypothetical,
as the metric completely ignores the fact that the checking code itself will also
be vulnerable to hardware errors.

5 Conclusion

In this paper we found that the PVF may serve as a starting point for estimating
the vulnerability of x86 applications against hardware errors. Our experiments
based on the nanojpeg JPEG decoder also pointed out that the PVF lacks



precision when dealing with applications that can generate data with varying
quality. We believe that compiler assistance may help refining PVF analysis to
this end. Finally, we demonstrated how the PVF may be used to analyze the
impact of software fault tolerance methods on an application.
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