
Int. J. Critical Computer-Based Systems, Vol. 4, No. 3, 227–247 1

Efficient Online Memory Error Assessment and
Circumvention for Linux with RAMpage

Horst Schirmeier*, Ingo Korb,
Olaf Spinczyk and Michael Engel

Department of Computer Science 12,
Technische Universität Dortmund,
Otto-Hahn-Str. 16, 44221 Dortmund, Germany
E-mail: horst.schirmeier@tu-dortmund.de
E-mail: ingo.korb@tu-dortmund.de
E-mail: olaf.spinczyk@tu-dortmund.de
E-mail: michael.engel@tu-dortmund.de
*Corresponding author

Abstract:
Memory errors are a major source of reliability problems in computer

systems. Undetected errors may result in program termination or, even
worse, silent data corruption. Recent studies have shown that the
frequency of permanent memory errors is an order of magnitude higher
than previously assumed and regularly affects everyday operation.

To reduce the impact of memory errors, we designed RAMpage, a
purely software-based infrastructure to assess and circumvent permanent
memory errors in a running commodity x86-64 Linux-based system. We
briefly describe the design and implementation of RAMpage and present
new results from an extensive qualitative and quantitative evaluation.
These results show the efficiency of our approach – RAMpage is able
to provide a smooth graceful degradation in the presence of permanent
memory errors while requiring only a small overhead in terms of CPU
time, energy, and memory space.

Keywords: Memory errors; Software-based fault tolerance; DRAM
chips; Silent data corruption; Operating systems; Reliable operation

Biographical notes:

Horst Schirmeier received his Diploma in Computer Science from
Friedrich-Alexander-Universität Erlangen, Germany. He worked as a
researcher in the System Software group at FAU Erlangen, and is
currently working in the field of resilient infrastructure software and
fault resilience assessment for the DanceOS project in the Embedded
System Software group at Technische Universität Dortmund, Germany.

Ingo Korb received his Diploma in Computer Science from Technische
Universität Dortmund. He is a researcher in the EU MADNESS project
at the Informatik Centrum Dortmund (ICD). His research interests
include software-based fault tolerance and real-time CPU emulation.

Olaf Spinczyk received his PhD in Computer Science from Otto-von-
Guericke-Universität, Magdeburg, Germany. He worked as a senior
researcher in the Operating Systems and Distributed Systems group
at Friedrich-Alexander-Universität Erlangen, Germany, and is now
full professor and head of the Embedded System Software group at

Copyright c© 2013 Inderscience Enterprises Ltd.

2 H. Schirmeier et al.

Technische Universität Dortmund, Germany. His research is focussed on
the construction principles as well as programming language and system
software support for highly efficient and reliable embedded systems.

Michael Engel received his PhD in Computer Science from University
of Marburg, Germany. He is currently a senior researcher at the Design
Automation for Embedded Systems group at Technische Universität
Dortmund, Germany, where he leads two research projects in the
context of dependable embedded systems. His research interests include
dependability for embedded systems, energy efficiency, embedded hard-
and software design and operating systems.

1 Introduction

Memory reliability has been a major concern for the reliable operation of computers
for the last few decades. However, for a long time, credible values on error rates
have been hard to obtain and were mostly derived from small-scale experiments. A
recent large-scale study using Google’s server farm by Schroeder et al. (2009) came
to the conclusion that permanent errors in off-the-shelf memory DIMMs (Dual
In-Line Memory Modules) are an order of magnitude more common than previously
assumed. The study concluded that on average, a permanent error is expected to
show up once a year in a standard 1 GiB DDR memory module. Thus, a single-bit
error is expected to show up once every few months in a system using multiple
memory modules.

In the best possible case, such an error causes a program or operating system
crash or malfunction, which is comparatively easy to detect. However, in an analysis
of errors in CERN’s computer systems, Panzer-Steindel (2007) showed that the
probability of silent data corruption errors – i.e., undetected errors that result in
unexpected value changes – is several orders of magnitude higher than expected by
component failure statistics.

This observation is also supported by a recent study by Nightingale et al. (2011),
which states that DRAM errors in consumer-grade systems are far more likely than
expected from an analysis of radiation effects. They confirm the validity of the
bathtub curve assumption for DRAM components, i.e., the failure rate of RAM
chips increases sharply beginning at a certain age of the components.

While high-end systems usually employ ECC or other hardware-based error
correction methods, these are prohibitively expensive for small-scale, cost-sensitive
systems. However, reducing the probability of undetected permanent memory errors
is also a worthwhile goal for these systems. Systematic memory tests are a useful
tool to detect errors; if these tests are performed with a sufficiently high frequency,
we expect most errors to be discoverable. However, shutting down a system in order
to perform tests, e.g., using software like Memtest86+ (Demeulemeester (2011)), is
in most cases unacceptable.

As a consequence, we developed RAMpage, an approach to run a memory tester
as a system service during normal operation. Compared to existing memory test
mechanisms, RAMpage requires no downtime and allows for flexible selection of
memory test frequency and test methods, and works mostly as a user-space process.

Efficient online memory error assessment and circumvention 3

This article is an updated and expanded version of our paper “RAMpage:
Graceful Degradation Management for Memory Errors in Commodity Linux
Servers” (Schirmeier et al. (2011)). The new material includes a substantially
more effective port of RAMpage to Linux 3.5, a completely revised and expanded
evaluation section, including systematic fault-injection runs proving the validity of
our approach, an analysis of RAMpage’s impact on energy consumption, and more
benchmark results, as well as an updated overview of related work.

The outline of this paper is as follows. Section 2 describes memory testing
methods and system support for graceful degradation in Linux. An overview of
the structure and implementation of RAMpage is given in sections 3 and 4. The
effectiveness and efficiency of in-system memory tests are evaluated in section 5.
Section 6 discusses related work; finally, section 7 concludes the paper and gives an
outlook to ideas for future research.

2 Graceful Memory Degradation in a Linux Environment

Graceful degradation management provides a best-effort approach to operate
a system as long as possible, albeit potentially with reduced functionality or
performance. RAMpage performs memory tests at runtime and implements graceful
degradation by marking memory areas containing defects as “poisoned”, which
guarantees that neither the operating system nor application processes will continue
to use them. In the following subsections, we give a short overview of approaches
to memory testing and of Linux-specific support for degradation management.

2.1 Memory Testing

Memory testing is a well-explored research area. Examples of test algorithms can be
found in early papers by Nair et al. (1978), Hayes (1975) and Srini (1978), as well
as in more recent publications (Chang et al. (1989), Yoon & Erez (2010)). Based
on models for static memory faults, algorithms of increasing complexity can find
errors ranging from simple stuck-at faults that permanently tie a bit to a value up
to complex, correlation- and timing-based faults.

Most of the memory test algorithms described in the literature require
destructive write access to the memory range that is examined. Thus, in contrast
to ECC scrubbing approaches (see subsection 6.1) that only read memory cells
and check for ECC errors, a universal memory testing infrastructure has to possess
knowledge about the current usage state of the memory region to be tested.
Obviously, destructive write tests can only be performed if the memory to be
written into is not in use by the kernel or applications. RAMpage thus has to ensure
the memory areas to be tested are free before testing can commence.

However, modern Unix-like systems tend to use almost all physical memory for
the (unified) buffer caches and VM cache. A memory tester thus has to “liberate”
page frames from the system – either from the kernel or the running processes. In
theory, this is possible for all page frames, since kernel and application memory
accesses occur using logical memory addresses. In practice, however, it is not always
possible to gain access to all available memory in a system. For example, DMA
buffers for I/O devices, memory with MMU page tables, and other special kernel

4 H. Schirmeier et al.

allocated page frames are usually not relocatable (see Schirmeier et al. (2011) for
possible solutions in future systems).

Another question influencing the design of RAMpage is how many pages need
to be tested at the same time, e.g., to find correlation errors. Since tested page
frames are not available to the rest of the system during the test, the policy is to
only allocate as many pages as required and release pages when the test is finished.

2.2 Linux Support

Virtual memory allows the operating system to control physical memory use on a
fine granularity, i.e., the size of a page frame, typically a few kilobytes, depending
on the architecture. Linux implements several competing – and partially redundant
– frameworks that can handle hardware errors and changing system configurations.
We describe the various existing approaches below and evaluate their advantages
and shortcomings for use in our memory testing system.

EDAC

Support for reacting to faults in the Linux kernel was originally derived from
separate modules handling memory ECC and PCI-bus parity errors. The so-
called EDAC (Error Detection and Correction) framework now encompasses this
functionality in recent kernel versions. However, its functionality is so far quite
restricted. In the case of ECC errors, the error can be logged and the affected
memory cell re-tested; in case of PCI parity errors, the affected I/O transfer can be
repeated. Currently, this framework does not provide general interfaces to test and
possibly disable other components of a system. While this is envisioned for future
releases, Linux EDAC support is at the moment not useful as a basis for memory
degradation management.

Memory hotplugging

Memory hotplugging enables the addition and removal of physical memory at
runtime. This is useful for special systems that in fact allow hotplugging and -
removal of memory modules as well as for virtual machines with changing memory
requirements.

Hotplugging may also be employed to remove bad memory regions from kernel
use and future allocation. However, since hotplug’s remove operation was intended
to remove complete physical memory modules from a system, the achievable
granularity is rather coarse. In the current implementation, only regions of 1024
contiguous pages (4 MiB on an x86 machine with 4 kiB page size) can be removed
together. It turns out, though, that parts of the hotplugging infrastructure come in
quite handy for “liberating” page frames for testing that are currently in use, as
we describe in section 4.

hwpoison

The Linux hwpoison framework was originally intended to support recovery from
memory errors signaled by recent Intel CPUs. Using this framework, a memory page
frame can be declared “poisoned”, which results in killing any process associated

Efficient online memory error assessment and circumvention 5

with that page, and precludes its further allocation. While the framework is intended
to be used with ECC-enabled memory controllers, the available functions to taint
single page frames make it possible to remove selected 4 kiB regions (on x86-
architecture machines) containing faulty memory cells. Furthermore, hwpoison
provides an additional method for claiming allocated page frames, which makes it
even more suitable for our memory tester.

3 System Structure

Memory testing systems can be implemented in various different ways – e.g., there
exist pure kernel-mode as well as pure user-mode approaches (see section 6 for a
detailed discussion). In the following subsections, we describe the requirements to
our memory testing system as well as problems restraining some design options,
and detail the resulting infrastructure components and their interaction.

3.1 Design Considerations

RAMpage’s central design idea was to perform online memory testing for current
commodity machines that requires as few changes to the operating system as
possible. Since many server systems run the Linux operating system, basing our
infrastructure on this platform was an obvious choice.

RAMpage is designed to require only a minimal set of functionality in kernel
mode, giving a maximum flexibility to adapt the system’s components running
in user mode. Thus, only critical, system-level functionality – such as “liberating”
(find details on how this is done in section 4) and allocating physical memory, and
disabling the CPU cache for the page frames to be tested – is implemented as a
dynamically loadable kernel module. Most of the functionality, especially the tests
themselves, executes in user mode.

The RAMpage user-space component does not perform memory tests itself,
but delegates them to a memory test plugin. This flexibly exchangeable plugin
determines the physical frame numbers to be tested and performs the specific
tests. The user-space component itself takes care of common operations: requesting
and mapping page frames, returning good memory to the kernel and marking bad
memory. Currently, RAMpage provides ports of all tests available in Memtest86+
(cf. fig. 3).

Implementing the major part of the tester as a user space component has
an additional advantage. Dealing with a normal user-mode process, a system
administrator can directly control the performance impact by using standard Unix
methods (such as nice).

However, several architectural properties as well as Linux idiosyncrasies also
influenced the design. The impact of these is described in the following subsection.

3.2 Obstacles Influencing the Design

Performing memory tests that operate on a page-frame basis requires safe access
to physical memory, which is usually not supported by current operating systems
like Linux. While tests completely executing in user mode would be preferable – no

6 H. Schirmeier et al.

User space memory tester

Physmem claimer kernel module

Memory
testing
plugins

Page
requests

1 Release/
taint pages

3Allocated
pages

a. Obtain page frames

b. Run
 memory
 tests

c. Obtain
 results
 from tester

Linux kernel

U
se

r
sp

ac
e

K
er

ne
l

sp
ac

e

2

Figure 1 RAMpage’s overall structure: The user-space memory tester with
exchangable testing plugins consults the physmem kernel module to obtain
physical page frames, and to taint frames positively tested for defects.

kernel modifications are required, reducing critical in-kernel code to zero – safely
running such tests while providing access to physical memory cannot be guaranteed.

The page frames under test, thus, are required to be unused by the kernel or
other processes. This can easily be guaranteed by allocating the memory pages
to the testing process itself. However, requesting memory from user space is only
possible using system calls such as mmap, which provide a set of virtual memory
pages. The kernel does not provide information on the physical location of these
virtual memory pages to the user mode process; in fact, the Linux VM system does
not even guarantee that the logical address space is backed by physical memory
at every point in time. While a user space test could try to reserve as many pages
as are available, it cannot be guaranteed that this method actually covers a large
amount of physical page frames. In addition, the memory reserved for testing
would not be available to other applications, which may result in reduced system
performance. Therefore, a memory tester running in user space alone may only
actually test a small percentage of the total physical memory.

In consequence, a memory tester has to be able to request physical page frames
in order not to repeatedly re-test only a small memory area. Knowledge of physical
addresses is also required for providing hints to the graceful degradation handling
mechanism. RAMpage therefore implements a kernel module to allocate physical
page frames to the user mode testing component.

3.3 RAMpage Components

RAMpage’s overall structure is shown in fig. 1. The system consists of two major
components, the physmem kernel module that handles page frame allocation,
deallocation and tainting, and the user-mode component that performs the actual
memory tests running as a normal process among other user-mode processes.

Efficient online memory error assessment and circumvention 7

User space memory tester

Page
requests

t
a
i
n
t

"
b
a
d
"

p
a
g
e

f
r
a
m
e
s

4bAlloc'd
pages

Physmem
claimer
kernel

module

Linux
kernel

Mark
bad

Return
frame

Frame
claimer

foreach
frame

in list

Map
to VM

munmap(..)

r
e
t
u
r
n

"
g
o
o
d
"

p
a
g
e

f
r
a
m
e
s

mmap(..)ioctl(..)

3

ioctl(..)

4a21

Figure 2 RAMpage’s physmem page frame claimer kernel module and its system call
interface.

3.3.1 Kernel–User Space Interaction

The tests run in a configurable loop in the userspace tester. Before each test pass,
it requests a set of physical page frames to be tested by the specific memory-test
plugin (a).

This list of page frame numbers is passed to the physmem kernel module (1),
which tries to obtain the requested page frames from the frame claimer (see section 4
for details on the different claiming methods) and returns a list of successfully
claimed page frames to the tester (2). The tester then maps the successfully
requested page frames into its virtual address space using a standard mmap system
call. The tester passes the page frame list to the memory testing plugin that
implements the specific test algorithm (b).

After testing is finished, the tester obtains a result list from the testing plugin
that indicates the test results: successfully tested vs. error detected (c). The
successfully tested page frames are then deallocated using the munmap system call,
whereas page frames that contain a detected error are reported to the kernel module
(3). The module then marks these page frames as “bad” to avoid further allocation.

The structure of the kernel module is shown in fig. 2. The module uses a device
driver interface which implements the ioctl and mmap system calls for the device
(/dev/physmem). The module waits for commands passed by the user space via
one of two ioctl calls to request a set of physical pages (1, 2) or to taint a page
frame (4b). These commands are carried out via the frame claimer respectively the
hwpoison subsystem. Mapping the page frames to be tested into the user space
tester’s virtual memory is done by a standard mmap system call (3) performed on
the device; successfully tested pages are simply unmapped from the tester’s memory
space using the munmap system call implemented by the kernel module (4a).

3.3.2 Scheduling of User-Level Tests

Providing a plugin interface for different memory tests provides an important degree
of freedom for a system administrator who wants to run online memory tests.
However, the scheduling of tests is as important as the test algorithm selection,

8 H. Schirmeier et al.

Test # Description

0 Address test, walking ones (ineffective)

1 Address test, own address

2 Moving inversions, ones & zeros

3 Moving inversions, 8-bit pattern

4 Moving inversions, random pattern

5 Block move, 80 moves (ineffective)

6 Moving inversions, 32-bit pattern

7 Random number sequence

8 Modulo 20, random pattern

Figure 3 Memtest86+ tests ported to RAMpage. Tests #0 and #5 cannot be run
effectively as they need access to a large fraction of physical memory at the
same time.

since this has the potential to heavily influence performance characteristics of the
tester.

RAMpage provides several different schedulers, most notably the “blockwise”
and the “slow” scheduler. The “blockwise” scheduler batches blocks of 512 page
frames together and tests these in a burst. The test is only performed if the last
successful test lies a specified time in the past; for benchmarking purposes this
scheduler can also be set to “full-speed”, resulting in continuous memory tests.
In contrast, the “slow” scheduler is intended to significantly reduce the memory
testing overhead. This scheduler tests blocks of 4096 page frames (16 MiB) each
and distributes tests of different blocks so that the complete physical memory of a
system is tested within 24 hours (or any other configurable timeframe).

4 Implementation Details

RAMpage is implemented in ANSI-C for the kernel module and the performance-
critical test algorithms, and Python for the user-space testing infrastructure. The
kernel module contains 1,285 lines of C code, whereas the user-space is implemented
in 1,985 lines of Python code. The memory tester plugins, a port of the well-
established Memtest86+ (Demeulemeester (2011)) tests (fig. 3), add up to 909 lines
of C code. One limitation is that the address line test #0 and test #5 cannot be
run effectively in our infrastructure, since they require access to a large fraction of
physical memory at the same time. This would defeat our design goal of minimal-
impact online testing, and is not really a severe drawback: If a system’s memory
address lines are malfunctioning, a complete system failure is inevitable in most
cases anyways.

In the following subsections we elaborate on some of the roadblocks that showed
up during the implementation, and explain Linux kernel details where necessary.

4.1 Memory Management

As stated earlier, actually getting access to unused and especially used memory page
frames is one of the harder problems to be solved when implementing a memory
tester. Since almost all physical memory is allocated to the kernel, processes, or

Efficient online memory error assessment and circumvention 9

the buffer cache, there is only a small amount of actual free memory available at
runtime. Our memory tester thus has to claim memory from the kernel in order to
perform tests, and return the allocated frames after testing.

Linux manages allocation of memory through the page allocator, which splits the
physical memory into zones. Each of the zones is maintained by a buddy allocator,
which manages memory in blocks sized in powers of two. In Linux, the base unit
for the buddy allocator is a page frame, so the managed objects have sizes of 4 kiB,
8 kiB, 16 kiB, etc.

The page allocator is used to allocate MMU page table entries for virtual
memory management. All other memory allocators in Linux (such as SLAB,
described by Bonwick (1994)) rely on the page allocator to claim memory. Its most
important user is the page cache, which contains caches of file data as well as
anonymous memory (i.e., memory that is not related to any file) used by processes,
including all text and data segments, read and written file contents, and meta data.

Important memory areas that are not managed by the page allocator include
kernel text and data, as well as memory used during the boot process. These are
managed by the separate bootmem allocator.

4.2 Claiming Page Frames

RAMpage’s user-space component obtains a set of physical page frame numbers
from the currently employed test scheduler. This set is passed to the kernel memory
claimer module, which tries to allocate the frames using the kernel’s buddy allocator.
When they have successfully been allocated by the kernel module, it marks them
as non-cacheable – otherwise the memory tester would mostly test the consistency
of the CPU’s data caches. The corresponding list of frames is returned to the
user-space component, which then can map the successfully claimed page frames
into its virtual address space and commence testing.

It turns out that the buddy claimer alone fluctuates strongly in whether it
succeeds to claim page frames or not, depending on how much memory is currently
being used, and for what purpose (cf. section 5). Therefore we complemented the
claimer with two additional claiming methods, both more intrusive and side-effect–
prone but also more effective in some situations: 1. Linux’s memory hotplugging
infrastructure provides an implementation for offlining large chunks of memory
(multiples of 4 MiB) by migrating its contents to other areas (originally intended for
physical removal of RAM modules at runtime). 2. The hwpoison subsystem contains
a page-“shaking” function for (likewise non-destructively) liberating a single page
frame for subsequent claiming via buddy or hotplugging. (Note that this excludes
the destructive part of hwpoison that resorts to killing processes when claiming
fails, cf. section 2). Due to their potential for harming system performance (e.g.,
the hotplug claimer contains a code path that completely drops the better part of
the buffer cache), these additional measures can be configured by the user-space
tool for each page frame to be claimed.

4.3 Page Frame Testing and Poisoning

The test of a page frame can have one of two outcomes. In most cases, the test runs
without detecting any error, so it can be returned to the kernel for further use. This

10 H. Schirmeier et al.

BIOS reserved memory, 640kiB hole
Linux kernel text & data MMU page tables

0 0.5 GiB 1.0 GiB 1.5 GiB 2.0 GiB
Figure 4 Single-bit stuck-at memory errors detected by RAMpage in fault-injection

experiments conducted with Fail*: Only 5.3% of the faults injected at every
second 4 kiB page boundary were not located (black areas) due to unsuccessful
page claiming.

happens by simply unmapping the page, which is then automatically repossessed
by the kernel’s memory management.

In case the memory test detects one or more errors in a page frame, however,
degradation management is being initiated. Instead of returning the affected page
frame to the kernel for reuse, the page has to be specially marked to ensure it will
not be allocated again until system reboot. Marking memory as “bad” is performed
by the kernel module utilizing the hwpoison framework.

5 Evaluation

We evaluated RAMpage under several qualitative and quantitative aspects. The
tester’s effectiveness was evaluated by simulating defects in a virtual machine as
well as using real defective RAM modules. RAMpage’s efficiency was assessed
by measuring both maximum test throughput and physical memory coverage for
different claiming methods in varying system load scenarios. Finally, a practicality
analysis was conducted by measuring performance, latency and energy consumption
side-effects on a set of standard benchmarks.

Unless mentioned otherwise, all measurements were conducted on a standard
Dell Optiplex 755 PC (Intel Core 2 Quad Q9550 CPU at 2.83 GHz, 2 GiB
DDR-2 800 RAM) running Debian Linux 6.0 with a 64-bit x86-64 SMP-enabled
Linux 3.5 kernel (slightly modified to export some internal symbols needed by our
module, and to timeout faster when trying to hotplug memory). The following
subsections describe the experiments we conducted and the conclusions we draw.

5.1 Effectiveness: Virtually and Really Broken Hardware

In order to assess RAMpage’s effectiveness, we conducted a series of automated
tests with Fail* (Schirmeier et al. (2012)), our fault-injection experiment framework,
configured with QEMU v1.1 as the x86-64 simulator backend. We implemented an
experiment campaign running one experiment for every second 4 kiB page boundary
in a 2,047 MiB address space, injecting a stuck-at-1 single-bit fault and observing
whether RAMpage (with a simpler memory test plugin to speed up the tests)
detects it.

In 94.7% of the 262,016 experiments, RAMpage succeeded in claiming the faulty
page frame, testing the memory and detecting the fault. The remaining memory
areas (see fig. 4) primarily host the kernel image or its data structures, most
prominently the MMU page tables, or x86 legacy such as the “640 kiB hole” (also
cf. subsection 5.2). In 0.2% of the experiments, RAMpage’s diagnostic output did

Efficient online memory error assessment and circumvention 11

Time (minutes)

#
 F

ra
m

e
s
 t
e
s
te

d

0

131072

262144

393216

524288

0 10 20 30 40

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●

idle

0 10 20 30 40

●●
●●
●●
●●
●●
●●
●●
●●●

fullcache

0

131072

262144

393216

524288

●●●
●●

memhog

●●
●●●●

●●

cache+memhog

● ● ● Buddy claimer
Hotplug + Buddy claimer
Hotplug + Shaking + Buddy

Figure 5 Page-frame claim rates for the different claiming methods in four load
scenarios. The dashed red line indicates the maximum amount of testable
pages in the 2 GiB address range (499,082 of 524,288 pages).

not show any progress after injecting the fault: We conjecture this to be a symptom
of the faulty memory address being vital for the correct operation of Linux or
RAMpage itself.

For proving the usability of our testing framework with real broken memory
hardware, we conducted experiments on a two-way AMD Opteron 250 server
with eight 1 GiB DDR1-400 modules (Apacer ECC Registered DDR-400, with
ECC disabled in the BIOS), one of which was known defective. Memtest86+ runs
confirmed a vast amount of single- and multi-bit errors throughout the module’s
complete address range; after further manual analysis we hypothesize that either
the buffer chip or one of the 16 memory chips on that module is causing the faults.

RAMpage successfully detected all defective page frames from the faulty DIMM
and removed them from further use. After offlining the problematic address range,
the machine continued running smoothly with the remaining 7 GiB of memory.
Placing the defective DIMM in the “wrong” memory slot on the mainboard led to
Linux failing to boot – an effect expected when essential kernel data structures or
machine instructions are placed in the affected address range.

12 H. Schirmeier et al.

5.2 Efficiency: Throughput and Memory Coverage

To assess RAMpage’s page-frame claiming efficiency (i.e., memory coverage) and
testing throughput, we logged the progress of the three page-frame claiming methods
over time in four different scenarios (fig. 5):

• A freshly booted, idle machine with most frames unused (idle in fig. 5),

• a full buffer cache by reading a large amount of files beforehand (fullcache),

• a single process hogging all memory and initially writing data to it to
circumvent memory overcommitment (memhog),

• and a combination of the last two scenarios (cache+memhog).

About 4.8% of all frames (∼98.5 MiB) are considered “untestable” right from
the start: These page frames, marked with the reserved flag, are not even touched
by other kernel subsystems such as, e.g., memory hotplugging, and kernel source
comments advise not to tamper with these. A closer look revealed that the majority
of these frames hold the kernel itself and its data structures (cf. fig. 4).

The experiments indicate that in most scenarios, a large percentage of the
remaining 499,082 page frames can be claimed and tested. The buddy claimer fails
to claim frames that are in use by the buffer cache or user-space applications. The
hotplug and shaking methods prove significantly more effective for these frame
types, at different levels of success. Since our earlier experiments with Linux 2.6.35
(Schirmeier et al. (2011)), the kernel’s memory management subsystem seems to
have improved substantially: In the old version, the combination scenario showed a
suboptimal memory coverage; with Linux 3.5 it is on par with the other scenarios.

The test throughput (using the unthrottled “full-speed” test scheduler) is
sufficient to test the evaluation PC’s 2 GiB of RAM in well under 30 minutes, which
emphasizes RAMpage’s practicality. As outlined in subsection 3.3.2, one pass can
be stretched to a longer period of time (e.g., 24 hours) with the “slow” scheduler,
still re-testing the memory in a reasonable time window.

5.3 Practicality: Impact on Performance, Latency and Energy Consumption

RAMpage’s impact on the target machine’s power consumption, or the performance
or latency of concurrently running software (system services, user applications,
whatever the machine’s primary purpose should be) is of high practical relevance. If
the test is qualitatively sound but disturbs normal operations severely, the intended
purpose to replace offline testing is put into question. Also, an unreasonably high
increase in energy consumption may render the approach too costly to apply on a
regular basis.

We chose a set of common benchmark scenarios:

• Linux 2.6.35 build (“allmodconfig”), highly parallelized (“make -j8”), known
for high CPU and I/O loads, and memory consumption.

• POV-Ray (v3.6.1, run in benchmark mode), a single-threaded CPU
benchmark with moderate memory requirements and close to zero I/O.

Efficient online memory error assessment and circumvention 13

Linux kernel allmodconfig POV−Ray IOzone CoreMark

Baseline (only benchmark)

Slow MT, Buddy claimer

Slow MT, Hotplug + Buddy claimer

Slow MT, Hotplug + Shaking + Buddy

Full−speed MT, Buddy claimer

Full−speed MT, Hotplug + Buddy claimer

Full−speed MT, Hotplug + Shaking + Buddy

no MT but CPUburn

N
o
rm

a
liz

e
d
 b

e
n
c
h
m

a
rk

 r
u
n
ti
m

e

0
.0

0
.5

1
.0

1
.5

Figure 6 Effects of various online memory testing schedulers and frame claimers on
Linux 2.6.35 building (allmodconfig), POV-Ray, IOzone and CoreMark
benchmarks (normalized averages, with error bars indicating SD).

• IOzone (r3.308, run with write/rewrite and read/reread tests, a file size of
1,500 MiB, and block sizes of all powers of two between 4 kiB and 512 kiB),
an I/O-bound filesystem benchmark expected to be sensitive to buffer-cache
contents being dropped. Note that the chosen file size is – contrary to IOzone’s
recommendations for real hard-disk benchmarking – smaller than the available
RAM, as we want to exhibit buffer-cache effects.

• CoreMark (v1.0, with default settings, running in parallel with four threads)1,
a CPU-bound multi-core benchmark.

• tbench (v4.00, run with a single client on the same machine), a file-server
benchmark stripped of the actual server-side operations, yielding a pure TCP
socket benchmark for latency measurements.

Note that only Linux build and CoreMark utilize all CPUs in the test machine.
We presume that load scenarios not occupying all available resources are relatively
common.

Fig. 6 shows normalized benchmark runtime averages with a baseline
measurement, runtimes with the memory tester in action – comparing the three
page frame claimers and the “slow” with the “full-speed” test scheduler – and
measurements without the memory tester but a single-threaded CPU-consuming
process (“CPUburn”). Notable are several observations:

• The “slow” test scheduler, aiming at reasonable memory test cycles of 24
hours, has no significant impact on any of the benchmarks. A system’s normal
operation is not disturbed, allowing to employ RAMpage permanently.

• Especially the kernel build and CoreMark are hit by the full-speed memory
tests, in particular when the hotplug and shaking methods for frame claiming
are in use. The slowdown is partially due to the CPU cycles the Memtest86+
tests consume (compare to the CPUburn measurements which resemble this

14 H. Schirmeier et al.

read reread

T
h
ro

u
g
h
p
u
t
(M

iB
/s

)

0
1
0
0
0

2
0
0
0

3
0

0
0

●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●

●●
●●●

●●●
●●●●●●
●

●
●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●
●●●

●●●
●
●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●
●●●

●●●
●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●
●●
●●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●
●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●

●●
●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●

●●
●

●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●
●●●
●●●

●●
●

●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●

●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

write rewrite

T
h
ro

u
g
h
p
u
t
(M

iB
/s

)

0
5
0

1
0
0

●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●

●
●
●●●
●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●

●●
●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

Figure 7 Memory test effects on IOzone “read”, “reread”, “write” and “rewrite”
benchmark throughput averages (with error bars indicating SD), with
individual measurements for the full-speed scheduler with different claimers.

effect). Additional penalties supposedly come from a high memory bus load
(all test schedulers) and – especially for the kernel build – the buffer-cache
pages that need to be reloaded from hard disk after they have been dropped
for testing (hotplug and hotplug+shaking claimers, the latter being even more
aggressive towards buffer-cache frames – cf. subsection 5.2).

• The single-threaded, CPU-bound POV-Ray benchmark is not affected at all.

• IOzone’s runtime seems not to be affected either, but a closer look at its
writing and most notably its reading benchmarks (fig. 7) reveals that – as
expected from the claiming methods’ behaviour already described – the
hotplug and shaking methods in some test runs affect the reading throughput.
The scattering of results can be explained by some runs with exactly the
wrong (still to be read by the benchmark) or the right (already read and not
needed anymore) buffer-cache frames being dropped.

Efficient online memory error assessment and circumvention 15

1 Client 32 Clients1 Client 32 Clients

A
v
g

 a
n

d
 M

a
x
 L

a
te

n
c
y
 (

s
e

c
o

n
d

s
,

lo
g

.
s
c
a

le
)

1
e

−
0

5
1

e
−

0
4

1
e

−
0

3
1

e
−

0
2

1
e

−
0

1

Figure 8 Memory test effects on average (with error bars indicating SD) and
maximum latency for the ReadX operation in the tbench benchmark with 1
and 32 clients connected to a server running on the same host (Y axis in
logarithmic scale; colour coding legend in fig. 6).

Idle system Linux kernel POV−Ray IOzone CoreMark

M
e
a
n
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

W
)

0
2
0

6
0

1
0
0

Figure 9 RAMpage’s impact on the test machine’s energy consumption: At “slow”
testing speed, the increase is negligible.

Fig. 8 shows average and maximum latencies for the ReadX operation (which
we picked to get comparable numbers as latencies differ by a few percent among the
different operations) of the tbench benchmark talking via TCP to a server running
on the same host. Although the average latencies do not vary significantly among
the different claiming and test scheduling strategies, the maximum latencies go up
by a factor of 9 (32 clients: factor of 19) from the baseline measurement to the most
intrusive claimer variants. As memory bus and CPU load stays the same for all
measurements with memory testing, only the claiming method itself can be blamed
for these rare spikes. As the memory hotplug subsystem was never intended for
continuous use but occasional system maintenance events, it was designed for safety
rather than for high performance, which we conjecture to be causing the latency
extrema.

To assess the additional energy consumption of our test machine, we hooked
up a high-quality consumer standby-energy measurement device (NZR SEM 16+
USB) to its power supply. For each single measurement, we ran one benchmark and
claimer combination for one hour and recorded the absolute energy consumption.
Each combination was measured at least ten times.

16 H. Schirmeier et al.

With RAMpage running the “slow” memory test, the additional energy
consumption is negligible (fig. 9) – a good indication that it could run on large
server farms without having to fear an unpleasant impact on operational costs.
At full speed, the average power takeup of our test machine ramps up from
60 W to about 90 W on an otherwise idle system; with approximately 10% more
consumption than the CPU-centric CPUburn run, the additional stress on the
memory subsystem becomes evident. The more energy-hungry the benchmarks get,
the less repercussions a concurrent full-speed memory test seems to have: But,
of course, this needs to be taken with more than one grain of salt, as the total
benchmark runtime increases (cf. fig. 6), and fig. 9 only shows the mean energy
consumption.

6 Related Work

We consider related work from three distinct areas, software-based online and offline
memory tests, hardware-based methods for memory error detection and correction,
and operating-system integrated EDAC frameworks.

6.1 Memory Tests

Memtest86+ (Demeulemeester (2011)) is a bare-metal offline memory tester for
x86-based systems using continuous tests with different patterns and algorithms.
Memory used by the tester is tested in advance, enabling a 100% coverage. In
addition to tests under normal operating conditions, stress testing memory outside
its specifications is possible by adjusting refresh rates and disabling ECC.

Singh et al. (2005) describe an online memory test for Solaris, which is kernel-
based and sequentially tests memory ranges by applying the fault model of Nair
et al. (1978). A simple frame scheduler calculates memory ranges to be tested
based on configured allocation size and test iteration number. Defective frames
are excluded from further use, and processes that accessed these frames are killed.
Results obtained by installing known faulty memory modules and running two
different workloads showed that detected faults differed between experiments. Only
about one third of the detected errors overlapped. (This correlates with Schroeder
et al. (2009), which state that system utilization has a strong influence on the
number of memory errors detected by ECC hardware.) This system superficially
resembles RAMpage. However, the pure kernel-mode implementation significantly
reduces flexibility. In addition, running on SPARC eliminates many of the problems
we had to face with hardware variability in x86 systems. Singh et al. did not publish
performance values, which we consider essential.

Effo GPL is a Linux user-space memory tester that implements several of
Memtest86+’s fault models. It acquires frames by allocating all obtainable memory,
using a kernel module to translate virtual to physical addresses. Unfortunately, the
publication that described the program and test algorithms has been removed from
the program’s website. Similar implementations of purely user-space memory tests
exist, such as Memtester by Cazabon (2009).

Similar to a bare-metal tester, Effo monopolizes system memory. Since it cannot
directly acquire specific page frames from user space, it has to allocate many frames

Efficient online memory error assessment and circumvention 17

and hope that the desired frame is included. This is a serious shortcoming for a
memory test that should not severely degrade system performance. Additionally,
this approach cannot predict which frames are to be allocated.

Rahman et al. (2011) describe COMeT, another online memory tester for Linux
that was developed in parallel and independently of RAMpage. Their approach is
similar in idea to ours, though the efficiency of their implementation lags behind,
causing a performance degradation of up to a factor of 4.41, and much lower
page-frame claim rates. However, the authors designed a sophisticated scheduling
approach: It guarantees that any page frame given out to a memory-demanding
application was tested before, and is re-tested in specific time intervals. A pool of
freshly tested page frames keeps allocation latencies low and is replenished at rates
driven by the current system load and memory allocation demands. Combining
RAMpage’s efficient page-frame claiming approaches with COMeT’s scheduling
methods could be an interesting prospect.

Amvrosiadis et al. (2012) describe a related analysis of a novel load-aware
approach for hard-disk scrubbing, which considers timing and size of scrubbing
related to other system activity. Compared to RAM testing, this approach has to
consider different parameters, like rotational delay of hard disks and seek times;
the basic idea seems similar. An integration of RAM and hard-disk background
testing in a common future EDAC framework seems desirable.

6.2 Fault Management

Solaris 10 What’s New: Predictive Self-Healing (n.d.) describes a framework to
improve system reliability using a fault manager that interprets hardware errors.
If a faulty component is detected, it tries to offline that component. The system,
described by Romack (2006), consists of components to manage services, to enrich
fault logs, and to provide fault prediction in cases where dependencies are well-
known. This implementation is one of the most advanced fault management systems
in commodity operating systems. However, it requires a large amount of hardware
add-ons and generally operates on a more coarse-grained basis compared to our
memory-testing approach.

The Linux EDAC framework (Thompson (2010)) is used to handle (usually ECC
memory) hardware errors. It provides an abstraction layer representing the physical
layout of memory in modules, down to a module’s chip-select rows. This requires
dedicated drivers for specific chipsets. The framework can also detect ECC errors
in non-RAM components, such as buses, DMA engines, caches, etc. EDAC is not
CPU-architecture specific; currently, drivers for x86 and PPC architectures exist.
While EDAC is useful for ECC-equipped systems, its functionality relies heavily on
hardware support for error detection, making it unsuitable for commodity systems.

Linux can log CPU-specific machine check exceptions, such as correctable and
uncorrectable errors, using the mcelog user-space tool (Kleen (2010)). The kernel
itself performs immediate actions, like killing processes. While mcelog proves to be
a useful tool for system administrators, again, it requires the existence of specific
hardware, i.e., MCE-enabled x86 CPUs. In addition, it does not provide methods
to handle errors.

18 H. Schirmeier et al.

6.3 Hardware-based approaches

In an IBM whitepaper, Dell (1997) discusses shortcomings of SECDED (Single
Error Correction, Double Error Detection). ECC multi-bit errors, caused by a single
memory chip failing completely, are very likely. However, SECDED cannot handle
these.

Chipkill is a mechanism designed to survive such failures (Chen (2001), Olarig
(2003), Yoon & Erez (2010) and Dell (1997)). It expands the granularity of
memory accesses, protecting against the failure of a complete memory chip.
Sun UltraSPARC-T1/T2 (Sun Microsystems (2008)) and AMD Opteron (AMD,
Inc. (2007)) systems implement this strategy by accessing two memory modules
simultaneously. While Chipkill is a useful extension to general ECC-based protection
mechanisms, it is only employed in expensive high-end server systems.

The AMD K8 architecture (AMD, Inc. (2008)) introduced memory scrubbing.
The CPU can continuously read memory in order to provoke ECC errors early, i.e.,
as long as only correctable single-bit errors show up. However, this technique is
only useful for ECC-equipped systems, since the scrubbing is performed read-only.
According to AMD’s documentation, currently DRAM scrubbing is unsupported,
which restricts hardware-supported scrubbing to cache memory.

Solaris x86 supports memory scrubbing. Like AMD’s hardware scrubber, this
feature is only useful on ECC-equipped systems. Of interest is a section in the
scrubbing code (Sun Microsystems (n.d.)) defining a 12-hour testing interval for
the complete physical memory of a system, commenting “twice the frequency the
hardware folk estimated would be necessary”.

7 Discussion and Future Work

Although the overall design of RAMpage follows a clean and well-structured
approach, attaining an implementation that fulfilled our functionality and efficiency
goals was hampered by numerous small problems. Most of these problems were
rooted in assumptions the Linux kernel makes about the underlying memory system.

Understanding, partially reverse-engineering and extending the complex and
convoluted Linux memory-management system turned out to be one of the less
trivial undertakings – not least due to the lack of up-to-date documentation for
the related subsystems. We required several experimentation iterations until we
procured a reliable method of claiming page frames (especially the ones currently
in use). Respecting Linux’ own limitations regarding certain reserved memory areas
– e.g., its inability to migrate the kernel image or virtual-memory data structures
to other areas in physical memory – we arrived at a reasonably stable, best-
effort solution that nevertheless is able to improve the reliability of a commodity
Linux-based x86-64 system significantly. Especially porting RAMpage to Linux
3.5 removed some of the oddities we observed earlier, resulting in substantially
better page-frame claim rates in all benchmark scenarios, compared to our previous
publication.

We presume that a tighter integration with Linux’ memory management would
allow to test an even higher percentage of the overall physical memory. The
complexity of Linux memory management, as, e.g., described by Gorman (2004),

Efficient online memory error assessment and circumvention 19

and the high rate of changes, however, make this seem a daunting task. Also an
integration with a Linux-based fault management framework (such as EDAC) might
be worthwile.

Despite all the positive properties of our graceful degradation approach, some
general drawbacks of an online memory test shall not remain unmentioned.
Overcoming these limitations is an interesting topic for future research.

An inherent limitation of any online memory-testing approach is that all
program execution in-between a successful check of a page frame and a subsequently
found error therein may be affected by that error. We doubt this can be remedied by
any reasonably efficient software solution. Thus, the current solution only reduces
the probability of an application using a defective memory cell, but cannot avoid
the situation completely.

One possible approximation to further minimise this probability is to test page
frames before giving them out to any process or kernel driver for the first time.
Rahman et al. (2011) developed an elaborate pre-allocation test scheduler for their
online memory tester, COMeT (cf. subsection 6.1): A pool with freshly-tested page
frames keeps allocation latencies low and is replenished driven by the application’s
current allocation demands. These page frames can also be used as the migration
target for the content of frames about to be tested. RAMpage currently delegates
migration to Linux hotplugging (cf. subsection 4.2), which picks an arbitrary free
page frame for migration instead of taking test “aging” into account. Combining
RAMpage’s superiour page-frame claiming methods and low impact on normal
operations, and COMeT’s demand-driven pre-allocation approach, should result in
an even better tool for everyday use.

An idea complementary to the kernel-based RAMpage approach outlined in this
paper is to position the memory testing infrastructure below the running OS kernel.
This could be achieved by employing a hypervisor like Xen, which provides kernels
running on top with the illusion of running on a physical machine. Advantages of
this approach would be the possibility to test all of a (virtual) machine’s memory
and to gain a certain level of operating system independence. A possible drawback
would be the more complex installation and configuration of such a system. Since
ever more server systems are being based on virtualization, however, this might not
cause significant overhead in these systems.

Finally, it would be interesting to see how well our online memory tester is
portable to different architectures (especially embedded systems, considering the
inherent limitations of these systems), or even to other Unix-like systems, such as
BSD, Solaris, or MacOS X. The primary prerequisites for a port are MMU-based
OS services for page-frame claiming and migration (such as those identified in
Linux, cf. subsection 6.1), and a mechanism to exclude frames from further use
(such as Linux hwpoison).

References

AMD, Inc. (2007), ‘BIOS and kernel developer’s guide for AMD NPT family 0fh
processors’, http://support.amd.com/us/Processor_TechDocs/32559.pdf.

AMD, Inc. (2008), ‘BIOS and Kernel Developer’s Guide (BKDG) for AMD Family
11h Processors, rev 3.00’.

20 H. Schirmeier et al.

Amvrosiadis, G., Oprea, A. & Schroeder, B. (2012), Practical scrubbing: Getting
to the bad sector at the right time, in ‘Proceedings of the 42nd IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN ’12)’, IEEE
Computer Society Press, Los Alamitos, CA, USA, pp. 1–12.

Bonwick, J. (1994), The slab allocator: An object-caching kernel memory allocator,
in ‘Proceedings of the 1994 USENIX Annual Technical Conference’, USENIX
Association, Berkeley, CA, USA, pp. 6–17.

Cazabon, C. (2009), ‘memtester website’.
URL: http://pyropus.ca/software/memtester/

Chang, M.-F., Fuchs, W. K. & Patel, J. H. (1989), ‘Diagnosis and repair of memory
with coupling faults’, IEEE Transactions on Computers 38, 493–500.

Chen, C.-L. (2001), ‘Symbol level error correction codes which protect against
memory chip and bus line failures’, US Patent 7093183.
URL: http://www.freepatentsonline.com/7093183.html

Dell, T. J. (1997), A white paper on the benefits of chipkill-correct ECC for PC
server main memory, in ‘IBM Whitepaper’.

Demeulemeester, S. (2011), ‘Memtest86+’.
URL: http://www.memtest.org/

Gorman, M. (2004), Understanding the Linux Virtual Memory Manager, Prentice
Hall.

Hayes, J. P. (1975), ‘Detection of pattern-sensitive faults in random-access
memories’, IEEE Transactions on Computers 24(2), 150–157.

Kleen, A. (2010), mcelog: memory error handling in user space, in ‘Proceedings of
the 2010 Linux Kongress’.

Nair, R., Thatte, S. & Abraham, J. (1978), ‘Efficient algorithms for testing
semiconductor random-access memories’, IEEE Trans. on Computers C-
27(6), 572 –576.

Nightingale, E. B., Douceur, J. R. & Orgovan, V. (2011), Cycles, cells and
platters: an empirical analysisof hardware failures on a million consumer PCs,
in ‘Proceedings of the ACM SIGOPS/EuroSys International Conference on
Computer Systems 2011 (EuroSys ’11)’, ACM Press, New York, NY, USA,
pp. 343–356.

Olarig, S. P. (2003), ‘Technique for implementing chipkill in a memory system’,
United States Patent 7096407.
URL: http://www.freepatentsonline.com/7096407.html

Panzer-Steindel, B. (2007), Data integrity, Technical report, CERN, Geneve,
Switzerland.

Rahman, M., Childers, B. R. & Cho, S. (2011), COMeT: Continuous online memory
test, in ‘Proceedings of the 17th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC ’11)’, IEEE Computer Society Press, pp. 109–
118.

Efficient online memory error assessment and circumvention 21

Romack, R. (2006), Service Management Facility (SMF) in the Solaris 10 Operating
System, Sun, Part No 819-5150-10.

Schirmeier, H., Hoffmann, M., Kapitza, R., Lohmann, D. & Spinczyk, O. (2012),
FAIL*: Towards a versatile fault-injection experiment framework, in G. Mühl,
J. Richling & A. Herkersdorf, eds, ‘25th International Conference on Architecture
of Computing Systems (ARCS ’12), Workshop Proceedings’, Vol. 200 of Lecture
Notes in Informatics, German Society of Informatics, pp. 201–210.

Schirmeier, H., Neuhalfen, J., Korb, I., Spinczyk, O. & Engel, M. (2011), RAMpage:
Graceful degradation management for memory errors in commodity linux servers,
in ‘Proceedings of the 17th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC ’11)’, IEEE Computer Society Press, Pasadena,
CA, USA, pp. 89–98.

Schroeder, B., Pinheiro, E. & Weber, W.-D. (2009), DRAM errors in the wild:
A large-scale field study, in ‘Proceedings of the eleventh international joint
conference on Measurement and modeling of computer systems’, SIGMETRICS
’09, ACM, New York, NY, USA, pp. 193–204.

Singh, A., Bose, D. & Darisala, S. (2005), Software based in-system memory test for
highly available systems, in ‘Proceedings of the 2005 International Workshop on
Memory Technology, Design, and Testing (MTDT ’05)’, IEEE Computer Society,
Washington, DC, USA, pp. 89–94.

Solaris 10 What’s New: Predictive Self-Healing (n.d.).
URL: http://docs.oracle.com/cd/E19253-01/817-0547/esqej/index.html

Srini, V. P. (1978), ‘Fault location in a semiconductor random-access memory unit’,
IEEE Transactions on Computers 27, 349–358.

Sun Microsystems (2008), ‘OpenSPARC T2 system-on-chip (SOC)
microarchitecture specification’.

Sun Microsystems (n.d.), ‘memscrub.c source code, http://src.opensolaris.

org/source/xref/onnv/onnv-gate/usr/src/uts/i86pc/os/memscrub.c’.

Thompson, D. (2010), ‘Linux kernel documentation: EDAC – error detection and
correction’, [Linux 2.6.35]/Documentation/edac.txt.

Yoon, D. H. & Erez, M. (2010), ‘Virtualized and flexible ECC for main memory’,
ACM SIGARCH Comput. Archit. News 38, 397–408.

Notes

1For a meaningful comparison with the other benchmarks, the plot shows
the normalized reciprocal of the CoreMark score. The complete report with
parameters and average score for baseline, according to CoreMark reporting
rules: CoreMark 1.0 : 32943.657830 / GCC4.4.5 -O2 -DMULTITHREAD=4

-DUSE PTHREAD -DPERFORMANCE RUN=1 -lrt / Heap / 4:PThreads

