Revisiting Fault-Injection Experiment-Platform Architectures

Horst Schirmeier*, Martin Hoffmann, Riidiger KapitzaT, Daniel Lohmann and Olaf Spinczyk*
*Department of Computer Science 12, Technische Universitit Dortmund, Germany
e-mail: {horst.schirmeier, olaf.spinczyk}@tu-dortmund.de
TDepartment of Computer Science 4, Friedrich-Alexander-Universitdt Erlangen-Niirnberg, Germany
e-mail: {hoffmann, rrkapitz, lohmann}@ cs.fau.de

Abstract—Many years of research on dependable, fault-
tolerant software systems yielded a myriad of tool implemen-
tations for vulnerability analysis and experimental validation
of resilience measures. Trace recording and fault injection
are among the core functionalities these tools provide for
hardware debuggers or system simulators, partially including
some means to automate larger experiment campaigns.

We argue that current fault-injection tools are too highly
specialized for specific hardware devices or simulators, and are
developed in poorly modularized implementations impeding
evolution and maintenance. In this article, we present a novel
design approach for a fault-injection infrastructure that allows
experimenting researchers to switch simulator or hardware
backends with little effort, fosters experiment code reuse, and
retains a high level of maintainability.

I. INTRODUCTION

Fault-injection (FI) experiments and dynamic trace anal-
yses are common means to analyze a complex software-
stack’s susceptibility to hardware faults, and to assess the
effectivity of software fault-tolerance measures [1]. Repeating
the analysis/evaluation and software-hardening steps allows
system designers to converge to an application-specific
tradeoff eligible for their product. Over the last decades,
a multitude of research projects, each with a different set of
requirements, a zoo of hardware or CPU/system simulator
platforms, and varying fault models and experiment setups,
developed FI experiment tool suites [2]. Many of these tools
incorporate some means to automate the process of repeating
and experiments or varying fault models.

In this article, we partition the state of the art into two
disjoint classes of FI tools. We argue that both classes
entail significant disadvantages for the tools’ users (regarding
experiment code reusability, system-state access, or fault-
model flexibility) and its developers (regarding software
maintainability and evolution), and outline possible reasons
for these downsides. Based on this analysis, we propose a
novel architecture for a versatile FI experiment framework,
based on the aspect-oriented programming (AOP) paradigm.

II. STATE OF THE ART
There exist FI experiment tools for dependability evalu-
ations in different development phases, based on hardware

This work was supported by the German Research Council (DFG) focus
program SPP 1500 under grants KA 3171/2-1, LO 1719/1-1 and SP 968/5-1.

simulators at varying levels of simulation accuracy, or on
physical prototype hardware accessed through hardware-
debugging interfaces. Existing FI tool implementations can
roughly be partitioned into generalists and specialists: The
former aim at high flexibility regarding FI target backend and
portable experiment code, the latter specialize on a single
target hardware/simulator and offer deep system-state access
combined with variable fault models.

The generalists claim a certain level of flexibility regarding
the target-platform backend. Among the benefits of this
approach is that experiments can more easily be reused
on a different platform—e.g., for gaining evidence the tested
fault-tolerance measure is not platform-specific, or to move
from a simulator backend to a real hardware prototype in
later development phases. With GOOFI, Aidemark, Skarin
et al. presented such a generic FI framework, abstracting
away target systems in a plugin-based architecture [3], and
additionally providing extensive pre- and post-experiment
analysis methods. Fidalgo et al. [4] describe a generic tool
addressing FI via the NEXUS on-chip debugger interface.
Another example is QINJECT (David et al., [5]), injecting
faults into a target backend utilizing the GDB debugger
interface. These approaches have the common disadvantage
that the chosen interface between experiment engine and
target backend heavily limits access to target-system state,
and narrows the possibilities for Fl—e.g., obstructing the
possibility to inject networking-device—specific faults into
QEMU in the latter example.

In contrast, the specialist tools are highly specific to a
single target. An example is FAUMACHINE (Sieh et al., [6]),
which provides access to a large part of its x86 simulator’s
state, and enables various FI methods, including, e.g., hard-
disk faults. But despite the advantage of providing access
to the backend’s full capabilities, this class of tools is
characterized by severe maintainability issues: Deep state-
access usually results in deep intrusion into the backend’s
code-base. Unfortunately, enhancing a simulator with FI code
implemented in a traditional imperative language such as C or
C+ often leads to intermixing the implementation of different
concerns—in this case particularly the simulation and fault-
injection concerns. Listing 1 illustrates this so-called rangling
(different concerns implemented in a single implementation
module) effect on a code example taken from FAUMACHINE;



1 static int ide_gen_disk_read_raw(struct cpssp *cpssp,
2 uint8_t *buffer, uint32_t blkno
3 unsigned int i, defect;

) |
4 assert (blkno < cpssp—>phys_linear + RESERVED_SECTORS) ;

5 for (1 = 0; ; i++) {

6 if (1 == sizeof (cpssp->fault) /

7 sizeof (cpssp—>fault[0])) {

8 defect = 0;

9 break;

10 }

11 if (cpssp->fault[i].type == BLOCK

12 && cpssp->fault[i].blkno == blkno) {
13 defect = cpssp->fault[i].val;

14 break;

15 b}
16 switch (defect) {
17 case 0: /% No read error. */

18 storage_read (cpssp->media, buffer, 512, blkno = 512ULL);
b return 1;
20 case 1l: /* ECC corrected read error. */
21 storage_read (cpssp->media, buffer, 512, blkno % 512ULL);
22 return 0;
23 case 2: /x un-correctable read error. x/
24 memset (buffer, 0, 512);
25 return -1;
2} }

Listing 1. Code excerpt of FAUMACHINE’s hard-disk simulation code

(raw-block read): Implementation of sanity check (grey), fault injection (red)
and normal simulator operation (green) concerns is heavily tangled.

Fault Injection

1 aspect MemWriteHook {

2 pointcut mem_write() =

3 "void ...::bx_cpu_c::write_virtual_$(...)";
4 advice execution (mem_write()) : before () {
5 // divert control flow to FI module

6 fi::memwrite_trigger (tjp->arg<0>(),

7
8

tip->arg<ls (), tip->arg<2>());

}odi

Listing 2. Aspect implementation of a hook diverting control flow from
the BOCHS simulator into a module for fault injection on the data bus.

a related problem is called scattering (distribution of a
concern implementation across multiple implementation
artifacts). The resulting tight coupling between simulator
and FI code often makes it difficult or even impossible to
exchange the tool’s target backend later on; in the case of
tools that were forked from an existing hardware simulator,
such as QEMU', even keeping in sync with the simulator’s
mainline evolution is often too arduous.

III. SEPARATION OF CONCERNS

When choosing an adequate compromise between gen-
eralist and specialist tools, one might very soon end up
worsening the situation, combining the disadvantages of
both worlds: A generic interface with little access to system
state, implemented with tightly-coupled FI and backend
modules. We believe that these problems are inevitable with
traditional implementation approaches: Even if all Fl-related
code in listing 1 were modularized in a single function in
a separate translation unit, the simulator would still have to
be supplemented with a function call, passing control-flow
to the FI implementation.

For example, David et al. modified Qemu in [7], but seemingly later
gave up on the fork in favor of a generalist [5].

/—(poimcul: "where" to hook into Bochs]

We argue that only strict separation of concerns can avoid
this maintenance nightmare. Aspect-oriented programming
(AOP, [8]) is a technique known to facilitate this: So-called as-
pects—defining where (“pointcut”) FI code (what: “advice”)
should be applied—allow for compact, well-encapsulated
realizations of FI concerns. An “aspect weaver” automatically
takes care of compile-time intermixing of simulator and
extension code. Listing 2 exemplifies the approach, showing
an AspectC+ [9] implementation of an aspect diverting control
flow from the memory module? of the BOCHS simulator to
a FI module, completely eliminating the need to invade the
simulator’s code manually. The join point API (see [9] for
details) is leveraged to hand over (pointers to) the actual
parameters to the fi::memwrite_trigger function.

We aim at proving the advantages of this approach by
designing a new, versatile FI framework, based on off-
the-shelf simulators such as BOCHS, QEMU, or OVP. We
expect that loose target-backend coupling will significantly
facilitate switching to a different backend, or synchronizing
with newer backend versions. By additionally providing an
API abstracting from backend commonalities, we intend to
foster experiment code reuse, in summary combining the
advantages of the two FI tool classes.

REFERENCES

[1] A. Benso and P. Prinetto, Eds., Fault Injection Techniques and
Tools for Embedded Systems Reliability Evaluation (Frontiers
in Electronic Testing), 1st ed. Boston: Springer, Oct. 2003.

[2] H. Ziade, R. A. Ayoubi, and R. Velazco, “A survey on
fault injection techniques,” The International Arab Journal
of Information Technology, vol. 1, no. 2, Jul. 2004.

[3] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “GOOFI:
Generic object-oriented fault injection tool,” in 3/st IEEE/IFIP
Int. Conf. on Dep. Sys. & Netw. (DSN '01). 1EEE, 2001.

[4] A. Fidalgo, M. Gericota, G. Alves, and J. Ferreira, “Using
NEXUS compliant debuggers for real time fault injection on
microprocessors,” in Proceedings of the 19th Annual Symposium
on Integrated Circuits and Systems Design. ACM, 2006.

[5] F. M. David, E. Chan, J. Carlyle, and R. H. Campbell, “Qinject:
A virtual-machine based fault injection framework,” in /3th
Int. Conf. on Arch. Support for Programming Languages and
Operating Systems (ASPLOS ’08), 2008, (Poster Presentation).

[6] S. Potyra, V. Sieh, and M. D. Cin, “Evaluating fault-tolerant
system designs using FAUmachine,” in 2nd Int. W’shop on
Engin. Fault Tolerant Sys. (EFTS ’07).

[7]1 F. M. David and R. H. Campbell, “Building a self-healing
operating system,” in 3rd IEEE Int. Symp. on Dep., Auton. &
Secure Comp. 1EEE, 2007, pp. 3-10.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,”
in 11th Eur. Conf. on OOP (ECOOP ’97), ser. LNCS, M. Aksit
and S. Matsuoka, Eds., vol. 1241. Springer, Jun. 1997.

[9] O. Spinczyk, D. Lohmann, and M. Urban, “Advances in AOP
with AspectC++,” in New Trends in Softw. Method., Tools &
Techn. (SoMeT '05), ser. Frontiers in Al & Applications, no.
129. Tokyo, Japan: IOS Press, Sep. 2005, pp. 33-53.

2The pointcut expression, utilizing wildcard expressions (... and %),
actually matches twelve different Bochs functions which implement memory
writes for several address and data operand sizes.



