
Protecting the Dynamic Dispatch in C++
by Dependability Aspects ∗

Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk

Department of Computer Science 12, TU Dortmund, Germany
e-mail: firstname.lastname@tu-dortmund.de

Abstract: Computer systems, especially devices with highly-miniaturized feature sizes,
are unreliable. Data memory is susceptible to a number of physical effects that cause
faults, which can be observed as spontaneous bit flips. Although in many application
scenarios corrupt data is harmless (“almost” correct result often suffices), control-flow
transitions are very sensitive to faults. Indirect jumps, such as the dynamic dispatch
of virtual functions in C++, often crash the system in case of a single bit flip. This
paper describes a suitable software-based fault-tolerance mechanism, which can be
applied to arbitrary C++ software by source-to-source compilation. The overall cost for
this mechanism is below 10 % for both runtime and memory overhead. Our evaluation
results show that this approach eliminates 67.1 % of all irregular program terminations
in a case study using an embedded weather-station software, whose entire data memory
is corrupted by single-bit flips.

1 Introduction

From a user’s perspective, fault tolerance has two dimensions: data consistency, which
means that the system produces correct output, and availability, which means that the
system will neither halt nor crash and, thus, always remains responsive. Often both
dimensions are equally important. However, recent studies show that commodity hardware
is becoming more and more unreliable [BADAD+08]. This is due to shrinking on-chip
structure sizes but also a result of the trend towards low-power hardware [DYdS+10]. For
instance, probabilistic hardware even trades fault probability for energy savings [Bor05]. As
a consequence, fault-tolerance issues become relevant in consumer products. This is a broad
spectrum of application areas and in many of these fields availability is more important than
data consistency. Therefore, there are several new directions in fault-tolerance research,
which all focus on making software systems survive hardware faults such as failure-oblivious
computing [RCD+04] and software rejuvenation [VT05].

The work presented in this paper targets the same goal. Based on our unique FAIL* fault-
injection framework [SHK+12] we quantitatively analyze the reasons for errors that occur
due to bit flips in volatile memory of a simple weather-station software. The software

∗This work was partly supported by the German Research Foundation (DFG) priority program SPP 1500 under
grant no. KA 3171/2-1, LO 1719/1-1 and SP 968/5-1.

is written in an object-oriented manner in C++. In this software most errors that let the
system die are caused by virtual-function calls with an invalid target address. However, we
show that most of these situations can either be detected or even be corrected with a simple
software-based solution at a low cost in terms of runtime and memory overhead.

This approach is based on our aspect-oriented programming language AspectC++ [SL07].
By means of aspect-oriented software development [KLM+97] we can implement De-
pendability Aspects that protect the dynamic-dispatch mechanism. Even though aspects
affect various points in the control flow of a program, e.g., every virtual-function call, the
implementation is (on the source-code level) modular and completely separated from the
protected system components. This feature of aspect orientation facilitates an application-
specific selection and configuration of dependability aspects based on the actual depend-
ability requirements. This means in other words that the error probability and the costs of
fault-tolerance mechanisms can be adjusted easily.

As we have analyzed only a single simple application the work presented here can only
be regarded as a proof of concept. Nevertheless, it shows that Dependability Aspects have
the potential to become a relevant technique in the space of software-based fault-tolerance
solutions.

This article is organized as follows: After a brief discussion of related work in Section 2
we will present the weather-station application and the results of an initial dependability
assessment of the unmodified system in Section 3. After this motivation, Section 4 will
describe the C++ dynamic-dispatch mechanism as necessary background information for
the following sections. Section 5 will explain the Dependability Aspects and is followed
by an evaluation of the approach in Section 6. The paper closes with a discussion of our
results and the conclusions in Section 7 and 8.

2 Related Work

Software-based fault tolerance is a wide research area with a long history. Even though
software-based protection of data structures has been proposed earlier [DR03], we are
not aware of any study that especially covers a fault-tolerance mechanism for protecting
dynamic dispatch in C++ programs. Kuhn and Binkley have proposed to transform the
pointer-based dynamic dispatch into a semantically equivalent switch/case statement with
statically bound function calls [KB96]. We regard this approach as complimentary, because
in contrast to our approach it does not contain a repair mechanism. A drawback is that
the transformation requires a whole-program analysis. Furthermore, it is possible that the
compiler implements the switch/case statement by a jump table, which means that a bit flip
in the table index could also lead to undefined behavior.

There is also some experience on using AspectC++ for the implementation of other fault-
tolerance measures. For instance, Afonso has described several aspect-oriented idioms
for improving fault-tolerance in embedded OS code [ASMT07]. Alexandersson et al.
have implemented time-redundant execution and control-flow checking with AspectC++
[AÖK10].

The fault-injection framework FAIL*, which we used for this study, has been presented
earlier [SHK+12]. It has a unique set of features, as it provides back-end flexibility,
facilitates experiment reuse, and supports deep target-state access. It combines the strengths
of generalist fault-injection frameworks, such as GOOFI [AVFK01] and QInject [DCCC08],
with the advantages of specialized frameworks, such as FAUmachine [SPS09].

3 Scenario and Motivation

In this section we outline the application scenario and the fault model used in this article,
and motivate our approach by a baseline dependability assessment.

3.1 Weather-Station Application Scenario

As a realistic analysis and evaluation scenario, throughout this article we use the object-
oriented C++ implementation of an embedded weather-station software we already de-
scribed in an earlier publication [LSSP06]. In essence, the weather station consists of
several sensors to gain environmental information, and actors to process the collected
weather data. The software iteratively activates all sensors and actors, and pauses for a
predefined amount of time between each iteration. Central elements of the C++ imple-
mentation are the classes Weather and Sink, which aggregate all sensors and actors,
respectively. Internally, Sensor and Actor (both abstract base classes, each defining a
virtual method; cf. Section 4) objects are chained in singly-linked lists for each base type.
The application’s main loop processes these lists in each iteration.

As our FAIL* experimentation framework [SHK+12] currently only provides an x86
emulator back end, and the actual sensor inputs make no difference for the purpose of this
article, we replaced the original sensor and actor driver implementations with variants that
generate synthetic data, and a simple CGA text-display driver.

3.2 Fault Model

The fault model covers uniformly-distributed single-bit flips in data memory (data and
BSS segments), i.e., we consider program runs in which a single bit in data/BSS flips at
some point in time. This model seems reasonable for low-cost embedded systems where
read-only data and code (text) is stored in far less susceptible (EEP)ROM or Flash, and
global objects and the program stack is kept in non-ECC RAM.

Global

variables

& objects

Stack

vptr
next-ptr

last temperature

vptr
next-ptr

last wind speed

vptr
next-ptr

...

thePressure

theWind

Sink::_actors
Weather::_sensors

theTemperature

Data

Time/Instruction Offset

Figure 1: Excerpt from fault-injection experiment campaign with unmodified weather-
station software: Bit flips in virtual-function table pointers (vptr: 32-bit word at object start,
cf. Section 4) and pointers to objects (linked-list head pointers, and “next”-link pointers
embedded in sensor/actor objects) result in a large fraction of observed program crashes.

3.3 Dependability Assessment

In order to assess the weather station’s baseline susceptibility to single-bit flips in data
memory, we conducted a fault-injection (FI) campaign with FAIL*. Each single experiment
is an (always identical) deterministic run of the weather-station software, starting at the
entry of its main function, and ending after executing 30,871 instructions. In the course of
this run, a single bit in memory is flipped at a single point in time (within the first 20,559
instructions from program start).

A particularly interesting excerpt from the FI campaign’s result data is shown in Figure 1.
The larger diagram covers a single loop iteration in its horizontal dimension (ca. 5,000
instructions out of the 30,871 total), and the used part of the stack (bottom half of the
diagram) and all global variables/objects (top half) in the vertical dimension (ca. 420 out

of 6,432 bytes covering all of the data and BSS segments, plotted on bit-level granularity).
The experiment results are color-coded:

• White data points denote experiments where the injected fault did not propagate to a
user-observable change in program behavior. In order to automate this classification,
we categorize all experiments in which the weather-station software continues to run:
The main loop body is visited the same number of times as in the golden run (six
times), and none of the other conditions (see below) is met.

• Blue marks experiments in which the FI (at some point in time after the injection)
led to a jump outside the text segment.

• Experiments that at some point triggered a CPU exception (division by zero, illegal
instruction, or a MMU general protection violation) are colored in red.

Many crashes in the stack area result from corrupted function return addresses, which
is outside this article’s scope. The magnified subplot shows a few of the global objects
and the two linked-list entry pointers in detail: The lowest and the second-lowest 32-bit
words in the three Sensor objects in the close-up (theTemperature, theWind, and
thePressure – two more, theDisplay and kout, are not shown), just as the two
linked-list head pointers (_actors/_sensors) seem to be highly sensitive to bit flips,
almost in every case resulting in an application crash (misplaced jump, or exception). It
turns out that the first 32-bit words – the vptr, as we will describe in the next section – and
the linked-list head and chaining pointers (next, embedded in each object as the second
machine word) contribute to 26.4 % respectively 40.5 % of all observed irregular program
terminations (i.e., non-white data points in the diagram). Thus, the following chapters
outline an approach and implementation to protect these entities against memory errors.

4 Background: Object-Oriented Programming in C++

The embedded weather-station software, which we have analyzed in the previous section,
was implemented by object-oriented programming in C++. Classes encapsulate functions
(called methods in object-oriented jargon) and provide advantages in code reuse by inher-
itance. Inherited methods can be selectively overridden by derived classes (for further
information see [Lip96]).

Inheritance features the principle of substitution: An object of a derived class is also an
object of its super class, and pointers and references of the super type can refer to it.
However, invoking a method on such a pointer leads to methods of the super-class (the
pointer’s type). Yet a common view on object-oriented programming is polymorphism:
A call to a super-class pointer should yield a method invocation depending on the actual
type of the object rather than the pointer’s type. This behavior is inherent in the Java
programming language – but not the default case in C++. Instead, C++ programmers have
to declare a function virtual in order achieve polymorphism. Thus, virtual methods
are dynamically bound to object’s type at runtime (late binding), whereas calls to other
methods are statically determined at compile time.

object's
fields

vptr

...

2nd virtual method
1st virtual method

vtableobject
pointer
to object

RAM ROM

Figure 2: Memory layout of objects, vptrs and vtables used by common C++ compilers

A virtual-method call has to be dynamically dispatched at runtime to one of several
implementations, depending on the object’s type. The C++ standard [Ins03] does not explic-
itly specify how this has to be performed, but in general, compilers implement the dynamic
dispatch by fast lookup tables. The predominant way, used by every C++ compiler we are
aware of, is the virtual method table (vtable). For each class that contains a virtual
method, a lookup table is generated, whose entries refer to the method implementations
for this particular type. Each object of such a class contains a pointer to its vtable, known
as the virtual method pointer (vptr). Thus, a virtual method call is carried out in two
steps: First, the object’s vptr is dereferenced to index the corresponding vtable. Second,
the vtable’s entry for this particular method, which points to the desired implementation,
is called. Figure 2 illustrates this procedure. Since the vtable is indexed via a pointer, the
final program can be separately compiled in multiple compilation units as in plain C. This
is essential when the complete source code is not available, for example when libraries are
used.

5 A Dependability Aspect for the Dynamic Dispatch

The dynamic dispatch relies on an object’s vptr referring to a well-defined vtable for
method lookup. Section 3 already revealed that the vptr’s correctness is crucial for a
program being executed. Faults in a vptr lead almost inevitably to software failures caused
by illegal control-flow transitions. Therefore, we propose a mechanism to protect vptrs
from unwanted changes, so that once an object is entirely constructed in the RAM, its
vptr remains fixed even in the presence of transient hardware defects. As opposed to
the vptr, vtables are statically generated by the compiler and can be stored in read-only
memory locations, such as non-volatile flash memory. In the following section, we briefly
introduce aspect-oriented programming, which we used to implement a software-based
fault-tolerance mechanism for vptrs, as described in Section 5.2.

5.1 Aspect-oriented Programming

Modularity is the concept behind aspect-oriented programming (AOP) [KLM+97], which
supports the separation of “what” should be executed from “where”. This is done by
implicit invocation. In AOP, an aspect is an entity that encompasses one or more pieces
of advice. An advice intercepts the control flow or extends existing classes by additional
fields and methods. The locations, where an advice takes effect, are described via pointcut
expressions in a textual form. Thus, the coupling between aspects and classes is inherently
loose – classes are oblivious of aspects. Crosscutting functionality, such as dependability,
can be implemented in a modular way.

Our group has been developing AspectC++ [SL07] over the last ten years in order to
extend C++ by AOP mechanisms. AspectC++ performs a source-to-source transformation
by compiling aspects into the source code at the relevant locations specified by pointcut
expressions. The advice code becomes inlined into the existing source code and, thus, is
free of any overhead compared to a manual source-code instrumentation [LST+06]. This
makes it an excellent tool for efficient fault-tolerance mechanisms.

5.2 Triple-modular Redundant Vptrs

Virtual-method pointers are a threat to safety-critical systems. Our idea is to apply the
well-known triple-modular redundancy (TMR) concept to the dynamic dispatch of virtual
methods. An object’s vptr is replicated twice, so that, finally, each object contains three
vptrs – all pointing to the same vtable. On dynamic dispatch, a voting over these vptrs is
performed:

1. If all three vptrs are identical, the dynamic dispatch is performed ordinarily.

2. If and only if exactly one vptr differs from the other two, the dispatch is performed
using the two identical ones. The deviating vptr is repaired.

3. If all three vptrs differ pairwise, no dispatch is performed. Instead, an error is signaled
to recover safely from that situation, for instance by rebooting the device.

This way, defects in a single vptr are not harmful anymore, because there are still two
valid replica around for recovery. This is a very generic mechanism that can be applied to
arbitrary C++ classes. Therefore, vptr protection is a crosscutting concern that ought to be
implemented separately, apart from the classes “where” it is applied to, and this is where
AspectC++ comes into play.

Figure 3 shows a simplified implementation of a modular vptr-protection mechanism
in AspectC++. The algorithm is encapsulated inside an aspect. The pointcut definition
critical() describes those classes of the weather-station software targeted by the aspect,
namely “Actor” and “Sensor”. This is where the aspect is applied. These classes are
extended by two additional fields, redundant_vptr1 and redundant_vptr2, and
methods to perform their initialization (init_vptr()) and voting (check_vptr()).

aspect VPTR_Protection {

 pointcut critical() = "Actor" || "Sensor";

 advice critical() : slice class {
 const void *redundant_vptr1, *redundant_vptr2;
 void init_vptr();
 bool check_vptr(); };

 advice construction(derived(critical())) : before() {
 tjp->target()->init_vptr(); }

 advice call(derived(critical())) &&
 call("virtual % ...::%(...)") : before() {
 if(!tjp->target()->check_vptr())
 vptr_panic(); }

};

pointcut expression (where) slice introduction (structure)aspect

advice type (when)advice (what) pointer to object (context)

Figure 3: Protection of vptrs by TMR implemented in AspectC++

This extension is achieved by slice introduction, which adds members behind all existing
members. Thus, spatial distance between the original vptr and the redundant ones inside a
class is maximized to compensate locality of memory faults. Beside slice introduction of re-
dundancy and dedicated methods, the given aspect contains two pieces of advice that control
runtime behavior. The first one binds the method init_vptr() to the construction
of objects, that is, whenever a C++ constructor of such an object is executed, the method
init_vptr() will be implicitly invoked. tjp (this join point) provides access to context
information, and tjp->target() yields a typed pointer to the object targeted by the
advice. The pointcut expression derived(critical()) computes all classes that are
either listed in the pointcut critical() itself or inherit from at least one of them. In sum-
mary, this advice ensures that the two redundant_vptrs are correctly initialized. The
last advice is responsible for performing the voting algorithm properly on virtual-method
calls. This is specified by call(“virtual % ...::%(...)”), which matches each
virtual-method call by using the wildcard expressions “%” for any result type and method
name, as well as “...” for arbitrary class names (plus namespaces) and arbitrary method
arguments. Again, the expression derived(critical()) identifies relevant locations
where the method check_vptr() has to be invoked: before calls to virtual methods in
the Actor and Sensor class hierarchies. In short, the last advice ensures that the voting
part of triple-modular redundancy is performed timely.

The implementation of both introduced methods is straightforward: init_vptr() cre-
ates the initial backup of the vptr in the two redundant_vptrs. The second method
check_vptr() is shown in Listing 1: The value of the original vptr is obtained through
C++’s this pointer1, as indicated by the method get_vptr(). At last, an optional
acceptance test is performed after voting: The result is checked for plausibility, that is,

1The this pointer always refers to the vptr, given the object layout produced by a recent GNU g++. If
compilers with different object layouts are used, compiler intrinsics, such as _vptr for g++, should be used.

1 inline const void* const get_vptr() {
2 return *((const void**)this); } // ’this’ points to the vptr
3

4 inline bool acceptance_test() {
5 return (get_vptr() >= &__VTABLES_START__) &&
6 (get_vptr() <= &__VTABLES_END__); } // provided by linker
7

8 bool check_vptr() {
9 if(redundant_vptr1 == get_vptr()) {

10 if(redundant_vptr1 != redundant_vptr2) {
11 redundant_vptr2 = redundant_vptr1; } // fix redundant_vptr2
12 } else if(redundant_vptr2 == get_vptr()) {
13 redundant_vptr1 = redundant_vptr2; // fix redundant_vptr2
14 } else if(redundant_vptr1 == redundant_vptr2) { // fix real vptr
15 memcpy((void*)this, &redundant_vptr1, sizeof(redundant_vptr1));
16 } else { return false; } // all three vptrs differ
17 return acceptance_test(); } // perform acceptance test, at last

Listing 1: The complete implementation of check_vptr(). These methods are intro-
duced into each class with vptr protection by AspectC++’s slicing feature (see Figure 3).

whether the vptr actually points to the memory area where vtables are placed by the linker
(between __VTABLES_START__ and __VTABLES_END__). If this acceptance test
fails, an error is raised for safe recovery.

6 Evaluation

We evaluated the two vptr-protection variants – with and without the additional acceptance
test – under both qualitative and quantitative aspects2. By repeating the weather-station
FI experiment campaigns we already used for the baseline assessment (cf. Section 3), we
examined both effectiveness and efficiency of the protection. Additionally, we applied static
code and data size metrics to compare the additional cost each variant introduces.

6.1 Effectiveness: Error Correction & Detection, and Interesting Ways to Fail

The FI campaign described in Section 3 was reused with slightly-differing target memory
areas (the data/BSS size changed from one variant to the other, cf. Table 1); this difference
was factored out in all quantitative comparisons throughout this article. FAIL*’s fault-space
pruning techniques helped reducing the number of necessary experiments from ∼ 3.18×109

(i.e., one for each space/time coordinate in the fault-space outlined in Section 3) for all

2Pun intended.

three variants to 413,024. With parallel execution, experiment runtime was kept within an
order of minutes.

Figures 4a and 4b highlight major improvements from the unprotected to the vptr-protection
variant of the weather station: Without the vptr-protection aspect, 77.5 % of all bit flips in
vptrs lead to a crash, while the protected variant completely eliminates this fault suscepti-
bility3.

In spite of this noticeable improvement, the object pointers4 are still highly susceptible:
Without the guard, 99.0 % of all bit flips in these pointers result in a crash; with the
protection, still 78.7 % leave the weather station in an unusable state, while now 20.3 %
are detected as uncorrectable errors. The additional result color code green (visible in
Figure 4b in several bit positions of the object pointers) marks experiments that triggers the
three vptrs differ (cf. Section 5.2) path in the vptr-protection aspect – the new object pointer
refers to a memory area where the vptr and both redundant copies differ. This is still a
positive outcome, as the error handler can subsequently reboot the device, which continues
being usable after a short service interruption. Unfortunately, in most cases this detection is
not triggered, as at least two of the three vptr copies are identical – in many (but not all)
cases simply zero, if the corrupted object pointer refers to, e.g., unused areas of the stack.

For this reason, the additional acceptance test (Figure 4c) eliminates the vast majority
of the remaining cases: Only 2.6 % of all object-pointer corruptions result in a crash,
while now 96.4 % are detected (green). The remaining failures resulting from object-
pointer corruptions seem to be specific to particular objects; e.g., the least-significant bits
of theTemperature’s next pointer still crash the weather station with a trap. We
currently do not have any further insights on these corner cases.

A less surprising result is that FI in the two redundant_vptr copies causes no crash
at all; by construction, our protection aspect repairs the faulty pointer in all cases. Indeed
surprising was to observe the weather station’s main loop to exceed the golden run’s six
iterations (by up to another six) in some experiments: For instance, clearing a skillfully
selected bit in the _actors list-head pointer stops all display output, resulting in far less
instructions to be executed per loop iteration, but does not cause a crash.

6.2 Efficiency: Static and Runtime Overhead

While the vptr-protection aspect – especially the variant with the additional acceptance test
– was shown to be highly effective in the last subsection, like most software-based methods
for fault tolerance it comes at a cost. Table 1 details on the static image size overhead for
the weather-station scenario: In total, 6.8 % (another 2.6 % for the acceptance test) was
added to the image size, which could be considered very reasonable for a scenario with

3For the evaluation of this paper, we used the GNU g++ 4.7.0 compiler with optimization level -O3. The
optimizer of older g++ versions (prior to 4.6.0) causes a reload of the vptr after it was already validated, which
leads to a short time frame where vptr corruptions break the application (0.34 % for g++ 4.4.5).

4We remember from Section 3 that they contribute to almost 41 % of all irregular program terminations in the
baseline variant!

thePressure

theWind

Sink::_actors

theTemperature

Weather::_sensors

Faults in both vptrs and object pointers

(linked-list heads and "next") are fatal

vptr

next-ptr

last temperature

vptr

next-ptr

last wind speed

vptr

next-ptr

last pressure

(a) No protection (cf. Figure 1)

vptr

next-ptr

last temperature

redundant_vptr1

redundant_vptr2

Object pointers (linked-list heads

and "next") still highly susceptible

thePressure

theWind

Sink::_actors

theTemperature

Weather::_sensors

last wind speed

vptr

next-ptr

redundant_vptr1

redundant_vptr2

vptr

next-ptr

last pressure

Vptrs resilient against

single-bit flips

(b) Vptr protection

Almost all faults in object pointers are

detected (e.g., initiating a reboot)

vptr

next-ptr

last temperature

redundant_vptr1

redundant_vptr2

last wind speed

vptr

vptr

next-ptr

next-ptr

last pressure

redundant_vptr1

redundant_vptr2

thePressure

theWind

Sink::_actors

theTemperature

Weather::_sensors

(c) Vptr protection w/acceptance test

Figure 4: Fault-susceptibility comparison for unmodified and vptr-protected variants of the
weather-station software.

Scenario Total ROM RAM Runtime
text rodata data bss (main loop)

No Protection 11,831 5,023 440 2,104 4,264 5,136

Vptr Protection 12,633 5,807 440 2,104 4,312 5,457
+6.8 % +15.6 % +0 % +0 % +1.1 % +6.3 %

Vptr Protection with 12,947 6,091 440 2,104 4,312 5,532
Acceptance Test +9.4 % +21.3 % +0 % +0 % +1.1 % +7.7 %

Table 1: Static and runtime overhead for vptr protection. Runtime is measured in number
of instructions for one main loop iteration in the (fault-less) “golden run”. Static memory
consumption is counted in bytes.

unrealistically many virtual-function calls. At linker-section level, the text (code) segment is
responsible for most of the increase: The 15.6 % (acceptance test: additional 5.7 %) increase
originates in – depending on compiler optimizations and disabled/enabled acceptance test –
64–96 bytes overhead per virtual-function call site. The 1.1 % increase in the BSS segment
(no additional cost for the acceptance-test variant) are solely to be attributed to the 8 bytes
for the two redundant vptrs per protected object (plus/minus possible alignment changes).

With an increase of 6.3 % (acceptance: plus 1.4 %), the additional runtime penalty (in this
article only measured in executed instructions, not wall-clock time on a real CPU) for the
protection aspect is lower than the static text increase: Only the fast-path checks need to be
executed in most cases, while the voting, correction and detection code is reserved for the
rare fault case.

7 Discussion

The main goal of this work was to achieve a fail-safe dynamic dispatch of virtual methods
in C++ with regard to transient hardware defects. As shown in the previous section, our
approach yields an almost perfect coverage of control-flow failures caused by the dynamic
dispatch. The overhead of our vptr-protection mechanism is small in terms of memory
consumption and additionally executed instructions. Compared to in-circuit fault tolerance,
such as watchdog timers and MMU-based memory protection, we provide forward error
correction to minimize device resets. ECC-protected memory would be overkill, since only
a small amount of memory locations are control-flow critical (baseline assessment: 2.4 %).

However, the evaluation covers only a single case study, so that the results cannot be
generalized to all kinds of software. It is worth taking into consideration that there are
reasonable doubts on using C++ in mission-critical software at all [DG06], mostly grounded
on the dynamic dispatch. We think that a resilient dispatch mechanism, as provided by
modular dependability aspects, is a step forward in that direction. But there are two
remaining technical issues that impair the usability of our current implementation, which

we plan to resolve by extending the AspectC++ language, as described in the following two
sections.

7.1 Pointcut Determination

The determination, which classes ought to be protected by our mechanism, is not fully
automated yet. The pointcut expression given in Figure 3 lists only abstract base classes
of the weather-station software – derived classes automatically inherit vptr-protection
functionality. This knowledge, which classes are on top-level to introduce vptr protection,
and which classes inherit this functionality, has to be provided manually. In general, those
classes that have virtual methods but no super classes with virtual methods (transitively),
have to be factored into the pointcut expression. This information can be obtained by static
source-code analysis. We plan to integrate such an analysis into AspectC++ to simplify the
usage of our vptr-protection aspect.

7.2 Multiple Inheritance

A class that inherits from more than one top-level class with virtual functions produces
objects with multiple vptrs inside [Lip96]. On dynamic dispatch, there are consequently
several candidates for the vptr that is going to be used for the dispatch. Our current
implementation cannot statically determine which one is actually used, so that we have
to check them all. We implemented this by C++ template meta programming [CE00] to
generate a set of runtime checks. However, this could be more efficient, because there is
essentially only need for a single check on the actually used vptr. Again, an analysis on the
AspectC++ language level could reveal this information by providing the class type that
belongs to a virtual method’s initial declaration.

A side-effect of multiple inheritance is, that a class can inherit from the same super class
multiple times. In C++, this can be explicitly avoided by virtual inheritance. For virtual
derived classes, even field access is performed by a vtable lookup. At the moment, our
mechanism does not recover field-access faults in virtual inheritance, but in general, this
kind of fault results in corrupt data rather than control-flow failures.

8 Conclusions and Future Work

Safety-critical systems have to be resilient to transient hardware defects, such as sponta-
neous bit flips in the main memory. Especially dynamic data, which cannot be stored in
nonvolatile flash memory, is subjected to hardware faults. This calls for software-based
countermeasures based on redundancy and acceptance tests.

We presented a vptr-protection mechanism that recovers transparently from failures caused

by the dynamic dispatch in C++, which is a major cause of system crashes. Our implemen-
tation is modular, which was achieved by aspect-oriented programming, and can therefore
be applied to arbitrary C++ software easily. We evaluated the effectivity of this mechanism
empirically in a case study using an embedded weather-station software. The results are
promising: All bit flips in vptrs are instantly recovered, and 96.4 % of all bit flips in pointers
to objects with virtual methods are detected. Thus, 67.1 % of all system crashes are avoided
at a cost of less than 10 % runtime and memory overhead.

Our fault assessment revealed that, beside vptrs and object pointers, the program stack
is also a frequent point of failure (baseline assessment: 17.4 % of all irregular program
terminations). We plan to develop dedicated dependability aspects for this type of fault in
order to further improve the reliability of C++ software.

References

[AÖK10] Ruben Alexandersson, Peter Öhman, and Johan Karlsson. Aspect-oriented imple-
mentation of fault tolerance: an assessment of overhead. In Proceedings of the
29th international conference on Computer safety, reliability, and security, SAFE-
COMP’10, pages 466–479, Berlin, Heidelberg, 2010. Springer-Verlag.

[ASMT07] Francisco Afonso, Carlos Silva, Sergio Montenegro, and Adriano Tavares. Applying
aspects to a real-time embedded operating system. In Proceedings of the 6th workshop
on Aspects, components, and patterns for infrastructure software, ACP4IS ’07, New
York, NY, USA, 2007. ACM.

[AVFK01] Joakim Aidemark, Jonny Vinter, Peter Folkesson, and Johan Karlsson. GOOFI:
Generic Object-Oriented Fault Injection Tool. In Proceedings of the 31st IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN ’01), pages
83–88, Los Alamitos, CA, USA, 2001. IEEE Computer Society Press.

[BADAD+08] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Garth R. Goodson, and Bianca Schroeder. An analysis of data corruption in the storage
stack. Trans. Storage, 4(3):1–28, 2008.

[Bor05] Shekhar Y. Borkar. Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation. IEEE Micro, 25(6):10–16, 2005.

[CE00] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming. Methods,
Tools and Applications. Addison-Wesley, May 2000.

[DCCC08] Francis M. David, Ellick Chan, Jeffrey Carlyle, and Roy H. Campbell. Qinject:
A virtual-machine based fault injection framework. In Proceedings of the 13th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’08), 2008. (Poster Presentation).

[DG06] Robert Dewar and Franco Gasperoni. Safety and OOP. In System Safety, 2006. The
1st Institution of Engineering and Technology International Conference on, pages
146 –157, jun. 2006.

[DR03] Brian Demsky and Martin Rinard. Automatic detection and repair of errors in data
structures. In Proceedings of the 18th annual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications, OOPSLA ’03, pages
78–95, New York, NY, USA, 2003. ACM.

[DYdS+10] Marc Duranton, Sami Yehia, Bjorn de Sutter, Koen de Bosschere, Albert Cohen,
Babak Falsafi, Georgi Gaydadjiev, Manolis Katevenis, Jonas Maebe, Harm Munk,
Nacho Navarro, Alex Ramirez, Olivier Temam, and Mateo Valero. The HiPEAC
Vision. Technical report, Network of Excellence on High Performance and Embedded
Architecture and Compilation, 2010.

[Ins03] The British Standards Institute. The C++ Standard (Incorporating Technical Corri-
gendum No. 1). John Wiley & Sons, Inc., second edition, 2003. Printed version of
the ISO/IEC 14882:2003 standard.

[KB96] Bradley M. Kuhn and David W. Binkley. An enabling optimization for C++ virtual
functions. In Proceedings of the 1996 ACM symposium on Applied Computing, SAC
’96, pages 420–428, New York, NY, USA, 1996. ACM.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP ’97), volume 1241 of Lecture Notes in Computer Science, pages 220–242.
Springer-Verlag, June 1997.

[Lip96] Stanley B. Lippman. Inside the C++ object model. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1996.

[LSSP06] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schröder-Preikschat. Lean and
Efficient System Software Product Lines: Where Aspects Beat Objects. In Awais
Rashid and Mehmet Aksit, editors, Transactions on AOSD II, number 4242 in Lecture
Notes in Computer Science, pages 227–255. Springer-Verlag, 2006.

[LST+06] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and Wolfgang
Schröder-Preikschat. A Quantitative Analysis of Aspects in the eCos Kernel. In
Proceedings of the EuroSys 2006 Conference (EuroSys ’06), pages 191–204, New
York, NY, USA, April 2006. ACM Press.

[RCD+04] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu, and
William S. Beebee Jr. Enhancing server availability and security through failure-
oblivious computing. In Proceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI ’04), pages 303–316, Berkeley, CA, USA, 2004.
USENIX Association.

[SHK+12] Horst Schirmeier, Martin Hoffmann, Rüdiger Kapitza, Daniel Lohmann, and Olaf
Spinczyk. FAIL*: Towards a Versatile Fault-Injection Experiment Framework. In
Gero Mühl, Jan Richling, and Andreas Herkersdorf, editors, 25th International Con-
ference on Architecture of Computing Systems (ARCS ’12), Workshop Proceedings,
volume 200 of Lecture Notes in Informatics, pages 201–210. German Society of
Informatics, March 2012.

[SL07] Olaf Spinczyk and Daniel Lohmann. The Design and Implementation of AspectC++.
Knowledge-Based Systems, Special Issue on Techniques to Produce Intelligent Secure
Software, 20(7):636–651, 2007.

[SPS09] Matthias Sand, Stefan Potyra, and Volkmar Sieh. Deterministic high-speed simulation
of complex systems including fault-injection. In Proceedings of the 39th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN ’09), pages
211–216. IEEE Computer Society Press, July 2009.

[VT05] Kalyanaraman Vaidyanathan and Kishor S. Trivedi. A Comprehensive Model for
Software Rejuvenation. IEEE Transactions Dependable and Secure Computing,
2(2):124–137, April 2005.

