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Abstract: Due to shrinking structure sizes on memory chips, the probability of memory
failures, such as spontaneous bit flips, is increasing. Especially in the domain of mass-
produced cheap embedded systems, hardware solutions are not affordable. Therefore,
there is a need for cost-efficient software-based fault-tolerance mechanisms. In this
paper we focus on such a mechanism for the protection of CPU stacks. A baseline
assessment conducted with 21 benchmark and test programs shows that the stack is the
most fault-susceptible data memory region – even more critical than the OS kernel’s
scheduler data structure, for instance. Our mechanism, which is based on profiling and
a generic aspect-oriented implementation, supports detection and correction of bit flips
in return addresses and frame pointers on the stack. It thereby reduces the number of
stack-related program failures by 48.7 % and the number of all RAM-related failures by
13.3 % on the average over all benchmarks. The average code size overhead is 3.76 %,
and a runtime overhead is only measurable for the subset of short-running benchmarks.

1 Introduction

Errors in main memory are a major cause of failures in today’s computer systems [SPW09,
NDO11, HSS12]. This problem is expected to worsen in the future [Bau05], as VLSI
technologies move to higher chip densities and lower operating voltages, dramatically
increasing sensitivity to electromagnetic radiation.

In previous works we have shown that software-based fault-tolerance mechanisms that are
directed by application-specific knowledge can detect and correct a significant share of
memory errors while being efficient in terms of memory consumption and runtime overhead
[BSS13, BSS12]. The work presented in this paper follows the same approach, but focuses
on CPU stacks. Our contribution is the description of a novel aspect-oriented fault-tolerance
mechanism for stack protection and its thorough evaluation.

As virtually all high-level programming languages support the nested invocation of reusable
code fragments, e.g., functions, methods, or procedures, today’s CPUs have a built-in
awareness of a call stack and special instructions for its manipulation. For instance, x86
CPUs have a call and a ret instruction as well as a stack pointer register ESP. Whenever
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a function is called, the call instruction decrements the stack pointer, saves the current
instruction pointer (EIP) – the return address – on the stack, and loads the address of the
target function into the instruction pointer register. Typically being the last instruction of
a called function, the ret instruction reads the return address from the stack, increments
the stack pointer, and loads the address into the instruction pointer. Besides saving return
addresses, the stack on x86 is also used for function call parameters and local variables.
This leads to a stack-memory layout that consists of so-called stack frames – one for each
active function. On x86, the register EBP is used to reference parameters and variables in
the stack frame of the current function. EBP (also called base pointer or frame pointer)
contains a copy of the ESP register created at the beginning of a function execution. To
be able to restore the previous EBP register value (directly before returning with ret), it is
saved on the stack as well. Thereby, all stack frames are linked. Being a dynamic linked
data structure that stores code addresses, it is no surprise that bit flips can cause program
misbehavior or even crashes.

Other CPU types than x86, especially RISC CPUs, have dedicated CPU registers for saving
the return address, and also for passing parameters and holding local variables. However,
these registers only help the leaf function in the function call tree. Other functions need to
use an in-memory stack as on x86. Therefore, these architectures can be expected to be less
susceptible to memory errors, but failures caused by bit flips in the stack still exist.

The remaining sections of this article are organized as follows: After a brief discussion
of related work in Section 2, we will present an initial dependability assessment with one
unmodified benchmark program in Section 3. After this motivation, Section 4 will explain
our approach that combines Profiling with Dependability Aspects. The evaluation of the
approach is presented in Section 5. The paper closes with a discussion of our results and
the conclusions in Sections 6 and 7.

2 Related Work

Much research has been done in the area of security. Stack frames are a common target of
security attacks that manipulate the stack to hijack the path of execution by overwriting
a return address. StackShield1 and Return Address Defender [CH01], for example, are
compiler extensions that save a copy of the return address on a redundant stack. The
necessary CPU instructions are inserted after a function is called and before it returns. Both
compiler extensions compare the copy to the original return address and raise an exception
on mismatch, but do not recover from such events transparently. StackGuard [CPM+98]
and the GCC’s stack-smashing protector2 insert a special marker value (canary) between
local variables and the return address on the stack. If a local variable overflows due to
a security attack, the canary will be corrupted with certainty. Before a function returns,
the canary is checked and when it is invalid, the program terminates. Such an indirect
return address protection is not effective against any bit errors in the return address itself,

1http://www.angelfire.com/sk/stackshield
2http://www.research.ibm.com/trl/projects/security/ssp/



as only the canary is checked. Libverify [BST00] is a binary translation library for Linux
applications. It relocates the original functions to the heap at runtime and incorporates
protection code, which doubles the code size due to the relocation. In many embedded
scenarios, such a solution cannot be afforded. Thus, to protect efficiently against hardware
memory errors, none of these security solutions are applicable.

Aspect-oriented programming (see Section 4.1), in particular AspectC++, has been used to
implement fault-tolerance measures. Afonso has described several aspect-oriented idioms
for improving fault-tolerance in embedded OS code [ASMT07], but does not address stacks.
Alexandersson et al. have implemented control-flow checking with AspectC++ that detects
illegal control-flow transitions [AK11]. However, the validation takes place after a function
has returned, so that errors cannot be prevented upfront. Our approach differs in that we
implement a proactive recovery, which prevents failures before they happen.

3 Scenario and Problem Analysis

In this section we outline the application scenario we use to analyze the impact of bit flips
in the CPU stack on a system’s dependability. The results motivate our approach and are
used to identify requirements. Finally, the idea behind the approach is sketched.

3.1 Baseline Dependability Assessment

In this study, we use the embedded Configurable operating system (eCos) [Mas02], im-
plemented in C/C++, as a realistic scenario to analyze the fault susceptibility of various
benchmarks bundled with eCos itself. In previous work [BSS13] we analyzed this scenario
using fault-injection (FI) experiments and a single-bit flip fault model. In the following,
we repeat a similar analysis, and subsequently concentrate on faults on the application
per-thread and kernel stacks3.

In order to determine the target system’s susceptibility to faults in data memory (data, BSS,
and stack segments), we injected 8-bit burst faults using FAIL* [SHK+12], i.e., we consider
program runs in which all bits in a single byte flip at some point in time. Our analysis in
[BSS13] showed that the results are similar to those obtained with the common single-bit
flip model (at least for the eCos benchmark set), but require eight times less experiments.

Table 1 shows the top five most susceptible symbols of the MUTEX1 benchmark, i.e., the
memory areas that most often lead to a program failure when hit by a fault. It seems not
surprising that the system’s stack ranks first (42.2 % of all program failures originate in
faults injected in the stack memory), as a large memory area naturally offers a big target
surface, but in fact only 69.0 % of this stack are used at all. For the remainder of this paper,
we ignore the other symbols, the issues that lead to failures there, and possible remedies;
some of these we already addressed in previous work [BSS12, BSS13].

3Most of the benchmarks are multi-threaded, and the eCos kernel has its own stacks.



Symbol Address Size #Failures (%)

stack 1107936 10224 2377760 (42.2 %)

thread_obj 1107584 352 984232 (17.5 %)

Cyg_Scheduler::scheduler 1120256 132 445920 (7.9 %)

cvar1 1107536 8 221888 (3.9 %)

m1 1107516 12 176448 (3.1 %)

Table 1: Fault-injection results: Top 5 fault-susceptible symbols for the unmodified MUTEX1
benchmark.

Figure 1: Results from the FI campaign with the unmodified MUTEX1 benchmark: Each
point denotes the outcome of an independent run after injecting a burst bit-flip at a specific
time and data-memory coordinate. Injections in white areas have no observable effect. Blue
marks illegal memory accesses and jumps. CPU exceptions are colored red and timeouts
yellow respectively. Magenta data points show benchmark runs that finish, but yield wrong
output (silent data corruption).



Figure 2: MUTEX1 benchmark call stack histogram in form of a flame graph (modified
version of https://github.com/brendangregg/FlameGraph): Each bar represents a func-
tion’s stack frame, and the x-axis denotes the function’s runtime in the same stack context
(but does not show the passing of time from left to right – it is actually ordered alphabeti-
cally). Lighter colors show a higher number of calls per runtime: Dark-red functions are
long-running and only called once, orange to yellow ones run shorter and/or are called
multiple times.

A closer look at an excerpt of the stack area of the MUTEX1 FI results in Figure 1 reveals
more details. The larger diagram covers the the complete benchmark runtime in its hor-
izontal dimension (5,986 CPU emulator cycles), and all of data memory (20,111 bytes)
in its vertical dimension. The zoomed-in section reveals a primary reason the stack is
so susceptible to faults: Memory corruptions in return addresses and frame pointers (cf.
Section 1) lead to a crash with certainty, if the function returns to its caller after the FI.
A more thorough manual analysis exposes that this is by far not the only, but the most
homogeneous and widespread reason for crashes after faults in the stack memory.

3.2 A Protection Scheme Draft

An obvious software-based protection scheme for this problem is a compiler-based approach
that stores redundant copies of return address and frame pointer directly after entering any
function, and compares (and restores) them right before returning to the caller. Figure 2
illustrates that it may be too naïve to protect all functions, though: Some are called very
few times and execute for a long time (darker colors), others are called very often and/or
run very shortly (brighter). Intuitively, the latter sort should be considered to be run without
additional protective code, as it would quickly worsen the runtime (and static code size)
overhead – even beyond the break-even point where the additional exposure to faults
outweighs all gains from being protected.4

This directly results in the requirement that the application of the protection scheme needs
to be configurable regarding the subset of functions that is protected. The following sections
describe an approach and implementation that meets this requirement.

4A quantitative analysis of this effect is beyond the scope of this paper.



4 A Dependability Aspect for Return-Address Protection

In the previous section, we found that return addresses of C/C++ functions are highly
susceptible to memory errors. However, only the long-running functions contribute sig-
nificantly to the total system’s dependability. In this section, we describe a methodology
to identify the most important functions (Section 4.2), and, afterwards, selectively apply
error detection (EDM) and error-recovery mechanisms (ERM). For both steps, we adopt
aspect-oriented programming, which is briefly introduced in the following.

4.1 Aspect-oriented Programming

The idea behind aspect-oriented programming (AOP) [KLM+97] is a modular implementa-
tion of crosscutting concerns, which affect various source-code locations. Aspect-oriented
programming languages usually support features to encapsulate a crosscutting concern into
a single module – an aspect. A programmer specifies pieces of advice that define “where”
and “when” desired actions shall be invoked via match expressions. The control flow of the
program is intercepted at the specified points and is transferred to the aspect that carries out
the advice code. The loose coupling between aspects and the remaining software modules
makes AOP a suitable solution for implementing crosscutting dependability measures, as
already shown in Section 2.

Aspect-oriented programming tools are, for instance, available for Java (AspectJ [KHH+01])
and C++ (AspectC++ [SL07]). AspectC++ has been developed by our group over the last
ten years and constitutes a source-to-source compiler that weaves the aspects into the de-
sired source-code locations. The advice code itself is inlined into the existing code, so that
runtime costs are comparable to a manual (scattered) implementation of a particular concern
[LST+06]. This property is of the utmost importance, because dependability mechanisms
have to be very efficient to be robust on their own respect.

4.2 Identifying Critical Return Addresses

Those functions that execute longer than others are promising candidates for return-address
protection from a probabilistic perspective. The return addresses of long-running functions
are much more likely to be hit by random bit-flip events than those of short functions. To
identify the longest-running functions, we found AOP an excellent tool. Every function
call and return, as described via the wildcard match expression “% ...::%(...)”, can
be intercepted by an aspect that records the runtime of a particular function run. The
per-function aggregate of these runtimes can be interpreted as a criticality metric.

Figure 3 shows the implementation of a profiling aspect that evaluates the criticality metric.
Line 2 defines those functions that are considered for profiling by the pointcut keyword.
In this example, the function main with arbitrary arguments (...) and int return type
is specified (main serves exemplarily as a placeholder). When all functions should be



1 aspect Profiling {

2 pointcut profile() = "int main(...)"; // functions to profile (textual list with wildcards)

3
4 advice execution(profile()) : around() { // intercept the control flow at those functions

5 ClockCycles start = rdtsc(); // save current clock time (using RDTSC CPU instruction)

6 tjp->proceed(); // continue the intercepted function’s execution

7 Collector<JoinPoint::JPID>::chain.data->add(rdtsc() - start); // add elapsed time

8 Collector<JoinPoint::JPID>::signature = JoinPoint::signature(); // the function’s name

9 }

10 };

Figure 3: An implementation of the profiling aspect written in AspectC++.

profiled, the aforementioned match expression could be used. The around advice in Line
4 replaces the execution behavior of the specified functions. When entering the func-
tion, the CPU clock time is determined with the x86 RDTSC CPU instruction. Afterwards,
the original function is continued by the statement tjp->proceed()5. When the original
function finishes, the advice code rechecks the clock time and collects the elapsed time
in a C++ template-based container data structure Collector. The Collector class is not
shown here, but a similar implementation is provided by the official AspectC++ exam-
ples6. The key to the function/runtime mapping is the unique identifier JoinPoint::JPID.
AspectC++ assigns such an identifier to each source-code location where advice code
is inserted. Moreover, AspectC++’s JoinPoint API exposes the intercepted function’s
signature (JoinPoint::signature), which is also stored in the Collector. On termination
of the profiled application, the Collector can be queried to report on the longest-running
functions.

The aspect in Figure 3 wittingly does not profile every function. The reason is that some
functions are inlined by the C++ compiler, and, therefore, have no return address. Thus, the
profiling aspect has to be restricted to non-inline functions only. For each application, the
pointcut profile() must be set to match exactly the non-inline functions of the particular
application binary. We used the nm program from the GNU Binutils package to automatically
generate the profile() pointcut expression from an application binary file.

Figure 4 summarizes our approach to identify (and protect) the most critical functions of
an application. The non-inline functions of an application binary are determined ( 1© ) and
passed to the profiling aspect in terms of a pointcut expression. The profiling aspect ( 2© )
evaluates the functions’ runtimes and generates a list of the longest-running ones. This list
is a subset of the non-inline functions, and, again, is represented as a pointcut expression
that is handed over to the return-address protection aspect ( 3© ) described in the following
section.

The decision, whether a function runs long enough to be considered as critical, is config-
urable inside the profiling aspect. In our case, we chose those functions that had a runtime
accounting for at least one thousandth of the sum of all functions’ runtimes. Note that in

5tjp (this join point) provides access to context information of the intercepted function.
6AspectC++ and the examples are freely available at http://www.aspectc.org/.
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Figure 4: Process of applying the dependability aspect for return-address protection. The
functions’ signatures of the target application ( 1© ) are determined, and, afterwards, profiled
to assess their runtimes ( 2© ). The most critical (longest-running) ones become protected
( 3© ).

general, the sum of all functions’ runtimes is larger than the application’s pure runtime.
Additionally, we constrained that these functions must execute for at least 50 clock cycles
on the average, to get rid of short but often-called functions. Other parameters are possible
but have not been evaluated, yet.

4.3 Redundant Return Addresses

The previous section described our approach to retrieve a pointcut expression that reflects
those functions of an application that are worth to be protected. Such a pointcut is the
basis for a dependability aspect that implements the return-address protection. As usual
for error detection (EDM) and error-recovery mechanisms (ERM), we apply redundancy
to detect and correct potential bit errors in the return addresses. In essence, immediately
after a function is entered, redundancy for its return address is created, and, right before the
function leaves, the real return address is checked and optionally repaired. We implemented
two different mechanisms:

EDM: A joined two’s complement checksum is used to detect errors in both the return
address and the previous frame pointer. On checksum mismatch, the running thread
is aborted (fail-stop behavior).

ERM: Two copies of the return address and the previous frame pointer are created, yielding
triple-modular redundancy (TMR) with majority voting. Errors are transparently
repaired.

Figure 5 shows the implementation of the protection aspect for the EDM variant (the
slightly larger ERM variant is not shown). The target functions are defined by the pointcut
critical_functions() in Line 20: “int main(...)” again has to be regarded as a
placeholder for the generated list of critical functions. The following execution advice
intercepts those functions, and, at first, constructs an object holding the redundancy on
the stack. At this time, the C++ constructor of the class RedundantReturnAddress is
invoked, which computes a checksum over the return and frame addresses. Afterwards,
the intercepted function is continued via tjp->proceed(). When the continued function
finishes, the advice scope quits, and the redundancy object rra is destroyed. The C++
destructor of that object validates the checksum.



1 template<unsigned int JPID>

2 class RedundantReturnAddress {

3 volatile unsigned int checksum; // maintain a checksum of return address + frame pointer

4 public:

5 inline RedundantReturnAddress() : // constructor: initialize the checksum

6 checksum( (*(unsigned int *)__builtin_frame_address(0)) // yields frame/base pointer

7 + ( (unsigned int) __builtin_return_address(0)) // yields return address

8 + JPID + 1) {} // add in joinpoint-specific ID (+ 1 avoids adding zero)

9
10 inline ~RedundantReturnAddress() { // destructor: validate the checksum

11 unsigned int checksum = (*((volatile unsigned int *)__builtin_frame_address(0)))

12 + (*(((volatile unsigned int *)__builtin_frame_address(0))+1))

13 + JPID + 1;

14 if(checksum != this->checksum)

15 signal_error(); // only error detection: signal_error() must not return

16 }

17 };

18
19 aspect ReturnAddressProtection {

20 pointcut critical_functions() = "int main(...)"; // textual list of functions to protect

21
22 advice execution(critical_functions()) : around() { // intercept the control flow

23 RedundantReturnAddress<JoinPoint::JPID> rra; // allocate object and call its constructor

24 tjp->proceed(); // continue the intercepted function’s execution

25 } // rra’s destructor is called here implicitly, which triggers return-address validation

26 };

Figure 5: EDM variant of the return-address protection aspect written in AspectC++.

In summary, the aspect ensures that the EDM/ERM is applied to the proper functions.
The EDM/ERM itself is implemented in the exchangeable class RedundantReturnAddress.
The constructor and destructor are declared as inline to permit access to the current
return and frame addresses, which are obtained through the GCC-instrinsic7 functions
__builtin_return_address(unsigned int) and __builtin_frame_address(unsigned

int) respectively. The arguments of these builtin functions specify the stack depth to look
into, and a value of 0 takes the current stack frame. Note that the destructor obtains the
return address through __builtin_frame_address plus offset to force a reload of the return
address. These builtin functions provide a convenient interface to the low-level call-stack
details, which would otherwise require platform-dependent assembly code to access.

The remaining detail, which has not been discussed yet, is the template parameter JPID
of the class RedundantReturnAddress. The unique JPID, provided by AspectC++, allows
differentiation between the protected functions. The redundancy can be encoded in a
function-specific way, for example, by simply adding the JPID compile-time constant to
the checksum. Thus, a checksum is valid only for the function that created the checksum.
Otherwise, a corrupt stack frame, for example containing the return address plus valid
checksum of another protected function, would remain undetected. In other words, the
JPID-specific encoding of redundancy allows an acceptance test: For example, an empty

7http://gcc.gnu.org/onlinedocs/gcc/Return-Address.html



stack frame consisting solely of zeros can be detected, which would otherwise pass the
checksum validation (EDM) and majority voting (ERM) respectively.

5 Evaluation

In this section, we quantitatively evaluate the EDM and ERM effectiveness in a set of
benchmarks with fault-injection (FI) experiments, and measure the induced static and
dynamic overhead. This allows us to predict the suitability for yet unknown scenarios, and
to draw conclusions on the overall methodology.

5.1 Evaluation Setup & Fault Model

We evaluated both Detection (EDM) and Correction (ERM) variants on eCos 3.0 with a set
of 21 benchmark and test programs that is bundled with eCos itself. Table 2 briefly describes
each benchmark; including the baseline variant, this set totals at 63 variant/benchmark
combinations. All binaries were compiled for i386 with the GNU C++ compiler (GCC,
eCosCentric GNU tools 4.3.2-sw, optimization level -O2); eCos was set up with its default
configuration, grub startup, and the bitmap scheduler variant. We disabled both serial and
VGA output, as it is very time-consuming and would completely mask out any EDM/ERM
runtime overhead.

We again chose a uniformly-distributed burst bit-flip model in data memory, which flips
all eight bits at a memory address at once. The restriction to data memory (data, BSS,
and stack segments) is reasonable for low-cost embedded systems where read-only data
and code (text segment) are stored in far less susceptible (EEP)ROM or Flash, and global
objects and the program stack are kept in non-ECC RAM.

Bochs, the IA-32 (x86) emulator back end that the FAIL* experimentation framework
[SHK+12] currently provides, was configured to simulate a modern 2.666 GHz x86 CPU. It
simulates the CPU on the instruction level with a simplistic timing model of one instruction
per cycle (with the exception of the HLT instruction, which spans multiple cycles until
the next interrupt), and does not provide any insights on caching and pipelining effects.
Therefore the results obtained from injecting memory errors in this emulator are very
pessimistic: We expect that a contemporary cache hierarchy would mask many main-
memory bit flips, for example, the return addresses of short-running functions could be
fully kept in a cache.

5.2 Effectiveness: Error Detection & Correction

Figure 6 gives a qualitative impression of the FI campaign results: The Detection variant
(Figure 6a) detects almost all faults in return addresses and frame pointers that led to crashes



Benchmark Description / Test. domain (#thr.) Benchmark Description / Test. domain (#thr.)

BIN_SEM1 Binary semaphore functionality (2) MUTEX1 Basic mutex functionality (3)

BIN_SEM2 Dining philosophers (15) MUTEX2 Mutex release functionality (4)

BIN_SEM3 Binary semaphore timeout (2) MUTEX3 Mutex priority inheritance (7)

CLOCK1 Kernel Real Time Clock (RTC) (1) RELEASE Thread release() (2)

CLOCKCNV Kernel RTC converter subsystem (1) SCHED1 Basic scheduler functions (2)

CLOCKTRUTH Kernel RTC accuracy (1) SYNC2 Different locking mechanisms (4)

CNT_SEM1 Counting semaphore functionality (2) SYNC3 Priorities and prio. inheritance (3)

EXCEPT1 Exception functionality (1) THREAD0 Thread constructors/destructors (1)

FLAG1 Flag functionality (3) THREAD1 Basic thread functions (2)

KILL Thread kill() and reinitalize() (3) THREAD2 Scheduler and thread priorities (3)

MQUEUE1 Message queues (2)

Table 2: eCos kernel test benchmarks with the number of running threads in parentheses.

Symbol Address Size #Failures (%)

stack 1109600 10224 1805912 (29.4 %)

thread_obj 1109248 352 1347976 (22.0 %)

Cyg_Scheduler::scheduler 1121920 132 629024 (10.2 %)

cvar1 1109200 8 307360 (5.0 %)

m1 1109180 12 243464 (4.0 %)

Table 3: MUTEX1 top 5 susceptible symbols in the Correction variant: The number of
crashes resulting from faults on the main stack are reduced by 24.0 % in comparison to the
baseline variant (cf. Table 1) for this particular benchmark. Note the increase in failures for
thread_obj by 37.0 %, resulting from longer exposure by the (pathologically high) 36.7 %
runtime overhead for this tiny benchmark (cf. Figure 8).

before (cf. Figure 1) and fail-stops; the Correction variant (6b) additionally transparently
corrects these faults. Only very short susceptible timeframes between call and replica
creation, and between check/repair and function return remain. The top five susceptible
symbols list for the MUTEX1 benchmark in the Correction variant (Table 3) still ranks
the main application stack first, but with a 24.0 % reduction in the number of benchmark
failures after FI in the stack.

The FI campaign results for the remaining benchmarks is shown in Figure 7 – differentiated
into the observed experiment outcomes. On average, the Detection variant reduces stack
failures by 53.8 %: especially the long-running benchmarks profit from the EDM. The
introduced redundancy increases the attack surface, though: The green “error detected”
bars exceed the baseline in all cases (+46.4 % on average). The Correction variant is
similarly effective, on the average 45.5 % stack failures are completely masked (another
3.2 % are detected) – and the increased attack surface pays off even for the shortest-running
benchmarks.



(a) Detection variant: Green results denote experiments
where the fault was successfully detected (fail-stop).
In the baseline variant (cf. Figure 1) all of these led to
crashes.

(b) Correction variant: Almost all return address and
frame-pointer related crashes are masked; only very
short susceptible timeframes between call and replica
creation, and between check/repair and function return
remain.

Figure 6: MUTEX1 benchmark, close-up of the same stack area as shown in Figure 1, for
both Detection and Correction variants.
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Figure 7: Absolute failure type (and detection) counts from FI experiment campaign
(BIN_SEM2, CLOCKCNV, CLOCKTRUTH, KILL, MUTEX3 and SYNC2 benchmarks omitted
due to their extremely long runtime): Both EDM/ERM variants improve resiliency to faults
on the stack(s) substantially.
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Figure 8: Benchmark runtime overhead: Only the short-running benchmarks exhibit
measurable slowdown.

5.3 Efficiency: Static and Runtime Overhead

The static overhead of both protection variants is pleasingly low: both data and BSS sections
stay at their original size, only the text segment grows. For the Detection variant, the total
code size overhead is 1.24 % (ranging from 0.28 % in the THREAD1 benchmark to 2.41 %
in MUTEX2); for Correction, the overhead totals at 3.76 % (THREAD1: 0.81 %; MUTEX2:
7.14 %).

The runtime overhead8 for each benchmark is shown in Figure 8: The very short-running
benchmarks (< 105 cycles) exhibit a measurable overhead of +10.5 % (Detection) respec-
tively +21.0 % (Correction). The CPU-bound SYNC2 benchmark even adds +22.6 %/+44.1 %.
All longer-running benchmarks spend most of their time in a CPU sleep mode (HLT instruc-
tion, waiting for the next timer interrupt); in these cases, the runtime overhead is completely
masked (0.0 %).

6 Discussion

The evaluation shows that the return-address protection aspect comes at different levels
of overhead, depending on the benchmark. The most important property is the runtime
overhead, which directly relates to the effectiveness of our approach. The Detection variant

8Measured in emulator cycles: We showed in [BSS13] that at least for this set of small benchmarks the runtime
overhead results are consistent with measurements on a real contemporary x86 machine.



consistently shows little overhead and improves the net resilience for all benchmarks (total
failures reduced by 14.8 %). The Correction variant reduces the total amount of failures
only by 13.3 % due to the slightly higher runtime overhead for proactive recovery.

On the average, only 9 functions have been protected per benchmark. This decision
completely determines the overhead and the effectiveness of our approach. We further plan
to investigate the trade-offs between protecting more or less functions. Such an opportunity
demonstrates the flexibility of our methodology. By means of aspect-oriented programming,
our solution is fine-grainedly configurable by the user and can be tailored to the specific use
case. In comparison, a similar compiler-implemented mechanism would not offer the same
degree of flexibility. However, a convenient interface to the compiler is beneficial, such
as the GCC-intrinsic function __builtin_return_address. The low-level compiler could
expose even more knowledge to upper software layers, for example, more fine-grained
means to control specific types of optimizations. Then, crosscutting dependability measures,
such as the return-address protection aspect, could be implemented more easily.

7 Conclusions and Future Work

In this study, we have presented an aspect-oriented approach to detect and correct memory
errors in stacks of C/C++ programs. We have shown that return addresses and stored frame
pointers are highly sensitive and deserve dedicated protection mechanisms. The total code
size overhead of our solution is only 3.76 %, and a runtime overhead is only measurable
for a subset of short-running benchmarks. At the same time, the number of stack-related
program failures could be reduced by 48.7 %, which corresponds to a total failure reduction
of 13.3 %. Thus, a significant net resiliency gain could be achieved.

Compared to hardware-based memory protection, software bugs are also detected. Con-
sider a parallel thread or an interrupt handler that corrupts a stack frame – the proposed
mechanism will detect and possibly correct such errors. The same applies to security issues
of C/C++ programs (buffer overflows), which could be prevented by a similar dependability
aspect. In future work, we plan to investigate how our approach compares to the existing
compiler-based security solutions.
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