
1

FAIL*: Towards a Versatile Fault-Injection
Experiment Framework

Horst Schirmeier1, Martin Hoffmann2, Rüdiger Kapitza3, Daniel Lohmann2, and Olaf Spinczyk1

1Department of Computer Science 12, Technische Universität Dortmund,
e-mail: {horst.schirmeier, olaf.spinczyk}@tu-dortmund.de

2Department of Computer Science 4, Friedrich-Alexander-Universität Erlangen-Nürnberg,
e-mail: {hoffmann, lohmann}@cs.fau.de

3Institute of Operating Systems and Computer Networks, TU Braunschweig, e-mail: kapitza@ibr.cs.tu-bs.de

Abstract—Many years of research on dependable, fault-
tolerant software systems yielded many tool implementations for
vulnerability analysis and experimental validation of resilience
measures. We identify two disjoint classes of fault-injection (FI)
experiment tools in the field, and argue that both are plagued by
inherent deficiencies, such as insufficient target state access, little
or no means to switch to another target system, and non-reusable
experiment code.

In this article, we present a novel design approach for a
FI infrastructure that aims at combining the strengths of both
classes. Our FAIL* experiment framework provides carefully-
chosen abstractions simplifying both the implementation of
different simulator/hardware target backends and the reuse of
experiment code, while retaining the ability for deep target-
state access for specialized FI experiments. An exemplary report
on first experiences with a prototype implementation based
on existing X86 and ARM simulators demonstrates the tool’s
versatility.

I. MOTIVATION AND STATE OF THE ART

Recent technology roadmaps [1], [2], [3] suggest that
future hardware designs for embedded systems will exhibit
an increasing rate of intermittent errors in exchange for a life
extension for Moore’s Law—in terms of even smaller device
sizes, lower energy consumption, decreased per-transistor costs,
and more performance. This bears new challenges for software
developers, which must incorporate software fault-tolerance
measures to compensate for unreliable hardware while still
benefitting from these new designs: An application-specific
resource-efficiency/dependability tradeoff must be made, only
hardening mission-critical parts of the software stack against
hardware faults. The remaining components must economize
resource consumption and are endorsed to yield wrong results,
or fail in other modes.

Fault-injection (FI) experiments and dynamic trace analyses
are common means to analyze a complex software-stack’s
susceptibility to hardware faults, and to assess the effectivity
of previously applied software fault-tolerance measures [4].
Repeating analysis/evaluation and software-hardening steps
allows system designers to converge to an application-specific
tradeoff eligible for their product.

This work was partly supported by the German Research Foundation (DFG)
priority program SPP 1500 under grant no. KA 3171/2-1, LO 1719/1-1 and
SP 968/5-1.

In this context, often an ad-hoc solution—highly specific
to the assessed software, the current target platform, and a
particular fault model—is chosen, resulting in non-reusable
tools. As an unfortunate side effect, such tools—although non-
negligible efforts were spent on them—are rarely published
themselves, hindering experiment reproduction and forcing the
community to consistently reinvent the wheel.

Over the last decades, this situation was improved by a
multitude of dedicated FI experiment tool suites, each targeting
different development phases and fault models, based on a zoo
of hardware simulators at varying levels of simulation accuracy,
or on physical prototype hardware accessed through debugging
interfaces [5]. These tools can be partitioned into generalists
and specialists:

The generalists claim a certain level of flexibility regarding
the target-platform backend. Among the benefits of this
approach is that experiments can more easily be reused on
a different platform—e.g., for gaining evidence the tested
fault-tolerance measure is not platform-specific, or to move
from a simulator backend to a real hardware prototype in
later development phases. With GOOFI, Aidemark, Skarin
et al. presented such a generic FI framework, abstracting
away target systems in a plugin-based architecture [6], [7],
and additionally providing extensive pre- and post-experiment
analysis methods [8]. Fidalgo et al. [9] describe a generic
tool addressing FI via the NEXUS on-chip debugger interface.
Another example is QINJECT (David et al., [10]), injecting
faults into a target backend utilizing the GDB debugger
interface. These approaches have the common disadvantage
that the chosen interface between experiment engine and
target backend heavily limits access to target-system state, and
narrows the possibilities for FI—e.g., obstructing the possibility
to inject networking-device–specific faults into QEMU in the
latter example.

In contrast, the specialist tools are highly specific to a single
target. An example is FAUMACHINE (Sieh et al., [11]), which
provides access to a large part of its x86 simulator’s state,
and enables various FI methods, including, e.g., hard-disk
faults. David et al. modified QEMU in [12], which also allows
for deep simulator state access. But despite the advantage of
providing access to the backend’s full capabilities, this class
of tools is characterized by severe maintainability issues: Deep



2

state-access usually results in deep intrusion into the backend’s
code-base. The resulting tight coupling between simulator and
FI code often complicates or even inhibits exchanging the
tool’s target backend later on; in the case of tools that were
forked from an existing hardware simulator, such as QEMU,
keeping in sync with the simulator’s evolution is often too
arduous, soon resulting in an outdated FI platform. From an
experimenter’s point of view, the most notable side effect is
the fact that his/her experiment setups are bound to the chosen
specialist/backend couple and completely unportable, e.g., to
re-run the same experiment with prototype hardware or another
target CPU.

A compromise between generalists and specialists—
combining their strengths regarding target-backend flexibility,
experiment reuse, and deep target-state access—seems desirable.
The contribution of this article therefore is:

• A novel design approach for a fault-injection experiment
framework that allows switching target backends with
little effort (Sec. II),

• a framework API abstracting away target-backend details
and thereby fostering experiment code reuse (Sec. II),

• and a first experience report from our FAIL* tool prototype
implementation (Sec. III).

The paper concludes with a discussion and an outlook on future
work in Sec. IV and V.

II. FAIL*: DESIGN AND IMPLEMENTATION

Based on the needs emerging in our DANCEOS project—a
research endeavor in the context of fault-tolerant embedded
operating systems—and the state of the art described in
the previous section, we are developing FAIL*1 aiming at
combining the advantages of generalists and specialists while
avoiding their drawbacks. In the following, we elaborate on
design decisions regarding the tool’s architecture and its API,
and give some details on our prototype implementation based
on existing X86 and ARM simulators.

A. Architecture

Two main ideas stand behind the architecture of FAIL*:
A modularization scheme chosen specifically for a flexible
interchangeability of target backends and for distributing
experiments in a parallel environment, and an experiment API
designed with the right choice of abstractions in mind for
experiment portability and implementation ease-of-use.

Fig. 1 gives an overview of FAIL*’s architecture. User-
defined experiments (green) are split up by the user in a
Campaign and a Fault Injection part, which communicate by
means of parameter sets: A FI campaign typically consists of a
potentially large amount of independent single experiments that
only differ in the specific fault vector, which can be described
in a parameter set. At this point, it should be noted that FAIL*
is not limited to fault injection. Other possible parameter sets
can be series of input vectors of software components allowing
extensive integration testing.

1Fault Injection Leveraged; the wildcard operator * stands for exchangeable
target backends, e.g., FailBochs representing an instantiation with the Bochs
x86 simulator as the backend.

Bochs

Hook Aspects

Open Virtual Platform

OVP Callback API

Campaign Controller

Tracing Plugin
Register Events

Set State/Inject Faults

React on Events

Get State/Results

User-defined Experiments

Fail* Code

Existing Simulator/Debugger

Fault Injection

CPU RAM ...

Fail*
Instance

Simulator Abstractions

Distribute Parameter Set Receive Results

Store Results for Post Processing
Campaign

NICCPU RAM NIC ...

Figure 1. Architecture overview: The Campaign Controller distributes
parameter sets from a user-defined Campaign throughout the FAIL* instances.
Each single experiment (“Fault Injection”) consumes a parameter set, and
controls its target backend through a Simulator Abstraction layer. Actual target
backends (simulators, but also real prototype hardware) can be exchanged by
providing an interfacing module to this abstraction.

The campaign generates a series of parameter sets that
are distributed among several (possibly distributed) FAIL*
client instances, each iteratively running FI experiments,
consuming parameter sets, and communicating back results to
the Campaign Controller. The FI experiment controls its local
target backend through a Simulator Abstraction layer, and can
be assisted by, e.g., a memory access tracing plugin. Actual
target backends (system simulators, or real prototype hardware
in later development phases) can be exchanged by providing
an interfacing module to this abstraction. The diagram shows
a FAIL* instance interfacing with the popular x86 simulator
Bochs [13] by means of Aspect-Oriented Programming, a
technique we apply to retain a maintainable, loosely-coupled
code base while still being able to gain deep access to the
simulator’s state; though, the details of this method are out of
this article’s scope and have partially been outlined in earlier
work [14].

B. API Design

User-defined campaigns and FI experiments are implemented
against a C++ API offering access to both target backend meta-
information and current state. The interface is designed to
abstract away machine-specific details such as the register set
or events occurring during an experiment run. The FAIL* API
currently provides abstractions for:

• Machine registers: Both meta information (e.g., number
of registers, platform-independent naming of the program
counter or stack pointer registers, bit widths and byte
order, an iterator interface) and read/write state access is
provided.



3

• Memory: Access to meta data (size, memory type) and
state (read/write) is provided.

• Events: A set of system events an experiment or plugin
may register for, e.g., a specific program address is
reached, memory is being written to, or a trap has been
generated.

• The target system as a whole: Mostly state access
is provided, including backend state save/restore for
deterministic repeatability of experiments, and a means
to reset the system.

Each target backend may additionally introduce interfaces to
target-specific state, e.g., a means to manipulate a network
device; experiments utilizing these are naturally not portable
anymore, unless an adequate abstraction is added to the generic
API.

FI experiments usually follow a simple, sequential scheme:

Feed Input Vector
Inject Fault at Specific 
Position (in space/time)

Examine the 
Aftermath

As experiments are event-driven (e.g., wait for reaching the
specified position in space/time to inject the fault) but need
to retain a substantial amount of internal state between the
sequential steps, we chose not to provide a register/callback
API (that would force the experiment developers to explicitly
carry state from one callback to the next) but an API with
blocking calls that return to a sequentially written experiment
flow upon event activation (see Sec. III for an example).

Additionally, we currently consider to introduce a classic
register/callback API for experiments or companion plugins
with little or no state to keep between incoming events; the
aforementioned memory-access tracing plugin seems to be such
a case and could possibly be formulated even more concisely
with callbacks.

C. Tool Prototype

The current prototype implementation of FAIL* provides
a target backend for the BOCHS x86 simulator (version
2.4.6) accompanied with all previously described backend
abstractions (implemented in C++ and AspectC++ [15], an Aspect-
Oriented Programming extension to C++), with an alternative
ARM backend (OVP, [16]) currently under development. The
campaign parameter set distribution utilizes the Google Protocol
Buffer (PB) library for lightweight communication and efficient
parallelization. Analogously all result sets are represented as
PB messages simplifying post-processing, with the help of PB’s
versatile language support. As a proof-of-concept, a companion
Memory Access Tracing plugin has been implemented.

III. AN EXAMPLE EXPERIMENT

In the following we describe a straight-forward implementa-
tion of a fault-coverage campaign using the FAIL* API. The
campaign implementation (Listing 1) uses the machine register
abstraction to iterate over all registers, every single bit in each
register, and all possible instruction offsets within a C function—
the analysis subject—running in the target system. For each
point in this parameter space, a parameter set is generated

1 // campaign: iterate over all machine registers
2 RegisterManager& rm =
3 simulator.getRegisterManager();
4 for (RegisterManager::iterator it = rm.begin();
5 it != rm.end(); ++it) {
6 Register *reg = &(*it);
7 // for all bit positions within this register
8 for (bitpos = 0; bitpos < reg->getWidth();
9 ++bitpos) {

10 // for all instruction offsets in the
11 // target function
12 for (i_offset = 0; i_offset < COV_NUMINSTR;
13 ++i_offset) {
14 // parameter set for a single experiment:
15 FaultCovParam *p = new FaultCovParam;
16 p->msg.set_instr_offset(i_offset);
17 p->msg.set_bitpos(bitpos);
18 p->msg.set_inject_register(reg->getId());
19

20 // enqueue the parameter set for
21 // retrieval by a client:
22 campaignmanager.addParam(p);
23 } } }

Listing 1. (Simplified) Fault coverage campaign implementation: The code
excerpt shows the parameter set generation.

1 // retrieve parameter set from campaign
2 jc.getParam(par);
3 // restore previously saved simulator state:
4 // we’re now at the entry of the analyzed func.
5 simulator.restore("sav/p_entry.sav");
6 // breakpoint n instructions (defined in
7 // parameter set) in the future
8 BPEvent ev_fi_instr(ANY_ADDR,
9 par.instr_offset());

10 addEventAndWait(&ev_fi_instr);
11

12 // FI: single bit-flip in specified register
13 Register r = simulator.getRegisterManager().
14 getRegister(par.inject_register());
15 r.setData(r.getData() ^ (1 << par.bitpos()));
16

17 // Aftermath: traps, timeout, or normal exit
18 TrapEvent ev_trap(ANY_TRAP);
19 addEvent(&ev_trap);
20 BPEvent ev_timeout(ANY_ADDR, 1000);
21 addEvent(&ev_timeout);
22 BPEvent ev_func_end(ADDR_FUNC_END);
23 addEvent(&ev_timeout);
24 // wait for function exit, trap or timeout
25 BaseEvent *ev = waitAny();
26 // experiment result -> parameter set object
27 if (ev == &id_func_end) {
28 int result = simulator.abi_func_retval();
29 par.set_resulttype(LOG_NORMAL);
30 par.set_result(result);
31 } else if (ev == &ev_trap) {
32 par.set_resulttype(LOG_TRAP);
33 } else if (ev == &ev_timeout) {
34 par.set_resulttype(LOG_TIMEOUT);
35 }
36 // communicate result back to campaign ctrl.
37 jc.sendResult(par);

Listing 2. (Simplified) Fault coverage experiment implementation: The code
excerpt shows the FI part, parametrized by the register, the bit to flip, and the
code offset for injection.



4

(lines 12–18) and communicated to an available FAIL* instance,
which executes the experiment shown in Listing 2.

The experiment is implemented in a concise, reusable and
portable way, based on the FAIL* API. The first action is
to request a parameter set for the current experiment from
the Campaign Controller (line 2), holding the aforementioned
parameter sets in a job queue. Then we restore a system
snapshot taken at the exact point when the function under
evaluation is being entered (line 5). This ensures each run
starts under the exact same conditions.

The next steps involve enqueuing a BPEvent (BP abbreviates
breakpoint) that normally fires when a specific address has
been reached. In this case, though, the address is not really
“specific”: ev_fi_instr (line 7) is configured to fire at the
wildcard address ANY_ADDR, but not on its first occurrence; the
optional second parameter (shared by all event types) introduces
an event count, letting the event only fire after it occurred count
times, instead of firing at its first occurrence. In effect, this
allows us to count down instructions until the point within the
evaluated function we want to inject the register bit-flip fault
at (the “Instr” element in the parameter set). The blocking
addEventAndWait() call (line 8) combines registering as a
listener for this event, and waiting for it to fire.

Once we reach line 11, the event must have fired, and we
go for the fault injection. Through the register abstraction and
the parameter set received from the campaign, we grab the
register we are supposed to inject the bit-flip into (line 11) and
modify its current state in line 13.

Having injected the fault, we want to observe the outcome
of this run: failure-free returning from the function (with
a correct or faulty return value—this will be determined
offline by evaluating the log files), a hardware trap (MMU
violation, division by zero, . . . ), or a timeout. Lines 16–21
register three more events for catching these cases (without
already resuming the simulator: addEvent() is non-blocking).
The remaining code waits for one of the three events to fire
(line 23: waitAny() continues the simulator execution and
blocks), and accordingly reports the result back to the campaign
controller (lines 25–33) by storing it in the parameter set
(which subsequently is being transmitted in line 34). Note the
abstraction for a target system’s ABI convention to store return
values (line 26).

This consequent usage of target backend abstractions allows
to carry out the experiment with another simulator or hardware
backend, once an abstraction library has been provided for it.
Companion plugins, such as the memory-access tracing plugin,
allow for a more coarse-grained reuse.

IV. DISCUSSION

We believe FAIL* will achieve the claimed low-effort
switching of target backends by its explicit modular design,
separating campaign descriptions, experiment instances and
the associated target backends. The aforementioned Aspect-
Oriented Programming techniques will—at least in the case
of the Bochs variant—alleviate the task of updating to newer
backend versions: they allow us to reuse traditionally very
tightly-coupled modules, such as, e.g., the implementation of

FI in the data bus for memory reads. Other systems, such
as for example OVP, might already provide distinct callback
interfaces which can be utilized directly.

The experiment API (as outlined in Subsec. II-B) and its
underlying abstractions for target backend commonalities such
as machine registers, memory, or system events was explicitly
designed to foster experiment code reuse. The exemplary FI
campaign shown in the previous section (Listings 1 and 2)
illustrates this quite clearly: it could be reused with another
target backend without modification, even if FAIL* would be
configured for a platform with a completely different instruction
set, a reversed byte-order, or another set of general- and special-
purpose registers. We are confident to confirm this educated
guess once more target backends are implemented.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel concept for a versatile fault-injection
framework, aiming at supporting large-scale dependability
evaluation and system analysis campaigns on various target-
platform backends. Our FAIL* framework provides abstractions
supporting portable experiment implementations, fostering code
reuse, and reducing the familiarization efforts for new simulator
or hardware backends.

Currently our framework implementation is at a relatively
early stage, providing a complete interface layer for the Bochs
simulator, with OVP interfacing currently in development. Our
next steps include advancing the simulator abstraction API,
utilizing the available tracing capabilities for conducting pre-
injection analyses similar to [8], and implementing an interface
to a real hardware platform to evaluate the flexibility of our
infrastructure.

REFERENCES

[1] S. Y. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[2] M. Duranton, S. Yehia, B. de Sutter, K. de Bosschere, A. Cohen,
B. Falsafi, G. Gaydadjiev, M. Katevenis, J. Maebe, H. Munk, N. Navarro,
A. Ramirez, O. Temam, and M. Valero, “The HiPEAC vision,” Network
of Excellence on High Performance and Embedded Architecture and
Compilation, Tech. Rep., 2010.

[3] V. Narayanan and Y. Xie, “Reliability concerns in embedded system
designs,” IEEE Computer, vol. 39, no. 1, pp. 118–120, 2006.

[4] A. Benso and P. Prinetto, Eds., Fault Injection Techniques and Tools
for Embedded Systems Reliability Evaluation (Frontiers in Electronic
Testing), 1st ed. Boston: Springer-Verlag, Oct. 2003.

[5] H. Ziade, R. A. Ayoubi, and R. Velazco, “A survey on fault injection
techniques,” The International Arab Journal of Information Technology,
vol. 1, no. 2, pp. 171–186, Jul. 2004.

[6] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “GOOFI: Generic
object-oriented fault injection tool,” in Proceedings of the 31st IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN

’01). Los Alamitos, CA, USA: IEEE Computer Society Press, 2001, pp.
83–88.

[7] D. Skarin, R. Barbosa, and J. Karlsson, “GOOFI-2: A tool for experi-
mental dependability assessment,” in Proceedings of the 40th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN

’10). Los Alamitos, CA, USA: IEEE Computer Society Press, Jul. 2010,
pp. 557–562.

[8] R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson, “Assembly-level pre-
injection analysis for improving fault injection efficiency,” in Proceedings
of the 5th European Dependable Computing Conference (EDCC 2005),
vol. 3463. Springer-Verlag, Apr. 2005, p. 246.



5

[9] A. Fidalgo, M. Gericota, G. Alves, and J. Ferreira, “Using NEXUS
compliant debuggers for real time fault injection on microprocessors,” in
Proceedings of the 19th Annual Symposium on Integrated Circuits and
Systems Design. ACM Press, 2006, pp. 214–219.

[10] F. M. David, E. Chan, J. Carlyle, and R. H. Campbell, “Qinject:
A virtual-machine based fault injection framework,” in Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’08), 2008,
(Poster Presentation).

[11] M. Sand, S. Potyra, and V. Sieh, “Deterministic high-speed simulation
of complex systems including fault-injection,” in Proceedings of the
39th IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN ’09). IEEE Computer Society Press, Jul. 2009, pp.
211–216.

[12] F. M. David and R. H. Campbell, “Building a self-healing operating
system,” in Proceedings of the 3rd IEEE International Symposium on
Dependable, Autonomic and Secure Computing. Washington, DC, USA:
IEEE Computer Society Press, 2007, pp. 3–10. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1302491.1302515

[13] K. P. Lawton, “Bochs: A portable PC emulator for
Unix/X,” Linux Journal, Sep. 1996. [Online]. Available:
http://portal.acm.org/citation.cfm?id=326350.326357

[14] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O. Spinczyk,
“Revisiting fault-injection experiment-platform architectures,” in Pro-
ceedings of the 17th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC ’11). Pasadena, USA: IEEE Computer
Society Press, Dec. 2011, fast abstract.

[15] O. Spinczyk, D. Lohmann, and M. Urban, “Advances in AOP with
AspectC++,” in New Trends in Software Methodologies, Tools and
Techniques (SoMeT ’05), ser. Frontiers in Artificial Intelligence and
Applications, H. Fujita and M. Mejri, Eds., no. 129. Tokyo, Japan: IOS
Press, Sep. 2005, pp. 33–53.

[16] B. Bailey, “System level virtual prototyping becomes a reality with OVP
donation from Imperas,” White Paper, no. June, 2008.


